Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564076
A. Aberle, T. Lauinger, S. Bowden, S. Wegener, G. Betz
SUNALYZER, a powerful yet cost-effective solar cell I-V tester is introduced. The costs of the optical components are kept at tolerable levels by means of a halogen lamp array. In combination with a computerized height adjuster, this lamp system allows the measurement of a set of illuminated I-V curves covering the intensity range from 0.1 to 4 Suns. Furthermore, the dark I-V curve is measured over a current range of up to 8 orders of magnitude. From these measurements, an analysis subroutine accurately determines the solar cell's series resistance R/sub s.light/ and R/sub s.dark/ as well as the diode ideality factor n and the saturation current density J/sub 0/ as a function of the external current density. Furthermore, design modifications are described which allow for speedy, fully automated illuminated I-V measurements, as required for testing and sorting purposes in solar cell production lines.
{"title":"SUNALYZER-a powerful and cost-effective solar cell I-V tester for the photovoltaic community","authors":"A. Aberle, T. Lauinger, S. Bowden, S. Wegener, G. Betz","doi":"10.1109/PVSC.1996.564076","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564076","url":null,"abstract":"SUNALYZER, a powerful yet cost-effective solar cell I-V tester is introduced. The costs of the optical components are kept at tolerable levels by means of a halogen lamp array. In combination with a computerized height adjuster, this lamp system allows the measurement of a set of illuminated I-V curves covering the intensity range from 0.1 to 4 Suns. Furthermore, the dark I-V curve is measured over a current range of up to 8 orders of magnitude. From these measurements, an analysis subroutine accurately determines the solar cell's series resistance R/sub s.light/ and R/sub s.dark/ as well as the diode ideality factor n and the saturation current density J/sub 0/ as a function of the external current density. Furthermore, design modifications are described which allow for speedy, fully automated illuminated I-V measurements, as required for testing and sorting purposes in solar cell production lines.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115293643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564308
J. Yang, X. Xu, A. Banerjee, S. Guha
We have achieved a new world record stable efficiency of 11.8% for amorphous silicon alloy solar cells using a spectrum-splitting, triple-junction structure. In addition to our previously reported key factors leading to high performance multijunction solar cells, we have improved the current matching among the component cells. We have designed the triple structure such that the top cell, which usually exhibits the highest fill factor, remains to be the current-limiting cell in the degraded state. One critical requirement for achieving the desired current matching without sacrificing the triple cell current is to obtain a high quality narrow bandgap bottom cell capable of producing sufficient red current. Details on this narrow bandgap amorphous silicon germanium alloy cell as well as stability data on the triple-junction cell are presented.
{"title":"Progress in triple-junction amorphous silicon alloy solar cells with improved current mismatch in component cells","authors":"J. Yang, X. Xu, A. Banerjee, S. Guha","doi":"10.1109/PVSC.1996.564308","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564308","url":null,"abstract":"We have achieved a new world record stable efficiency of 11.8% for amorphous silicon alloy solar cells using a spectrum-splitting, triple-junction structure. In addition to our previously reported key factors leading to high performance multijunction solar cells, we have improved the current matching among the component cells. We have designed the triple structure such that the top cell, which usually exhibits the highest fill factor, remains to be the current-limiting cell in the degraded state. One critical requirement for achieving the desired current matching without sacrificing the triple cell current is to obtain a high quality narrow bandgap bottom cell capable of producing sufficient red current. Details on this narrow bandgap amorphous silicon germanium alloy cell as well as stability data on the triple-junction cell are presented.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116683984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564379
M. Nowlan, S. Hogan, J. Patterson, S. Sutherland, J. Murach, W. Breen, G. Darkazalli
The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic (PV) modules by developing automated high-throughput (5 MW/yr) processes for interconnecting crystalline silicon solar cells. A new automated processing system was developed for high-throughput, high-yield solar cell interconnection. The results of extensive processing evaluations with a range of different commercially produced cells are reported. Process yields typically exceeded 98%. No degradation in cell performance was observed. Modules made from cell strings fabricated with the new assembly system were subjected to accelerated environmental testing per IEC 1215 and IEEE 1262 standards. Testing consisted of thermal cycling, thermal and humidity-freeze cycling, and damp heat soaking. All modules passed these qualification tests, with an average power loss of only 2.3%.
