Pub Date : 2024-01-01DOI: 10.1016/j.pquantelec.2023.100497
Ricardo Gallego Torromé , Shabir Barzanjeh
Quantum sensing, built upon fundamental quantum phenomena like entanglement and squeezing, is revolutionizing precision and sensitivity across diverse domains, including quantum metrology and imaging. Its impact is now stretching into radar and LiDAR applications, giving rise to the concept of quantum radar. Unlike traditional radar systems relying on classical electromagnetic, quantum radar harnesses the potential of the quantum properties of photon states like entanglement and quantum superposition to transcend established boundaries in sensitivity and accuracy. This comprehensive review embarks on an exploration of quantum radar and quantum LiDAR, guided by two primary objectives: enhancing sensitivity through quantum resources and refining accuracy in target detection and range estimation through quantum techniques. We initiate our exploration with a thorough analysis of the fundamental principles of quantum radar, which includes an evaluation of quantum illumination protocols, receiver designs, and their associated methodologies. This investigation spans across both microwave and optical domains, providing us with insights into various experimental demonstrations and the existing technological limitations. Additionally, we review the applications of quantum radar protocols for enhanced accuracy in target range determination and estimation. This section of our review involves a comprehensive analysis of quantum illumination, quantum interferometry radar, and other quantum radar protocols, providing insights into their contributions to the field. This review offers valuable insights into the current state of quantum radar, providing a deep understanding of key concepts, experiments, and the evolving landscape of this dynamic and promising field.
{"title":"Advances in quantum radar and quantum LiDAR","authors":"Ricardo Gallego Torromé , Shabir Barzanjeh","doi":"10.1016/j.pquantelec.2023.100497","DOIUrl":"10.1016/j.pquantelec.2023.100497","url":null,"abstract":"<div><p>Quantum sensing, built upon fundamental quantum phenomena like entanglement and squeezing, is revolutionizing precision and sensitivity across diverse domains, including quantum metrology and imaging. Its impact is now stretching into radar and LiDAR applications, giving rise to the concept of quantum radar. Unlike traditional radar systems relying on classical electromagnetic, quantum radar harnesses the potential of the quantum properties of photon states like entanglement and quantum superposition to transcend established boundaries in sensitivity and accuracy. This comprehensive review embarks on an exploration of quantum radar and quantum LiDAR, guided by two primary objectives: enhancing sensitivity through quantum resources and refining accuracy in target detection and range estimation through quantum techniques. We initiate our exploration with a thorough analysis of the fundamental principles of quantum radar, which includes an evaluation of quantum illumination protocols, receiver designs, and their associated methodologies. This investigation spans across both microwave and optical domains, providing us with insights into various experimental demonstrations and the existing technological limitations. Additionally, we review the applications of quantum radar protocols for enhanced accuracy in target range determination and estimation. This section of our review involves a comprehensive analysis of quantum illumination, quantum interferometry radar, and other quantum radar protocols, providing insights into their contributions to the field. This review offers valuable insights into the current state of quantum radar, providing a deep understanding of key concepts, experiments, and the evolving landscape of this dynamic and promising field.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100497"},"PeriodicalIF":11.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139060397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pquantelec.2023.100496
Anthony J. Brady , Alec Eickbusch , Shraddha Singh , Jing Wu , Quntao Zhuang
Encoding quantum information into a set of harmonic oscillators is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a qubit into an oscillator – including cat codes, binomial codes and Gottesman–Kitaev–Preskill (GKP) codes – and are among the first to reach a break-even point for quantum error correction. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes—emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.
