Pub Date : 2024-10-16DOI: 10.1016/j.partic.2024.09.019
Li Dong , Xiaodong Guan , Yang Zhou , Shibao Tang , Feng Chen
Ni-rich layered oxide with Ni molar content larger than 90% was regarded as an extremely promising candidate for cathode material applied in lithium-ion batteries owing to the significant discharging capacity and low cost. Nevertheless, rigorous cycling attenuation resulted from the crystal structure collapse and unstable particles interface deeply restrained the commercial application. In the work, LiNi0.90Co0.05Mn0.05O2 was modified by Ta5+ doping and Li2MnO3 covering, which was aimed to enhance the structure stability, defend the electrolyte attacking and promote Li+ migration during cycling. The material characterization demonstrated the cathodes after Ta5+ doping delivered the larger cell lattice parameters and higher cation ordering, which was helpful to improve the rate property and discharge capacity at low temperature. The Li2MnO3 layer was tightly adhered on the outside of LiNi0.90Co0.05Mn0.05O2, which could effectively relieve the electrolyte attacking and sustain the particle morphology integrity. As a result, 2 wt% Li2MnO3 coated Li(Ni0.90Co0.05Mn0.05)0.98Ta0.02O2 exhibited the outstanding discharge capacity of 150.2 mAh g−1 at 10.0 large current density and 140.6 mAh g−1 at −30 °C as well as the remarkable capacity retention of 93.1% after 300 cycles. Meanwhile, the pouch full batteries obtained by 2 wt% Li2MnO3 coated Li(Ni0.90Co0.05Mn0.05)0.98Ta0.02O2 also showed the more stable storage capability, cyclic property in comparison with bare LiNi0.90Co0.05Mn0.05O2.
{"title":"Supplying active lithium to single-crystal Li(Ni0.90Co0.05Mn0.05)0.98Ta0.02O2 with Li2MnO3 coating served as cathode for Li-ion batteries","authors":"Li Dong , Xiaodong Guan , Yang Zhou , Shibao Tang , Feng Chen","doi":"10.1016/j.partic.2024.09.019","DOIUrl":"10.1016/j.partic.2024.09.019","url":null,"abstract":"<div><div>Ni-rich layered oxide with Ni molar content larger than 90% was regarded as an extremely promising candidate for cathode material applied in lithium-ion batteries owing to the significant discharging capacity and low cost. Nevertheless, rigorous cycling attenuation resulted from the crystal structure collapse and unstable particles interface deeply restrained the commercial application. In the work, LiNi<sub>0.90</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub> was modified by Ta<sup>5+</sup> doping and Li<sub>2</sub>MnO<sub>3</sub> covering, which was aimed to enhance the structure stability, defend the electrolyte attacking and promote Li<sup>+</sup> migration during cycling. The material characterization demonstrated the cathodes after Ta<sup>5+</sup> doping delivered the larger cell lattice parameters and higher cation ordering, which was helpful to improve the rate property and discharge capacity at low temperature. The Li<sub>2</sub>MnO<sub>3</sub> layer was tightly adhered on the outside of LiNi<sub>0.90</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, which could effectively relieve the electrolyte attacking and sustain the particle morphology integrity. As a result, 2 wt% Li<sub>2</sub>MnO<sub>3</sub> coated Li(Ni<sub>0.90</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>)<sub>0.98</sub>Ta<sub>0.02</sub>O<sub>2</sub> exhibited the outstanding discharge capacity of 150.2 mAh g<sup>−1</sup> at 10.0 large current density and 140.6 mAh g<sup>−1</sup> at −30 °C as well as the remarkable capacity retention of 93.1% after 300 cycles. Meanwhile, the pouch full batteries obtained by 2 wt% Li<sub>2</sub>MnO<sub>3</sub> coated Li(Ni<sub>0.90</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>)<sub>0.98</sub>Ta<sub>0.02</sub>O<sub>2</sub> also showed the more stable storage capability, cyclic property in comparison with bare LiNi<sub>0.90</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 303-318"},"PeriodicalIF":4.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1016/j.partic.2024.10.001
Dzmitry Misiulia , Göran Lidén , Sergiy Antonyuk
The flow field and performance characteristics of the high-efficiency Stairmand cyclone have been computationally investigated at a wide range of Reynolds numbers Reout = 84 − 252876 by varying the cyclone diameter, inlet velocity, operating temperature and pressure using the LES simulations. The effects of these parameters on the dimensionless cyclone performance characteristics (Euler number, square root of Stokes number and slope of the transformed grade efficiency curve) and dimensionless lip flow and lip velocity have been revealed. Five critical Reynolds numbers which correspond to the transition between different regimes and sub-regimes have been determined. All three dimensionless cyclone performance characteristics and two lip flow characteristics are ruled by the Reynolds number.
