Alkali-rich layered oxides Li2SnO3 and Na2SnO3 are isostructural, but no alkali-mixed compositions have been reported so far. While the thermodynamic stability of such mixed compositions is predicted by DFT calculations mainly for the sodium-rich side, single-phase compounds Li2-xNaxSnO3 were successfully obtained in the whole composition range (0 ≤ x ≤ 2) by conventional solid-state synthesis thanks to a quenching procedure at the end of the heat treatment. From Li2SnO3 to Na2SnO2, the evolution of the cell parameters and the DFT calculations demonstrate that the lithium-to-sodium substitution occurs firstly inside the alkali layer up to Li0.5Na1.5SnO3 and then in the honeycomb layer.
{"title":"Rationalizing the alkali ions distribution along the honeycomb layered (Li,Na)2SnO3 pseudo solid solution","authors":"Romain Berthelot , Carla Crobu , Eunice Mumba Mpanga , Bernard Fraisse , Marie-Liesse Doublet","doi":"10.1016/j.progsolidstchem.2023.100403","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100403","url":null,"abstract":"<div><p>Alkali-rich layered oxides Li<sub>2</sub>SnO<sub>3</sub> and Na<sub>2</sub>SnO<sub>3</sub><span> are isostructural, but no alkali-mixed compositions have been reported so far. While the thermodynamic stability of such mixed compositions is predicted by DFT calculations mainly for the sodium-rich side, single-phase compounds Li</span><sub>2-<em>x</em></sub>Na<sub><em>x</em></sub>SnO<sub>3</sub> were successfully obtained in the whole composition range (0 ≤ <em>x</em> ≤ 2) by conventional solid-state synthesis thanks to a quenching procedure at the end of the heat treatment. From Li<sub>2</sub>SnO<sub>3</sub> to Na<sub>2</sub>SnO<sub>2</sub>, the evolution of the cell parameters and the DFT calculations demonstrate that the lithium-to-sodium substitution occurs firstly inside the alkali layer up to Li<sub>0.5</sub>Na<sub>1.5</sub>SnO<sub>3</sub> and then in the honeycomb layer.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100403"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.progsolidstchem.2023.100392
Chuan Li , Ayesha Khan Tareen , Karim Khan , JianYu Long , Iftikhar Hussain , Muhammad Farooq Khan , Muhammad Iqbal , Zhongjian Xie , Ye Zhang , Asif Mahmood , Nasir Mahmood , Waqas Ahmad , Han Zhang
Sensors are regarded as a fundamental vector for sustainable development of future advanced civilization. To satisfy the demands of future generations, fabrication of advanced sensor systems integrated with artificial intelligence (AI), fifth generation (5G) connectivity, machine learning (ML), and internet of things (IoTs) is growing very fast. Incorporation of two-dimensional (2D) nanomaterials (NMs) with IoTs/5G/AI/ML technologies has transformed wide range of sensor applications in healthcare, wearable electronics for, safety, environment, military, space, and agriculture sectors. Finally, to operate those sensors we need powerful energy storage devices (ESDs) and hence advance 2D NMs. Since the discovery of MXenes NMs in 2011, and 2D boron nanosheets (NSs) (borophene) on Ag substrates (2015) their research has been accelerated in the domains of advanced nanotechnological world. Borophene and MXenes NMs have came out as an outstanding 2D NMs to construct next generation novel sensors and ESDs due to their novel physicochemical properties and surface functions. By lowering costs, requiring fewer resources (including labor), and minimizing contamination, ML/AI based theoretical simulation has effectively directed the study and manufacturing of improved 2D NMs based sensors/ESDs applications on large scale industrial level. Modern 2D NMs based flexible sensors and ESDs can fundamentally alter the traditional sensing/ESDs technologies since they are adaptable, wearable, intelligent, portable, biocompatible, energy-efficient, self-sustaining, point-of-care, affordable etc. this review summarized the MXenes and borophene NMs synthesis with corresponding achievements, and there advancement, limitations, and challenges in sensors/ESDs technological applications.