{"title":"Advances in bosonic quantum error correction with Gottesman–Kitaev–Preskill Codes: Theory, engineering and applications","authors":"Anthony J. Brady , Alec Eickbusch , Shraddha Singh , Jing Wu , Quntao Zhuang","doi":"10.1016/j.pquantelec.2023.100496","DOIUrl":"10.1016/j.pquantelec.2023.100496","url":null,"abstract":"<div><p>Encoding quantum information<span> into a set of harmonic oscillators<span><span> is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a </span>qubit<span> into an oscillator – including cat codes, binomial codes and Gottesman–Kitaev–Preskill (GKP) codes – and are among the first to reach a break-even point for quantum error correction<span><span>. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal </span>quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes—emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.</span></span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100496"},"PeriodicalIF":11.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pquantelec.2023.100495
Andrey A. Rakhubovsky, Darren W. Moore, Radim Filip
Mechanical systems prepared in quantum non-Gaussian states constitute a new advanced class of phenomena breaking the laws of classical physics. Specifically, such mechanical states cannot be described as any mixture of the Gaussian states produced by operations described by Hamiltonians at most quadratic in position and momentum, such as phase rotations, squeezing operations and linear driving. Therefore, they form a class of resourceful states for quantum technological tasks such as metrology, sensing, simulation and computation. Quantum opto- and electromechanics are advanced platforms for quantum mechanical experiments with broad applications offering various methods for preparing such mechanical quantum non-Gaussian states. The suitability of these platforms as transducers additionally allows the integration of such mechanical states into a variety of other related platforms. Here, we summarize the current techniques for creating these states, emphasizing those that have had experimental success and looking to methods that show promise for future experiments. By collating these results, we expect to stimulate new ideas for non-Gaussian state preparation in these fields, resulting in the realization of further experiments. Moreover, we provide concise and clear explanations of the milestones of research in the quantum non-Gaussianity of mechanical states and its implementation and verification in a laboratory setting.
{"title":"Quantum non-Gaussian optomechanics and electromechanics","authors":"Andrey A. Rakhubovsky, Darren W. Moore, Radim Filip","doi":"10.1016/j.pquantelec.2023.100495","DOIUrl":"10.1016/j.pquantelec.2023.100495","url":null,"abstract":"<div><p>Mechanical systems prepared in quantum non-Gaussian states constitute a new advanced class of phenomena breaking the laws of classical physics. Specifically, such mechanical states cannot be described as any mixture of the Gaussian states produced by operations described by Hamiltonians at most quadratic in position and momentum, such as phase rotations, squeezing operations and linear driving. Therefore, they form a class of resourceful states for quantum technological tasks such as metrology, sensing, simulation and computation. Quantum opto- and electromechanics are advanced platforms for quantum mechanical experiments with broad applications offering various methods for preparing such mechanical quantum non-Gaussian states. The suitability of these platforms as transducers additionally allows the integration of such mechanical states into a variety of other related platforms. Here, we summarize the current techniques for creating these states, emphasizing those that have had experimental success and looking to methods that show promise for future experiments. By collating these results, we expect to stimulate new ideas for non-Gaussian state preparation in these fields, resulting in the realization of further experiments. Moreover, we provide concise and clear explanations of the milestones of research in the quantum non-Gaussianity of mechanical states and its implementation and verification in a laboratory setting.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100495"},"PeriodicalIF":11.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672723000447/pdfft?md5=0b71e07dc4154aa3738c392a5aca7151&pid=1-s2.0-S0079672723000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138544814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moiré superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016–2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring new phases of matter, but also provided new opportunities for applications in microelectronics, spintronics, magnonics, optomagnetics, and so on. Despite the flourish developments in 2D magnetism over this short period of time, further efforts are welcome in multiple forefronts of 2D magnetism research for achieving the ultimate goal of routinely implementing 2D magnets as quantum electronic components. In this review article, we will start with basic concepts and properties of 2D magnetism, followed by a brief overview of historical efforts in 2D magnetism research and then a comprehensive review of vdW material-based 2D magnetism. We will conclude with discussions on potential future research directions for this growing field of 2D vdW magnetism.