{"title":"Cyclone dimensionless pressure drop, cut size, and separation slope: One dimensionless number (Reynolds) to rule them all","authors":"Dzmitry Misiulia , Göran Lidén , Sergiy Antonyuk","doi":"10.1016/j.partic.2024.10.001","DOIUrl":"10.1016/j.partic.2024.10.001","url":null,"abstract":"<div><div>The flow field and performance characteristics of the high-efficiency Stairmand cyclone have been computationally investigated at a wide range of Reynolds numbers <em>Re</em><sub>out</sub> = 84 − 252876 by varying the cyclone diameter, inlet velocity, operating temperature and pressure using the LES simulations. The effects of these parameters on the dimensionless cyclone performance characteristics (Euler number, square root of Stokes number and slope of the transformed grade efficiency curve) and dimensionless lip flow and lip velocity have been revealed. Five critical Reynolds numbers which correspond to the transition between different regimes and sub-regimes have been determined. All three dimensionless cyclone performance characteristics and two lip flow characteristics are ruled by the Reynolds number.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 235-251"},"PeriodicalIF":4.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.partic.2024.09.020
Shahnaz Majeed , Nurul Izzah Binti Abu Bakar , Mohammad Danish , Afzan Binti Mahmad , Mohamad Nasir Mohamad Ibrahim , Norul Aini Zakariya , Sreenivas Patro Sisinthy , Ravindran Muthukumarasamy , Abdulaziz M. Alanazi , Mohammed Tahir Ansari , Ohoud A. Jefri
In recent years, a lot of research has been done on silver nanoparticles (SNP) due to their numerous applications in the biomedical, pharmaceutical, and drug delivery industries. In this present study SNP were green synthesized using Melicope lunu-ankenda (M. lunu-ankenda) leaf extract. The addition of AgNO3 causes a color change. L-arginine addition results in further colour changes confirming conjugation. A UV–Vis spectrophotometric examination showed that the absorption peak for SNP was 435 nm, while the peak for L-arginine SNP (cSNP) was 422 nm. FTIR analysis confirmed the association of amides and amines with nanoparticles. The spherical nature of the silver was disclosed by SEM, and its elemental character is verified by EDS. The thermal stability of the nanoparticles is determined by TGA analysis, while TEM examination verifies their spherical shape. Using the MTT assay, these cSNP exhibited outstanding toxicity analysis (IC50 38.72 μg/ml) against MDA-MB-231 cells. These cSNP causes damage to the mitochondria (JC1 staining), which causes oxidative stress and the production of ROS with 83% of DCF expression in cancer cells. Furthermore, as demonstrated by the Comet assay and DAPI, these cSNP cause good DNA damage in the treated cells. Additionally, using flow cytometry, cSNPs potentially trigger apoptosis by triggering the expression of caspase 3 and caspase 8 proteins. Additionally, through CAM, cSNP demonstrated strong anti-angiogenesis activity by reducing the number of blood vessel branches. These findings suggest that cSNP may be crucial for drug delivery and cancer treatment.