{"title":"Processing evaluations of an automated high-throughput system for interconnecting crystalline silicon solar cells","authors":"M. Nowlan, S. Hogan, J. Patterson, S. Sutherland, J. Murach, W. Breen, G. Darkazalli","doi":"10.1109/PVSC.1996.564379","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564379","url":null,"abstract":"The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic (PV) modules by developing automated high-throughput (5 MW/yr) processes for interconnecting crystalline silicon solar cells. A new automated processing system was developed for high-throughput, high-yield solar cell interconnection. The results of extensive processing evaluations with a range of different commercially produced cells are reported. Process yields typically exceeded 98%. No degradation in cell performance was observed. Modules made from cell strings fabricated with the new assembly system were subjected to accelerated environmental testing per IEC 1215 and IEEE 1262 standards. Testing consisted of thermal cycling, thermal and humidity-freeze cycling, and damp heat soaking. All modules passed these qualification tests, with an average power loss of only 2.3%.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123845403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.563956
J. Lammasniemi, K. Tappura, R. Jaakkola, A. Kazantsev, K. Rakennus, P. Uusimaa, M. Pessa
Ga/sub 0.51/In/sub 0.49/P solar cells and GaAs tunnel diodes were grown by gas-source molecular beam epitaxy. The effect of various window layer materials, such as Al/sub 0.51/In/sub 0.49/P, Al/sub 0.8/Ga/sub 0.2/As and ZnSe were studied for n-on-p Ga/sub 0.51/In/sub 0.49/P cells. The best carrier collection was obtained with Al/sub 0.51/In/sub 0.49/P window and with graded doping in emitter and base layers. A total-area AM0 efficiency of 14.0% for 2/spl times/2 cm/sup 2/ area has been measured for this cell. The GaAs tunnel diodes were grown with Be-doping for p-type and Si-doping for n-type material. Specific resistance of 0.09 m/spl Omega/cm/sup 2/ and peak tunneling current of 200 A/cm/sup 2/ were obtained for the best GaAs tunnel diodes. In addition, tunneling effect in a n++Ga/sub 0.51/In/sub 0.49/P/p++GaAs diode was observed.
{"title":"Molecular beam epitaxy grown GaInP top cells and GaAs tunnel diodes for tandem applications","authors":"J. Lammasniemi, K. Tappura, R. Jaakkola, A. Kazantsev, K. Rakennus, P. Uusimaa, M. Pessa","doi":"10.1109/PVSC.1996.563956","DOIUrl":"https://doi.org/10.1109/PVSC.1996.563956","url":null,"abstract":"Ga/sub 0.51/In/sub 0.49/P solar cells and GaAs tunnel diodes were grown by gas-source molecular beam epitaxy. The effect of various window layer materials, such as Al/sub 0.51/In/sub 0.49/P, Al/sub 0.8/Ga/sub 0.2/As and ZnSe were studied for n-on-p Ga/sub 0.51/In/sub 0.49/P cells. The best carrier collection was obtained with Al/sub 0.51/In/sub 0.49/P window and with graded doping in emitter and base layers. A total-area AM0 efficiency of 14.0% for 2/spl times/2 cm/sup 2/ area has been measured for this cell. The GaAs tunnel diodes were grown with Be-doping for p-type and Si-doping for n-type material. Specific resistance of 0.09 m/spl Omega/cm/sup 2/ and peak tunneling current of 200 A/cm/sup 2/ were obtained for the best GaAs tunnel diodes. In addition, tunneling effect in a n++Ga/sub 0.51/In/sub 0.49/P/p++GaAs diode was observed.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130156059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564049
F. Schuurmans, A. Schonecker, J. Eikelboom, W. Sinke
The crystal-orientation dependence of the surface recombination velocity for silicon nitride coated silicon wafers is investigated and compared with thermal oxides. A qualitative very similar orientation dependence of S/sub eff,d/(/spl Delta/n) for thermal oxide and PECVD nitride coated p-Si wafers etched in diluted HF is found with S/sub eff,d/(/spl Delta/n) (100)<[110]<(111). The type of HF-etch (diluted or buffered HF) prior to deposition has a large influence on S/sub eff,d/ for the nitride coated p-Si wafers. For the nitride coated n-Si wafers etched in diluted HF no orientation dependence of S/sub eff,d/ is observed.