{"title":"Progress and prospects in two-dimensional magnetism of van der Waals materials","authors":"Youngjun Ahn, Xiaoyu Guo, Suhan Son, Zeliang Sun, Liuyan Zhao","doi":"10.1016/j.pquantelec.2024.100498","DOIUrl":"10.1016/j.pquantelec.2024.100498","url":null,"abstract":"<div><p>Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moiré superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016–2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring new phases of matter, but also provided new opportunities for applications in microelectronics, spintronics, magnonics, optomagnetics, and so on. Despite the flourish developments in 2D magnetism over this short period of time, further efforts are welcome in multiple forefronts of 2D magnetism research for achieving the ultimate goal of routinely implementing 2D magnets as quantum electronic components. In this review article, we will start with basic concepts and properties of 2D magnetism, followed by a brief overview of historical efforts in 2D magnetism research and then a comprehensive review of vdW material-based 2D magnetism. We will conclude with discussions on potential future research directions for this growing field of 2D vdW magnetism.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100498"},"PeriodicalIF":11.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139670455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The photonic spin Hall effect (PSHE), as an exotic analogy to the spin Hall effect in electronics, is induced by the spin-orbit interaction of light and manifests itself as a spin-related splitting of left- and right-handed circularly polarized beams. Recently, the PSHE has been revealed and explored in a wide range of fields such as optical interfaces, metasurfaces/metamaterials, near-field optics, topological and disordered systems, as well as non-Hermitian photonics. Significantly, the PSHE provides the unique spin degrees of freedom to flexibly control light, which has enabled tremendous applications in precise metrology, spin-based nanophotonic devices, and mathematical operations, to name only a few. Also, new methods to manipulate and enhance this effect have been actively pursued. Here, we provide a comprehensive review of the key aspects in the PSHE, especially the underlying physics, new techniques of manipulations, and emerging applications. Our review can not only help new researchers of this field in a timely manner but also inspire more efforts in making and engineering PSHE-based devices in coming years.
{"title":"Photonic spin Hall effect: Physics, manipulations, and applications","authors":"Lijuan Sheng , Yu Chen , Shuaijie Yuan , Xuquan Liu , Zhiyou Zhang , Hui Jing , Le-Man Kuang , Xinxing Zhou","doi":"10.1016/j.pquantelec.2023.100484","DOIUrl":"10.1016/j.pquantelec.2023.100484","url":null,"abstract":"<div><p><span>The photonic spin </span>Hall effect<span> (PSHE), as an exotic analogy to the spin Hall effect in electronics, is induced by the spin-orbit interaction of light and manifests itself as a spin-related splitting of left- and right-handed circularly polarized beams. Recently, the PSHE has been revealed and explored in a wide range of fields such as optical interfaces, metasurfaces/metamaterials, near-field optics, topological and disordered systems, as well as non-Hermitian photonics. Significantly, the PSHE provides the unique spin degrees of freedom to flexibly control light, which has enabled tremendous applications in precise metrology, spin-based nanophotonic<span> devices, and mathematical operations, to name only a few. Also, new methods to manipulate and enhance this effect have been actively pursued. Here, we provide a comprehensive review of the key aspects in the PSHE, especially the underlying physics, new techniques of manipulations, and emerging applications. Our review can not only help new researchers of this field in a timely manner but also inspire more efforts in making and engineering PSHE-based devices in coming years.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"91 ","pages":"Article 100484"},"PeriodicalIF":11.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135588100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.pquantelec.2023.100486
Jiayi Yu , Xinlei Zhu , Fei Wang , Yahong Chen , Yangjian Cai
Optical coherence is a fundamental characteristic of light that plays a significant role in understanding interference, propagation, light–matter interaction, and other fundamental aspects of classical and quantum wave fields. The study of optical coherence has led to a wide range of applications, including optical coherence tomography, ghost imaging, and free-space optical communications. In recent years, the complex spatial structure of optical coherence embedded in partially coherent light beams has garnered increasing attention due to the novel physical effects it induces, such as self-shaping, self-focusing, and self-splitting of beams in free space. Partially coherent light beams with non-classical spatial coherence structures have found use in many innovative applications, including overcoming the classical Rayleigh diffraction limit in optical imaging, reducing the side effects of atmospheric turbulence in free-space optical communications, coherence-based optical encryption, and robust optical signal transmission. In this article, we present a systematic review of the manipulation and measurement of the spatial coherence