{"title":"Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials","authors":"Chuan Li , Ayesha Khan Tareen , Karim Khan , JianYu Long , Iftikhar Hussain , Muhammad Farooq Khan , Muhammad Iqbal , Zhongjian Xie , Ye Zhang , Asif Mahmood , Nasir Mahmood , Waqas Ahmad , Han Zhang","doi":"10.1016/j.progsolidstchem.2023.100392","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100392","url":null,"abstract":"<div><p><span><span>Sensors are regarded as a fundamental vector for sustainable development of future advanced civilization. To satisfy the demands of future generations, fabrication of advanced sensor systems integrated with artificial intelligence (AI), fifth generation (5G) connectivity, machine learning (ML), and </span>internet of things<span> (IoTs) is growing very fast. Incorporation of two-dimensional (2D) nanomaterials (NMs) with IoTs/5G/AI/ML technologies has transformed wide range </span></span>of sensor applications<span> in healthcare, wearable electronics for, safety, environment, military, space, and agriculture sectors. Finally, to operate those sensors we need powerful energy storage devices (ESDs) and hence advance 2D NMs. Since the discovery of MXenes NMs in 2011, and 2D boron nanosheets (NSs) (borophene) on Ag substrates (2015) their research has been accelerated in the domains of advanced nanotechnological world. Borophene and MXenes NMs have came out as an outstanding 2D NMs to construct next generation novel sensors and ESDs due to their novel physicochemical properties and surface functions. By lowering costs, requiring fewer resources (including labor), and minimizing contamination, ML/AI based theoretical simulation has effectively directed the study and manufacturing of improved 2D NMs based sensors/ESDs applications on large scale industrial level. Modern 2D NMs based flexible sensors and ESDs can fundamentally alter the traditional sensing/ESDs technologies since they are adaptable, wearable, intelligent, portable, biocompatible, energy-efficient, self-sustaining, point-of-care, affordable etc. this review summarized the MXenes and borophene NMs synthesis with corresponding achievements, and there advancement, limitations, and challenges in sensors/ESDs technological applications.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100392"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.progsolidstchem.2023.100390
Manickam Minakshi, Kethaki Wickramaarachchi
An electrochemical asymmetric capacitor is a device fabricated with a dissimilar electrode configuration possessing a pseudocapacitive (Faradaic process) or capacitive (non-Faradaic process) nature with different charge storage mechanisms leading to high power and long cycle life. However, the energy density and power density are improved by increasing the specific capacitance and the operating voltage of the device through novel materials processing. In this perspective, electrochemical techniques (in different cell configurations) will be analyzed to divulge the electrochemical aspects of supercapacitors (SCs). The two different active materials for cathode and anode in SCs using abundant, low-cost, environmentally friendly materials processed via facile experimental methods, exploiting green energy transition, are presented. In view of these facts, manganese dioxide (MnO2) with the occurrence of a redox reaction (diffusion-controlled kinetics), and activated carbon (AC) with the electrostatic contribution (surface-controlled kinetics) are paired as positive and negative electrodes that can be principal electrode materials for SCs. MnO2 can be synthesized using different techniques, the electrochemical technique yields the highly pure electrolytic manganese dioxide (EMD). On the other hand, AC is synthesized via the thermochemical conversion process of carbonization and activation. Here, a brief description of the procedures and schematics of the methods to produce EMD and AC in bulk has been summarised. The electrochemical analysis of materials processing inspires and enables simple modifications to the synthesis that could catalyze changes in storage properties.
{"title":"Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing","authors":"Manickam Minakshi, Kethaki Wickramaarachchi","doi":"10.1016/j.progsolidstchem.2023.100390","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100390","url":null,"abstract":"<div><p><span><span>An electrochemical asymmetric capacitor is a device fabricated with a dissimilar electrode configuration possessing a pseudocapacitive (Faradaic process) or capacitive (non-Faradaic process) nature with different charge storage mechanisms leading to high power and long cycle life. However, the energy density and power density are improved by increasing the specific capacitance and the operating voltage of the device through </span>novel materials<span> processing. In this perspective, electrochemical techniques<span> (in different cell configurations) will be analyzed to divulge the electrochemical aspects of supercapacitors (SCs). The two different active materials for cathode and anode in SCs using abundant, low-cost, environmentally friendly materials processed via facile experimental methods, exploiting green energy transition, are presented. In view of these facts, manganese dioxide (MnO</span></span></span><sub>2</sub><span><span>) with the occurrence of a redox reaction (diffusion-controlled kinetics), and activated carbon (AC) with the </span>electrostatic contribution (surface-controlled kinetics) are paired as positive and negative electrodes that can be principal electrode materials for SCs. MnO</span><sub>2</sub> can be synthesized using different techniques, the electrochemical technique yields the highly pure electrolytic manganese dioxide (EMD). On the other hand, AC is synthesized via the thermochemical conversion process of carbonization and activation. Here, a brief description of the procedures and schematics of the methods to produce EMD and AC in bulk has been summarised. The electrochemical analysis of materials processing inspires and enables simple modifications to the synthesis that could catalyze changes in storage properties.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"69 ","pages":"Article 100390"},"PeriodicalIF":12.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1527682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The double perovskite phosphor materials are physically, chemically and thermally stable in nature. The generalized formula of double perovskite is AA'BB'O6 type. The transition metal and lanthanide ions can be doped in the double perovskite materials. The structure of perovskite materials is the key factor for optical properties of the phosphor materials. The transition metal ions produce broad emission band covering from near blue to NIR regions. They can even produce white light. Some combinations of transition metal ions show the energy transfer between them. On the other hand, the lanthanide ions emit sharp and narrow band emissions from UV to NIR regions because their transitions are not affected by the outer environment due to the shielding effect. The combinations of transition metals and lanthanide ions also involve in the energy transfer. This article comprises the recent development on the optical properties of transition metal (Mn4+) and lanthanide metal (Eu3+) doped double perovskite phosphor materials. The optical processes involved in photoluminescence have been discussed in detail. The applications of transition metal and lanthanide doped and co-doped double perovskite phosphor materials have also been summarized herein.