{"title":"Crystal-orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers","authors":"F. Schuurmans, A. Schonecker, J. Eikelboom, W. Sinke","doi":"10.1109/PVSC.1996.564049","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564049","url":null,"abstract":"The crystal-orientation dependence of the surface recombination velocity for silicon nitride coated silicon wafers is investigated and compared with thermal oxides. A qualitative very similar orientation dependence of S/sub eff,d/(/spl Delta/n) for thermal oxide and PECVD nitride coated p-Si wafers etched in diluted HF is found with S/sub eff,d/(/spl Delta/n) (100)<[110]<(111). The type of HF-etch (diluted or buffered HF) prior to deposition has a large influence on S/sub eff,d/ for the nitride coated p-Si wafers. For the nitride coated n-Si wafers etched in diluted HF no orientation dependence of S/sub eff,d/ is observed.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127753300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564322
Hong Zhu, S. Fonash
Two different approaches to reduce the influence of the solar cell interface have been explored using the authors' AMPS (Analysis of Microelectronics and Photonic Structures) computer program. The two particular approaches they considered both focus on shaping the field at the p layer/absorber interface between a-SiC:H and a-Si:H to enhance p-i-n solar cell performance and in both cases they assume this can be done without introducing any new defects at the interface. The two approaches examined are: (1) the bandgap grading buffer layer; and (2) the doped buffer layer.
{"title":"Study of buffer layer design in single junction solar cells","authors":"Hong Zhu, S. Fonash","doi":"10.1109/PVSC.1996.564322","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564322","url":null,"abstract":"Two different approaches to reduce the influence of the solar cell interface have been explored using the authors' AMPS (Analysis of Microelectronics and Photonic Structures) computer program. The two particular approaches they considered both focus on shaping the field at the p layer/absorber interface between a-SiC:H and a-Si:H to enhance p-i-n solar cell performance and in both cases they assume this can be done without introducing any new defects at the interface. The two approaches examined are: (1) the bandgap grading buffer layer; and (2) the doped buffer layer.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"91 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134224912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564045
U. Rau, T. Meyer, A. Goldbach, R. Brendel, J. H. Werner
We investigate the optical and electronic properties of thin-film silicon solar cells by means of numerical simulations. The optical design under investigation is the encapsulated-V texture which is capable of absorbing sunlight corresponding to a maximum short circuit current density of 35 mA/cm/sup 2/. Since the layer thickness can be restricted to only 4 /spl mu/m, the encapsulated-V structure provides also a good collection efficiency for photogenerated charge carriers. Practical efficiencies around 12% can be expected for Si material with a minority carrier lifetime as low as 10 ns. Increased lifetimes of 100 ns allow for about 14% efficiency. The benefit of multiple junctions strongly depends on surface recombination. The efficiency of a single junction cell can be improved from 10% to 13% by a three junction device if the surface recombination velocity is as high as 10/sup 5/ cm/s. For moderate surface recombination the gain is only 1%.
{"title":"Numerical simulation of innovative device structures for silicon thin-film solar cells","authors":"U. Rau, T. Meyer, A. Goldbach, R. Brendel, J. H. Werner","doi":"10.1109/PVSC.1996.564045","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564045","url":null,"abstract":"We investigate the optical and electronic properties of thin-film silicon solar cells by means of numerical simulations. The optical design under investigation is the encapsulated-V texture which is capable of absorbing sunlight corresponding to a maximum short circuit current density of 35 mA/cm/sup 2/. Since the layer thickness can be restricted to only 4 /spl mu/m, the encapsulated-V structure provides also a good collection efficiency for photogenerated charge carriers. Practical efficiencies around 12% can be expected for Si material with a minority carrier lifetime as low as 10 ns. Increased lifetimes of 100 ns allow for about 14% efficiency. The benefit of multiple junctions strongly depends on surface recombination. The efficiency of a single junction cell can be improved from 10% to 13% by a three junction device if the surface recombination velocity is as high as 10/sup 5/ cm/s. For moderate surface recombination the gain is only 1%.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129138944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564033
P. Doshi, J. Mejía, K. Tate, S. Kamra, A. Rohatgi, S. Narayanan, R. Singh
This paper presents, for the first time, the successful integration of three rapid, low-cost, high-throughput techniques for crystalline Si cell fabrication, namely: rapid thermal processing (RTP) for simultaneous diffusion of a phosphorus emitter and aluminum back-surface-field; screen-printing (SP) for the front grid contact; and low-temperature PECVD of SiN for antireflection and surface passivation. This combination has resulted in 4 cm/sup 2/ cells with efficiencies of 16.3% and 15.9% on 2 /spl Omega/-cm FZ and Cz, respectively, as well as 15.4% efficient, 25 cm/sup 2/ FZ cells. Despite the respectable RTP/SP efficiencies, cells formed by conventional furnace processing and photolithography (CFP/PL) give /spl sim/2% (abs.) greater efficiencies. Through in-depth modeling and characterization, this difference is quantified on the basis of emitter design, grid shading, and quality of contacts.