structure of optical beams, their propagation and light–matter interaction, as well as the applications of partially coherent light beams with structured optical coherence. We begin with the representation of the cross-spectral density function for a partially coherent light beam using Gori’s nonnegative definite condition and Wolf’s coherent-mode decomposition theory. We then discuss in detail two different strategies for experimentally manipulating the spatial coherence structure, one based on the generalized van Cittert–Zernike theorem and the other on the coherent-mode decomposition theory. Next, we provide an overview of recent progress in measuring the complex spatial coherence structure of partially coherent light beams using methods based on self-referencing holography, generalized Hanbury Brown and Twiss experiment, and incoherent modal decomposition. We study the novel physical properties of partially coherent light beams with non-conventional spatial coherence structures during their propagation in free space and through a highly focused system, as well as their interaction with atmospheric turbulence. We also discuss the effect of structured optical coherence in reducing the negative effects of atmospheric turbulence. Finally, we present the applications of spatial coherence structure engineering in optical imaging, optical encryption, robust information transmission through complex media, particle trapping, refractive index measurement, beam shaping, and ultrahigh precision angular velocity measurement. Optical coherence structure not only provides a new degree of freedom for light manipulation but also offers an effective tool for novel light applications.
{"title":"Research progress on manipulating spatial coherence structure of light beam and its applications","authors":"Jiayi Yu , Xinlei Zhu , Fei Wang , Yahong Chen , Yangjian Cai","doi":"10.1016/j.pquantelec.2023.100486","DOIUrl":"10.1016/j.pquantelec.2023.100486","url":null,"abstract":"<div><p><span>Optical coherence is a fundamental characteristic of light that plays a significant role in understanding interference, propagation, light–matter interaction, and other fundamental aspects of classical and quantum wave fields. The study of optical coherence has led to a wide range of applications, including optical coherence tomography, ghost imaging, and free-space optical communications. In recent years, the complex spatial structure of optical coherence embedded in partially coherent </span>light beams<span> has garnered increasing attention due to the novel physical effects it induces, such as self-shaping, self-focusing, and self-splitting of beams in free space. Partially coherent light beams with non-classical spatial coherence structures have found use in many innovative applications, including overcoming the classical Rayleigh diffraction limit in optical imaging<span><span>, reducing the side effects of atmospheric turbulence<span> in free-space optical communications, coherence-based optical encryption, and robust optical signal transmission. In this article, we present a systematic review of the manipulation and measurement of the spatial coherence structure of optical beams, their propagation and light–matter interaction, as well as the applications of partially coherent light beams with structured optical coherence. We begin with the representation of the cross-spectral density function for a partially coherent light beam using Gori’s nonnegative definite condition and Wolf’s coherent-mode decomposition theory. We then discuss in detail two different strategies for experimentally manipulating the spatial coherence structure, one based on the generalized van Cittert–Zernike theorem and the other on the coherent-mode decomposition theory. Next, we provide an overview of recent progress in measuring the complex spatial coherence structure of partially coherent light beams using methods based on self-referencing </span></span>holography<span><span><span>, generalized Hanbury Brown and Twiss experiment, and incoherent modal decomposition. We study the novel physical properties of partially coherent light beams with non-conventional spatial coherence structures during their propagation in free space and through a highly focused system, as well as their interaction with atmospheric turbulence. We also discuss the effect of structured optical coherence in reducing the negative effects of atmospheric turbulence. Finally, we present the applications of spatial coherence structure engineering in optical imaging, optical encryption, robust information transmission through complex media, particle trapping, </span>refractive index measurement, beam shaping, and ultrahigh precision </span>angular velocity measurement. Optical coherence structure not only provides a new degree of freedom for light manipulation but also offers an effective tool for novel light applications.</span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"91 ","pages":"Article 100486"},"PeriodicalIF":11.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71492657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.pquantelec.2022.100396
Run Yan Teh , Laura Rosales-Zarate , Peter D. Drummond , M.D. Reid