{"title":"Recent progress on optical properties of double perovskite phosphors","authors":"Sadhana Yadav , Dinesh Kumar , Ram Sagar Yadav , Akhilesh Kumar Singh","doi":"10.1016/j.progsolidstchem.2023.100391","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100391","url":null,"abstract":"<div><p><span>The double perovskite phosphor materials are physically, chemically and thermally stable in nature. The generalized formula of double perovskite is AA'BB'O</span><sub>6</sub><span> type. The transition metal and lanthanide<span><span> ions can be doped in the double perovskite materials. The structure of perovskite materials is the key factor for optical properties<span> of the phosphor materials. The transition metal ions produce broad emission band covering from near blue to NIR regions. They can even produce white light. Some combinations of transition metal ions show the energy transfer between them. On the other hand, the lanthanide ions emit sharp and </span></span>narrow band emissions from UV to NIR regions because their transitions are not affected by the outer environment due to the shielding effect. The combinations of transition metals and lanthanide ions also involve in the energy transfer. This article comprises the recent development on the optical properties of transition metal (Mn</span></span><sup>4+</sup>) and lanthanide metal (Eu<sup>3+</sup><span>) doped double perovskite phosphor materials. The optical processes involved in photoluminescence have been discussed in detail. The applications of transition metal and lanthanide doped and co-doped double perovskite phosphor materials have also been summarized herein.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"69 ","pages":"Article 100391"},"PeriodicalIF":12.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.progsolidstchem.2022.100382
Antoine Pautonnier, Sandrine Coste, Maud Barré, Philippe Lacorre
The synthesis, structure and properties of all the compounds known to date in the phase diagram La2O3–MoO3 are reviewed. Special attention is given to the most studied oxide-ion conductor La2Mo2O9, and to fluorite-type La6-xMoO12-3x/2 phases with in-depth analysis of crystallographic interrelation and evolution as a function of the Mo:La ratio. Structural relationships between these fluorites and non-stoechiometric scheelite-type La6Mo8O33 and La2Mo3O12 are also analyzed. The crystal chemical peculiarities of all these phases are reported, together with their chemical and physical characteristics, as well as possible application fields. Aside ionic conduction, catalysis, luminescence and giant electrostriction are some of the many properties displayed by lanthanum molybdates. Fostered by their uncovering, the renewed interest in this phase diagram led to the recent identification of a few additional, more structurally isolated phases, with higher Mo amount. Their structures are also presented, even though their properties have not yet been fully explored. The richness of the explored system, both in terms of existing structural characteristics and properties, makes it an exciting area to dig and unveil. As far as atomic distribution and oxide-ion conduction are concerned, both global trends and singular features are depicted, which might promote insightful investigations about the specificity or universality of the surveyed behaviours.