{"title":"Bioengineered silver nanoparticles induced apoptosis through upregulation of caspase 3 and caspase 8 proteins in breast adenocarcinoma MDA-MB-231 cells and impede angiogenesis","authors":"Shahnaz Majeed , Nurul Izzah Binti Abu Bakar , Mohammad Danish , Afzan Binti Mahmad , Mohamad Nasir Mohamad Ibrahim , Norul Aini Zakariya , Sreenivas Patro Sisinthy , Ravindran Muthukumarasamy , Abdulaziz M. Alanazi , Mohammed Tahir Ansari , Ohoud A. Jefri","doi":"10.1016/j.partic.2024.09.020","DOIUrl":"10.1016/j.partic.2024.09.020","url":null,"abstract":"<div><div>In recent years, a lot of research has been done on silver nanoparticles (SNP) due to their numerous applications in the biomedical, pharmaceutical, and drug delivery industries. In this present study SNP were green synthesized using <em>Melicope lunu-ankenda</em> (<em>M. lunu-ankenda</em>) leaf extract. The addition of AgNO<sub>3</sub> causes a color change. L-arginine addition results in further colour changes confirming conjugation. A UV–Vis spectrophotometric examination showed that the absorption peak for SNP was 435 nm, while the peak for L-arginine SNP (cSNP) was 422 nm. FTIR analysis confirmed the association of amides and amines with nanoparticles. The spherical nature of the silver was disclosed by SEM, and its elemental character is verified by EDS. The thermal stability of the nanoparticles is determined by TGA analysis, while TEM examination verifies their spherical shape. Using the MTT assay, these cSNP exhibited outstanding toxicity analysis (IC<sub>50</sub> 38.72 μg/ml) against MDA-MB-231 cells. These cSNP causes damage to the mitochondria (JC1 staining), which causes oxidative stress and the production of ROS with 83% of DCF expression in cancer cells. Furthermore, as demonstrated by the Comet assay and DAPI, these cSNP cause good DNA damage in the treated cells. Additionally, using flow cytometry, cSNPs potentially trigger apoptosis by triggering the expression of caspase 3 and caspase 8 proteins. Additionally, through CAM, cSNP demonstrated strong anti-angiogenesis activity by reducing the number of blood vessel branches. These findings suggest that cSNP may be crucial for drug delivery and cancer treatment.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 252-264"},"PeriodicalIF":4.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main current approaches for generation of the packed bed models are based on rigid body dynamics (RBD) and Newton's laws (discrete element methods - DEM). This paper deals with the development and analysis of a novel code based on analytical geometry approach for the packed bed generation. The architecture and main algorithms of the novel code are described and clarified. The parameters of the packed bed generated via the novel code are compared with experimental data and packed beds generated via Blender (RBD), Yade (DEM). The novel code demonstrates many advantages, such as good correlation with experimental data, no overlaps between pellets in the packed bed, and a low computational time for packed bed generation. The packed bed model can be directly exported in .step format. Other advantages are also demonstrated and clarified. The novel code is attached to this paper and can be freely used by engineers and scientists.
{"title":"A novel freemium code SAND (v1.0) for generation of randomly packed beds","authors":"Nikita Shadymov , Viacheslav Papkov , Dmitry Pashchenko","doi":"10.1016/j.partic.2024.09.003","DOIUrl":"10.1016/j.partic.2024.09.003","url":null,"abstract":"<div><div>The main current approaches for generation of the packed bed models are based on rigid body dynamics (RBD) and Newton's laws (discrete element methods - DEM). This paper deals with the development and analysis of a novel code based on analytical geometry approach for the packed bed generation. The architecture and main algorithms of the novel code are described and clarified. The parameters of the packed bed generated via the novel code are compared with experimental data and packed beds generated via Blender (RBD), Yade (DEM). The novel code demonstrates many advantages, such as good correlation with experimental data, no overlaps between pellets in the packed bed, and a low computational time for packed bed generation. The packed bed model can be directly exported in <em>.step</em> format. Other advantages are also demonstrated and clarified. The novel code is attached to this paper and can be freely used by engineers and scientists.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 198-211"},"PeriodicalIF":4.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1016/j.partic.2024.09.017
Jun-Hyung Lim, Igor Kim, Se-Jin Yook
Monodisperse particles are useful across a wide range of industrial applications, such as LCD displays, solar cells and rechargeable batteries, due to their uniformly small sizes. However, generating high volumes of monodisperse particles remains challenging. In this study, it was aimed to generate monodisperse aerosols by classifying micrometer-scale solid aerosol particles within a narrow size range. Accordingly, a new particle-size classification device with two virtual impactors connected in series and clean air cores was developed. The first-stage virtual impactor had a slightly larger cutoff size than the second-stage, and the major flow discharged from the first-stage was directed to the second-stage. The target particle size range was altered by changing the nozzle sizes in the first and second stages or by adjusting the flow rate. Subsequently, the classification performance of the two-stage virtual impactor was simulated and validated through an experiment using Arizona test dust. The implemented combinations of cutoff sizes for the first and second stages were 3.0 and 2.0 μm, 3.9 and 2.7 μm, or 6.7 and 4.8 μm. As a result, monodisperse aerosol particles were classified at a geometric standard deviation of 1.04–1.14 and a particle size range of 2–6.7 μm. The two-stage virtual impactor developed herein may be useful for various research and performance evaluations, as it can classify micrometer-scale solid particle aerosols that exhibit high monodispersity.