This paper reviews the progress that has been made in our knowledge of quantum correlations at the mesoscopic and macroscopic level. We begin by summarizing the Einstein-Podolsky-Rosen (EPR) argument and the Bell correlations that cannot be explained by local hidden variable theories. It was originally an open question as to whether (and how) such quantum correlations could occur on a macroscopic scale, since this would seem to contradict the correspondence principle. The purpose of this review is to examine how this question has been answered over the decades since the original papers of EPR and Bell. We first review work relating to higher spin measurements which revealed that macroscopic quantum states could exhibit Bell correlations. This covers higher dimensional, multiparticle and continuous-variable EPR and Bell states where measurements on a single system give a spectrum of outcomes, and also multipartite states where measurements are made at multiple separated sites. It appeared that the macroscopic quantum observations were for an increasingly limited span of measurement settings and required a fine resolution of outcomes. Motivated by this, we next review correlations for macroscopic superposition states, and examine predictions for the violation of Leggett-Garg inequalities using dynamical quantum systems. These results reveal Bell correlations for coarse-grained measurements which need only distinguish between macroscopically distinct states, thus bringing into question the validity of certain forms of macroscopic realism. Finally, we review progress for massive systems, including Bose-Einstein condensates and optomechanical oscillators, where EPR-type correlations have been observed between massive systems. Experiments are summarized which support the predictions of quantum mechanics in mesoscopic regimes.
{"title":"Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems","authors":"Run Yan Teh , Laura Rosales-Zarate , Peter D. Drummond , M.D. Reid","doi":"10.1016/j.pquantelec.2022.100396","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2022.100396","url":null,"abstract":"<div><p><span><span>This paper reviews the progress that has been made in our knowledge of quantum correlations at the mesoscopic and macroscopic level. We begin by summarizing the Einstein-Podolsky-Rosen (EPR) argument and the Bell correlations that cannot be explained by local hidden variable theories. It was originally an open question as to whether (and how) such quantum correlations could occur on a macroscopic scale, since this would seem to contradict the correspondence principle. The purpose of this review is to examine how this question has been answered over the decades since the original papers of EPR and Bell. We first review work relating to higher spin measurements which revealed that </span>macroscopic quantum states could exhibit Bell correlations. This covers higher dimensional, multiparticle and continuous-variable EPR and Bell states where measurements on a single system give a spectrum of outcomes, and also multipartite states where measurements are made at multiple separated sites. It appeared that the macroscopic quantum observations were for an increasingly limited span of measurement settings and required a fine resolution of outcomes. Motivated by this, we next review correlations for macroscopic superposition states, and examine predictions for the violation of Leggett-Garg inequalities using dynamical quantum systems. These results reveal Bell correlations for coarse-grained measurements which need only distinguish between macroscopically distinct states, thus bringing into question the validity of certain forms of macroscopic realism. Finally, we review progress for massive systems, including Bose-Einstein condensates and optomechanical </span>oscillators<span>, where EPR-type correlations have been observed between massive systems. Experiments are summarized which support the predictions of quantum mechanics in mesoscopic regimes.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"90 ","pages":"Article 100396"},"PeriodicalIF":11.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3034945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.pquantelec.2023.100469
Yihao Xu , Bo Xiong , Wei Ma , Yongmin Liu
Nanophotonic devices, such as metasurfaces and silicon photonic components, have been progressively demonstrated to be efficient and versatile alternatives to their bulky counterparts, enabling compact and light-weight systems for the application of imaging, sensing, communication and computing. The tremendous advances in machine learning provide new design methods, metrology and functionalities for nanophotonic devices and systems. Specifically, machine learning has fundamentally changed automatic design, measurement and result processing of highly application-specific nanophotonic systems without the need of extensive expert experience. This trend can be well described by the popular concept of “software-defined” infrastructure in information technology, which can decouple specific hardware from end users by virtualizing physical components using software interfaces, making the entire system faster, more flexible and more scalable. In this review, we introduce the concept of software-defined nanophotonics and summarize the interdisciplinary research that bridges nanophotonics and intelligence algorithms, especially machine learning algorithms, in the device design, measurement and system setup. The review is organized in an application-oriented manner, showing how the software-defined scheme is utilized in solving both forward and inverse problems for various nanophotonic devices and systems.