{"title":"High-efficiency silicon solar cells by low-cost rapid thermal processing, screen printing, and plasma-enhanced chemical vapor deposition","authors":"P. Doshi, J. Mejía, K. Tate, S. Kamra, A. Rohatgi, S. Narayanan, R. Singh","doi":"10.1109/PVSC.1996.564033","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564033","url":null,"abstract":"This paper presents, for the first time, the successful integration of three rapid, low-cost, high-throughput techniques for crystalline Si cell fabrication, namely: rapid thermal processing (RTP) for simultaneous diffusion of a phosphorus emitter and aluminum back-surface-field; screen-printing (SP) for the front grid contact; and low-temperature PECVD of SiN for antireflection and surface passivation. This combination has resulted in 4 cm/sup 2/ cells with efficiencies of 16.3% and 15.9% on 2 /spl Omega/-cm FZ and Cz, respectively, as well as 15.4% efficient, 25 cm/sup 2/ FZ cells. Despite the respectable RTP/SP efficiencies, cells formed by conventional furnace processing and photolithography (CFP/PL) give /spl sim/2% (abs.) greater efficiencies. Through in-depth modeling and characterization, this difference is quantified on the basis of emitter design, grid shading, and quality of contacts.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132554060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564335
K. Winz, C. Fortmann, Th. Elckhoff, C. Beneking, B. Rech, O. Kluth, H. Wagner
Improvements in amorphous silicon single junction solar cell stabilized performance can be realized by developing more stable materials as well as more efficient light trapping. The optical losses of thin solar cells are investigated both numerically and experimentally. New approaches involving planar junctions and diffuse rear reflectors are developed. It is theoretically possible to achieve short-circuit currents over 17 mA/cm/sup 2/ with a 150 nm i-layer using a diffuse rear reflector when an appropriate rear window material is employed.
{"title":"Smooth TCO/glass substrates and diffuse rear reflectors for efficient low cost amorphous silicon-based solar cells","authors":"K. Winz, C. Fortmann, Th. Elckhoff, C. Beneking, B. Rech, O. Kluth, H. Wagner","doi":"10.1109/PVSC.1996.564335","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564335","url":null,"abstract":"Improvements in amorphous silicon single junction solar cell stabilized performance can be realized by developing more stable materials as well as more efficient light trapping. The optical losses of thin solar cells are investigated both numerically and experimentally. New approaches involving planar junctions and diffuse rear reflectors are developed. It is theoretically possible to achieve short-circuit currents over 17 mA/cm/sup 2/ with a 150 nm i-layer using a diffuse rear reflector when an appropriate rear window material is employed.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134394958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-05-13DOI: 10.1109/PVSC.1996.564374
B. Kroposki, D. Myers, K. Emery, L. Mrig, C. Whitaker, J. Newmiller
A consensus-based methodology to calculate the energy output of a PV module is described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.
{"title":"Photovoltaic module energy rating methodology development","authors":"B. Kroposki, D. Myers, K. Emery, L. Mrig, C. Whitaker, J. Newmiller","doi":"10.1109/PVSC.1996.564374","DOIUrl":"https://doi.org/10.1109/PVSC.1996.564374","url":null,"abstract":"A consensus-based methodology to calculate the energy output of a PV module is described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"19 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132243136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}