{"title":"Development of a two-stage virtual impactor for the generation of micrometer-scale monodisperse aerosols","authors":"Jun-Hyung Lim, Igor Kim, Se-Jin Yook","doi":"10.1016/j.partic.2024.09.017","DOIUrl":"10.1016/j.partic.2024.09.017","url":null,"abstract":"<div><div>Monodisperse particles are useful across a wide range of industrial applications, such as LCD displays, solar cells and rechargeable batteries, due to their uniformly small sizes. However, generating high volumes of monodisperse particles remains challenging. In this study, it was aimed to generate monodisperse aerosols by classifying micrometer-scale solid aerosol particles within a narrow size range. Accordingly, a new particle-size classification device with two virtual impactors connected in series and clean air cores was developed. The first-stage virtual impactor had a slightly larger cutoff size than the second-stage, and the major flow discharged from the first-stage was directed to the second-stage. The target particle size range was altered by changing the nozzle sizes in the first and second stages or by adjusting the flow rate. Subsequently, the classification performance of the two-stage virtual impactor was simulated and validated through an experiment using Arizona test dust. The implemented combinations of cutoff sizes for the first and second stages were 3.0 and 2.0 μm, 3.9 and 2.7 μm, or 6.7 and 4.8 μm. As a result, monodisperse aerosol particles were classified at a geometric standard deviation of 1.04–1.14 and a particle size range of 2–6.7 μm. The two-stage virtual impactor developed herein may be useful for various research and performance evaluations, as it can classify micrometer-scale solid particle aerosols that exhibit high monodispersity.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 189-197"},"PeriodicalIF":4.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1016/j.partic.2024.09.018
Funda Ulusu
Silver nanoparticles (AgNPs) continue to attract interest due to their potential applications in biomedicine, especially in relation to their antibacterial and anticancer properties. In this respect, it is important to develop biosynthesis techniques that are environmentally friendly and include new sources. This is the first report on microwave-assisted green synthesis of silver nanoparticles using Erica manipuliflora Salisb. (E.m AgNPs). In this study, the anti-cancer and antibacterial activity of E.m AgNPs and E. manipuliflora extracts were evaluated. Characterization of E.m AgNPs were performed using UV–Vis spectroscopy FT-IR, XRD, SEM and TEM analyses. The UV–Vis absorption spectrum showed the characteristic peak of E.m AgNPs at λmax = 425 nm. The SEM and TEM results indicated that the nanoparticles were spherical and ranged in size from 2.45 to 9.95 nm. The antibacterial results, it was determined that E.m AgNPs (50 mg mL−1) (8.4–21.1 mm ZOI) caused more effective inhibition on both gram positive (Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis) and gram negative (Escherichia coli) bacteria compared to all plant extracts (50 mg mL−1) (8.13–17.16 mm ZOI). Among the cancer (MCF-7 and HT-29) and healthy (HaCaT and HEK-293) cell lines, E.m AgNPs exhibited the highest cytotoxicity against MCF-7 cells (IC50: 87.22 μg mL−1). The hexane extract was the most effective inhibitory extract on cell proliferation of all cell lines and showed the highest cell inhibition in MCF-7 cells (IC50: 43.06 μg mL−1). The results revealed that both E.m AgNPs and E. manipuliflora extracts showed promising antibacterial activity against pathogenic bacterial strains and had potential anticancer activity.