{"title":"Software-defined nanophotonic devices and systems empowered by machine learning","authors":"Yihao Xu , Bo Xiong , Wei Ma , Yongmin Liu","doi":"10.1016/j.pquantelec.2023.100469","DOIUrl":"10.1016/j.pquantelec.2023.100469","url":null,"abstract":"<div><p><span><span>Nanophotonic devices, such as </span>metasurfaces and </span>silicon photonic components, have been progressively demonstrated to be efficient and versatile alternatives to their bulky counterparts, enabling compact and light-weight systems for the application of imaging, sensing, communication and computing. The tremendous advances in machine learning provide new design methods, metrology and functionalities for nanophotonic devices and systems. Specifically, machine learning has fundamentally changed automatic design, measurement and result processing of highly application-specific nanophotonic systems without the need of extensive expert experience. This trend can be well described by the popular concept of “software-defined” infrastructure in information technology, which can decouple specific hardware from end users by virtualizing physical components using software interfaces, making the entire system faster, more flexible and more scalable. In this review, we introduce the concept of software-defined nanophotonics and summarize the interdisciplinary research that bridges nanophotonics and intelligence algorithms, especially machine learning algorithms, in the device design, measurement and system setup. The review is organized in an application-oriented manner, showing how the software-defined scheme is utilized in solving both forward and inverse problems for various nanophotonic devices and systems.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"89 ","pages":"Article 100469"},"PeriodicalIF":11.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49168371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.pquantelec.2023.100470
Xiaoyan Huang , Weijun Yuan , Aaron Holman , Minho Kwon , Stuart J. Masson , Ricardo Gutierrez-Jauregui , Ana Asenjo-Garcia , Sebastian Will , Nanfang Yu
We propose metasurface holograms as a novel platform to generate optical trap arrays for cold atoms with high quality, efficiency, and thermal stability. We developed design and fabrication methods to create dielectric, phase-only metasurface holograms based on titanium dioxide. We experimentally demonstrated optical trap arrays of various geometries, including periodic and aperiodic configurations with dimensions ranging from 1D to 3D and up to a few hundred trap sites. We characterized the performance of the holographic metasurfaces in terms of the positioning accuracy, size and intensity uniformity of the generated traps, and power handling capability of the dielectric metasurfaces. Our proposed platform has great potential for enabling fundamental studies of quantum many-body physics, and quantum simulation and computation tasks. The compact form factor, passive nature, good power handling capability, and scalability of generating high-quality, large-scale arrays also make the metasurface platform uniquely suitable for realizing field-deployable devices and systems based on cold atoms.