{"title":"Exploring the therapeutic potential of microwave-assisted biosynthesized silver nanoparticles using Erica manipuliflora Salisb.: A comprehensive study on anticancer and antibacterial potentials","authors":"Funda Ulusu","doi":"10.1016/j.partic.2024.09.018","DOIUrl":"10.1016/j.partic.2024.09.018","url":null,"abstract":"<div><div>Silver nanoparticles (AgNPs) continue to attract interest due to their potential applications in biomedicine, especially in relation to their antibacterial and anticancer properties. In this respect, it is important to develop biosynthesis techniques that are environmentally friendly and include new sources. This is the first report on microwave-assisted green synthesis of silver nanoparticles using <em>Erica manipuliflora</em> Salisb. (<em>E.m AgNPs</em>). In this study, the anti-cancer and antibacterial activity of <em>E.m AgNPs</em> and <em>E. manipuliflora</em> extracts were evaluated. Characterization of <em>E.m AgNPs</em> were performed using UV–Vis spectroscopy FT-IR, XRD, SEM and TEM analyses. The UV–Vis absorption spectrum showed the characteristic peak of <em>E.m AgNPs</em> at <em>λ<sub>max</sub></em> = 425 nm. The SEM and TEM results indicated that the nanoparticles were spherical and ranged in size from 2.45 to 9.95 nm. The antibacterial results, it was determined that <em>E.m AgNPs</em> (50 mg mL<sup>−1</sup>) (8.4–21.1 mm ZOI) caused more effective inhibition on both gram positive (<em>Bacillus subtilis</em>, <em>Staphylococcus aureus</em>, <em>Enterococcus faecalis</em>) and gram negative (<em>Escherichia coli</em>) bacteria compared to all plant extracts (50 mg mL<sup>−1</sup>) (8.13–17.16 mm ZOI). Among the cancer (MCF-7 and HT-29) and healthy (HaCaT and HEK-293) cell lines, <em>E.m AgNPs</em> exhibited the highest cytotoxicity against MCF-7 cells (IC<sub>50</sub>: 87.22 μg mL<sup>−1</sup>). The hexane extract was the most effective inhibitory extract on cell proliferation of all cell lines and showed the highest cell inhibition in MCF-7 cells (IC<sub>50</sub>: 43.06 μg mL<sup>−1</sup>). The results revealed that both <em>E.m AgNPs</em> and <em>E. manipuliflora</em> extracts showed promising antibacterial activity against pathogenic bacterial strains and had potential anticancer activity.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 212-222"},"PeriodicalIF":4.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the performance of magnetic fields in reducing gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles. The Peclet number (Pe) and axial dispersion coefficient (Da,g) were determined using the one-dimensional dispersion model. A weak magnetic field reduced gas back-mixing to a certain extent, while a moderate field resulted in minimal decrease. The performance of a strong magnetic field varied significantly depending on the operation mode. Under the magnetization-FIRST operation mode, gas back-mixing was significantly reduced. The corresponding Pe and Da,g were calculated as ∼76 and ∼3.6 × 10−4 m2/s, indicating that the gas flow approached the ideal plug-flow manner. However, when the magnetization-LAST operation mode was used, the strong magnetic field failed to mitigate gas back-mixing. Therefore, the performance of magnetic fields in reducing gas back-mixing depended not only on their intensity but also on their application sequence to the gas flow field.
{"title":"Magnetic reduction of gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles","authors":"Qiang Zhang, Yalong Cao, Wankun Liu, Hao Guan, Donghui Liu, Quanhong Zhu","doi":"10.1016/j.partic.2024.09.016","DOIUrl":"10.1016/j.partic.2024.09.016","url":null,"abstract":"<div><div>This study investigated the performance of magnetic fields in reducing gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles. The Peclet number (<em>Pe</em>) and axial dispersion coefficient (<em>D</em><sub>a,g</sub>) were determined using the one-dimensional dispersion model. A weak magnetic field reduced gas back-mixing to a certain extent, while a moderate field resulted in minimal decrease. The performance of a strong magnetic field varied significantly depending on the operation mode. Under the magnetization-FIRST operation mode, gas back-mixing was significantly reduced. The corresponding <em>Pe</em> and <em>D</em><sub>a,g</sub> were calculated as ∼76 and ∼3.6 × 10<sup>−4</sup> m<sup>2</sup>/s, indicating that the gas flow approached the ideal plug-flow manner. However, when the magnetization-LAST operation mode was used, the strong magnetic field failed to mitigate gas back-mixing. Therefore, the performance of magnetic fields in reducing gas back-mixing depended not only on their intensity but also on their application sequence to the gas flow field.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 92-102"},"PeriodicalIF":4.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.partic.2024.09.015
Yuhua Zhang , Yanmei Jin , Song Li , Hong Wu , Huijuan Luo
In this study, high-performance porous carbon for CO2 adsorption was synthesized from pistachio shells and modified with urea to enrich nitrogen content in the porous structure. The effects of activation temperature, KOH-to-carbon ratio, and urea addition on the pore structure and CO2 adsorption capacity of the porous carbon were investigated. Characterization was conducted using N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). Results showed that under preparation conditions of 700 °C, KOH-to-carbon ratio of 2, and 15 wt% urea concentration, the synthesized GAC-15-2-700 porous carbon exhibited a maximum specific surface area of 1395 m2/g, micropore volume of 0.505 cm3/g, and N-5 peak area ratio of 65.57%. It achieved a CO2 adsorption capacity of 3.56 mmol/g. Nitrogen functional groups on the porous carbon primarily existed as pyridinic N (N-6), pyrrolic/pyridinic N (N-5), and quaternary N (N-Q), with the enriched micropores and high N-5 content being crucial for CO2 adsorption.