{"title":"Metasurface holographic optical traps for ultracold atoms","authors":"Xiaoyan Huang , Weijun Yuan , Aaron Holman , Minho Kwon , Stuart J. Masson , Ricardo Gutierrez-Jauregui , Ana Asenjo-Garcia , Sebastian Will , Nanfang Yu","doi":"10.1016/j.pquantelec.2023.100470","DOIUrl":"10.1016/j.pquantelec.2023.100470","url":null,"abstract":"<div><p>We propose metasurface<span> holograms as a novel platform to generate optical trap arrays for cold atoms with high quality, efficiency, and thermal stability. We developed design and fabrication methods to create dielectric<span>, phase-only metasurface holograms based on titanium dioxide. We experimentally demonstrated optical trap arrays of various geometries, including periodic and aperiodic configurations with dimensions ranging from 1D to 3D and up to a few hundred trap sites. We characterized the performance of the holographic metasurfaces in terms of the positioning accuracy, size and intensity uniformity of the generated traps, and power handling capability of the dielectric metasurfaces. Our proposed platform has great potential for enabling fundamental studies of quantum many-body physics, and quantum simulation and computation tasks. The compact form factor, passive nature, good power handling capability, and scalability of generating high-quality, large-scale arrays also make the metasurface platform uniquely suitable for realizing field-deployable devices and systems based on cold atoms.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"89 ","pages":"Article 100470"},"PeriodicalIF":11.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44404188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.pquantelec.2023.100459
A. Porfirev , S. Khonina , A. Kuchmizhak
Orbital angular momentum (OAM) of light is an important feature of structured electromagnetic fields exhibiting non-uniform spatial distribution. In contrast to a spin angular momentum (SAM) reflecting angular rotation of a polarization vector, OAM is the quantity that expresses the amount of dynamical rotation of a wavefront about an optical axis. In 1992 it was demonstrated that such rotation can be transferred to the microscale objects, initiating a novel research direction related to the OAM–light–matter interaction and opening the pathways for new technologies widely applied in physics, chemistry and biology. This review surveys recent progress in the field of interaction between singular optical radiation and matter covering such rapidly evolving application areas as laser material processing, optical tweezers, control of chirality of matter, and OAM-empowered linear and nonlinear effects — Raman scattering as well as Doppler, Faraday and Hall effects. OAM transfer at the atomic scale is also highlighted revealing the remarkable opportunities to modify the physics of ultrahigh-intense laser–plasma interaction. Finally, the so-called spatiotemporal optical vortices, optical vortices with phase and energy circulation in a spatiotemporal plane with a controllable purely transverse OAM, were discussed in terms of their great potential for new applications that would otherwise be impossible.
{"title":"Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale","authors":"A. Porfirev , S. Khonina , A. Kuchmizhak","doi":"10.1016/j.pquantelec.2023.100459","DOIUrl":"10.1016/j.pquantelec.2023.100459","url":null,"abstract":"<div><p><span>Orbital angular momentum<span> (OAM) of light is an important feature of structured electromagnetic fields<span><span><span> exhibiting non-uniform spatial distribution. In contrast to a spin angular momentum (SAM) reflecting angular rotation of a polarization vector, OAM is the quantity that expresses the amount of dynamical rotation of a wavefront about an optical axis. In 1992 it was demonstrated that such rotation can be transferred to the microscale objects, initiating a novel research direction related to the OAM–light–matter interaction and opening the pathways for new technologies widely applied in physics, chemistry and biology. This review surveys recent progress in the field of interaction between singular optical radiation and matter covering such rapidly evolving application areas as </span>laser material processing<span><span><span>, optical tweezers, control of </span>chirality of matter, and OAM-empowered linear and </span>nonlinear effects — </span></span>Raman scattering as well as Doppler, Faraday and </span></span></span>Hall effects<span>. OAM transfer at the atomic scale is also highlighted revealing the remarkable opportunities to modify the physics of ultrahigh-intense laser–plasma interaction. Finally, the so-called spatiotemporal optical vortices, optical vortices with phase and energy circulation in a spatiotemporal plane with a controllable purely transverse OAM, were discussed in terms of their great potential for new applications that would otherwise be impossible.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"88 ","pages":"Article 100459"},"PeriodicalIF":11.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45408838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}