{"title":"Preparation of pistachio shell-based porous carbon and its adsorption performance for low concentration CO2","authors":"Yuhua Zhang , Yanmei Jin , Song Li , Hong Wu , Huijuan Luo","doi":"10.1016/j.partic.2024.09.015","DOIUrl":"10.1016/j.partic.2024.09.015","url":null,"abstract":"<div><div>In this study, high-performance porous carbon for CO<sub>2</sub> adsorption was synthesized from pistachio shells and modified with urea to enrich nitrogen content in the porous structure. The effects of activation temperature, KOH-to-carbon ratio, and urea addition on the pore structure and CO<sub>2</sub> adsorption capacity of the porous carbon were investigated. Characterization was conducted using N<sub>2</sub> adsorption-desorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). Results showed that under preparation conditions of 700 °C, KOH-to-carbon ratio of 2, and 15 wt% urea concentration, the synthesized GAC-15-2-700 porous carbon exhibited a maximum specific surface area of 1395 m<sup>2</sup>/g, micropore volume of 0.505 cm<sup>3</sup>/g, and N-5 peak area ratio of 65.57%. It achieved a CO<sub>2</sub> adsorption capacity of 3.56 mmol/g. Nitrogen functional groups on the porous carbon primarily existed as pyridinic N (N-6), pyrrolic/pyridinic N (N-5), and quaternary N (N-Q), with the enriched micropores and high N-5 content being crucial for CO<sub>2</sub> adsorption.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 103-114"},"PeriodicalIF":4.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.partic.2024.09.012
Minghua Wang , Liuyong Chang , Xuehuan Hu , Meiyin Zhu , Bin Zhang , Guangze Li , Zheng Xu
The precise measurement of non-volatile Particulate Matter (nvPM) is outlined in aviation engine emissions regulations by the International Civil Aviation Organization (ICAO). However, assessing particle losses in the sampling and transfer unit presents challenges, raising concerns about the system's reliability. Moreover, nvPM emissions from small and medium aircraft engines, with thrust not exceeding 26.7 kN, vary widely in size, adding complexity to the measurement process. To provide a comprehensive analysis of particle losses in the sampling and transfer subsystems, this study established a test bench equipped with a nanoparticle generator. The generator simulates nvPM emissions from medium and small aircraft engines and can consistently produce nvPMs with a wide range of concentrations (10³-10⁷/cm³) and size distributions (20–160 nm). Thermophoretic loss verification experiments were conducted within the sampling pipeline under significant temperature differences, investigating the effects of particle size, temperature gradient, and airflow rate on thermophoretic particle losses. The experimental results demonstrated good agreement with the predictions of the model proposed by United Technologies Research Centre (UTRC). After correcting for temperature, the experimental data showed a maximum disparity of 2% under typical engine exhaust conditions, validating the predictability of the thermophoretic loss model for various engine types. Furthermore, verification experiments for particle diffusion and bending losses were performed. Comparative analysis with the UTRC model revealed nvPM inertial deposition under laminar flow conditions with low Reynolds numbers (Re). As the Re increased, the measured data more closely aligned with the simulations. Bending losses due to secondary flow patterns ranged from 1% to 10%, depending on particle size and flow rate. This finding supports the applicability of aviation nvPM measurement methods across a wide particle size range. This research provides theoretical support for future nvPM measurements on various aircraft engines, laying the groundwork for improved accuracy and reliability in emissions monitoring.
{"title":"Investigation on the particle loss and applicability of aviation nvPM measurement methodology for wide particle size ranges","authors":"Minghua Wang , Liuyong Chang , Xuehuan Hu , Meiyin Zhu , Bin Zhang , Guangze Li , Zheng Xu","doi":"10.1016/j.partic.2024.09.012","DOIUrl":"10.1016/j.partic.2024.09.012","url":null,"abstract":"<div><div>The precise measurement of non-volatile Particulate Matter (nvPM) is outlined in aviation engine emissions regulations by the International Civil Aviation Organization (ICAO). However, assessing particle losses in the sampling and transfer unit presents challenges, raising concerns about the system's reliability. Moreover, nvPM emissions from small and medium aircraft engines, with thrust not exceeding 26.7 kN, vary widely in size, adding complexity to the measurement process. To provide a comprehensive analysis of particle losses in the sampling and transfer subsystems, this study established a test bench equipped with a nanoparticle generator. The generator simulates nvPM emissions from medium and small aircraft engines and can consistently produce nvPMs with a wide range of concentrations (10³-10⁷/cm³) and size distributions (20–160 nm). Thermophoretic loss verification experiments were conducted within the sampling pipeline under significant temperature differences, investigating the effects of particle size, temperature gradient, and airflow rate on thermophoretic particle losses. The experimental results demonstrated good agreement with the predictions of the model proposed by United Technologies Research Centre (UTRC). After correcting for temperature, the experimental data showed a maximum disparity of 2% under typical engine exhaust conditions, validating the predictability of the thermophoretic loss model for various engine types. Furthermore, verification experiments for particle diffusion and bending losses were performed. Comparative analysis with the UTRC model revealed nvPM inertial deposition under laminar flow conditions with low Reynolds numbers (Re). As the Re increased, the measured data more closely aligned with the simulations. Bending losses due to secondary flow patterns ranged from 1% to 10%, depending on particle size and flow rate. This finding supports the applicability of aviation nvPM measurement methods across a wide particle size range. This research provides theoretical support for future nvPM measurements on various aircraft engines, laying the groundwork for improved accuracy and reliability in emissions monitoring.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 154-165"},"PeriodicalIF":4.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.partic.2024.09.008
Jingrui Cao , Shibo Wu , Jiahao He , Yang Zhou , Pianpian Ma
To address the global challenges associated with energy and environmental concerns, the design, development, and application of novel materials have emerged as pivotal drivers. Notably, high-entropy perovskite oxides (HEPOs) amalgamate the merits of both perovskite oxides and high-entropy materials, presenting significant potential in addressing numerous critical issues in energy and environment. This review delves into the recent advancements of HEPOs in these domains. Firstly, it provides an overview of prevalent synthesis techniques for HEPOs, alongside two emerging low-temperature, eco-friendly methods. Subsequently, current strategies to optimize the performance of HEPOs are summarized from three perspectives: compositional engineering, morphological engineering, and structural engineering. The review further underscores their applications in areas such as lithium-ion batteries, supercapacitors, electrocatalysts, and solid oxide fuel cells. Based on this foundation, potential performance optimization strategies and potential application areas of HEPOs are discussed. Finally, it identifies challenges faced by further development of HEPOs in energy and environmental applications and provides an outlook on future developments.
{"title":"Research progress of high-entropy perovskite oxides in energy and environmental applications: A review","authors":"Jingrui Cao , Shibo Wu , Jiahao He , Yang Zhou , Pianpian Ma","doi":"10.1016/j.partic.2024.09.008","DOIUrl":"10.1016/j.partic.2024.09.008","url":null,"abstract":"<div><div>To address the global challenges associated with energy and environmental concerns, the design, development, and application of novel materials have emerged as pivotal drivers. Notably, high-entropy perovskite oxides (HEPOs) amalgamate the merits of both perovskite oxides and high-entropy materials, presenting significant potential in addressing numerous critical issues in energy and environment. This review delves into the recent advancements of HEPOs in these domains. Firstly, it provides an overview of prevalent synthesis techniques for HEPOs, alongside two emerging low-temperature, eco-friendly methods. Subsequently, current strategies to optimize the performance of HEPOs are summarized from three perspectives: compositional engineering, morphological engineering, and structural engineering. The review further underscores their applications in areas such as lithium-ion batteries, supercapacitors, electrocatalysts, and solid oxide fuel cells. Based on this foundation, potential performance optimization strategies and potential application areas of HEPOs are discussed. Finally, it identifies challenges faced by further development of HEPOs in energy and environmental applications and provides an outlook on future developments.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 62-81"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}