{"title":"Higher lanthanum molybdates: Structures, crystal chemistry and properties","authors":"Antoine Pautonnier, Sandrine Coste, Maud Barré, Philippe Lacorre","doi":"10.1016/j.progsolidstchem.2022.100382","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100382","url":null,"abstract":"<div><p><span>The synthesis, structure and properties of all the compounds known to date in the phase diagram La</span><sub>2</sub>O<sub>3</sub>–MoO<sub>3</sub> are reviewed. Special attention is given to the most studied oxide-ion conductor La<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub>, and to fluorite-type La<sub>6-x</sub>MoO<sub>12-3x/2</sub> phases with in-depth analysis of crystallographic interrelation and evolution as a function of the Mo:La ratio. Structural relationships between these fluorites and non-stoechiometric scheelite-type La<sub>6</sub>Mo<sub>8</sub>O<sub>33</sub> and La<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub><span><span> are also analyzed. The crystal chemical peculiarities of all these phases are reported, together with their chemical and physical characteristics, as well as possible application fields. Aside ionic conduction, catalysis, luminescence and giant electrostriction are some of the many properties displayed by </span>lanthanum<span> molybdates. Fostered by their uncovering, the renewed interest in this phase diagram led to the recent identification of a few additional, more structurally isolated phases, with higher Mo amount. Their structures are also presented, even though their properties have not yet been fully explored. The richness of the explored system, both in terms of existing structural characteristics and properties, makes it an exciting area to dig and unveil. As far as atomic distribution and oxide-ion conduction are concerned, both global trends and singular features are depicted, which might promote insightful investigations about the specificity or universality of the surveyed behaviours.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"69 ","pages":"Article 100382"},"PeriodicalIF":12.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.progsolidstchem.2022.100381
Anit Joseph, Tiju Thomas
There has been a search for new supercapacitor materials that offer superior storage qualities during the past ten years, owing to the needs of the electrochemical energy storage sector. Supercapacitors, which have a higher power density than batteries but a lower energy density, are among the most promising energy storage technologies. Creating innovative materials that increase energy storage efficiency is essential to fulfilling the world's growing energy needs. Recent research has centred on the application of various electrode materials in supercapacitors. This review discusses the parameters of an efficient supercapacitor and the usage of metal oxynitrides as electrode materials. Due to their high cyclability (up to 105 cycles), strong intrinsic conductivity (30000–35000 S cm−1), good wettability, corrosion resistance, and chemical inertness, metal oxynitrides are considered prospective candidates for electrochemical energy storage. This review elaborates on the recent advances in transition metal oxynitrides and compares the properties of transition metal oxynitrides with post-transition and non-transition metal oxynitrides in supercapacitor applications. We envision future paths for this category of energy storage materials in light of this critical study.
在过去的十年里,由于电化学储能领域的需要,人们一直在寻找能够提供卓越存储质量的新型超级电容器材料。超级电容器具有比电池更高的功率密度,但能量密度较低,是最有前途的储能技术之一。创造能够提高能源储存效率的创新材料对于满足世界日益增长的能源需求至关重要。最近的研究集中在各种电极材料在超级电容器中的应用。本文综述了高效超级电容器的参数及金属氮氧化物作为电极材料的应用。由于其高可循环性(高达105次循环),强固有电导率(30,000 - 35000 S cm−1),良好的润湿性,耐腐蚀性和化学惰性,金属氮氧化物被认为是电化学储能的潜在候选者。本文综述了过渡金属氮氧化物的最新研究进展,并比较了过渡金属氮氧化物与后过渡金属氮氧化物和非过渡金属氮氧化物在超级电容器中的应用。根据这项重要的研究,我们设想了这类储能材料的未来发展道路。
{"title":"Recent advances and prospects of metal oxynitrides for supercapacitor","authors":"Anit Joseph, Tiju Thomas","doi":"10.1016/j.progsolidstchem.2022.100381","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100381","url":null,"abstract":"<div><p><span><span><span>There has been a search for new supercapacitor materials that offer superior storage qualities during the past ten years, owing to the needs of the electrochemical energy storage sector. </span>Supercapacitors, which have a higher power density than batteries but a lower </span>energy density<span>, are among the most promising energy storage technologies. Creating innovative materials that increase energy storage efficiency is essential to fulfilling the world's growing energy needs. Recent research has centred on the application of various electrode materials in supercapacitors. This review discusses the parameters of an efficient supercapacitor and the usage of metal oxynitrides as electrode materials. Due to their high cyclability (up to 10</span></span><sup>5</sup><span> cycles), strong intrinsic conductivity (30000–35000 S cm</span><sup>−1</sup><span><span><span>), good wettability, </span>corrosion resistance, and chemical inertness, metal oxynitrides are considered prospective candidates for electrochemical energy storage. This review elaborates on the recent advances in transition metal oxynitrides and compares the properties of transition metal oxynitrides with post-transition and non-transition metal oxynitrides in supercapacitor applications. We envision future paths for this category of </span>energy storage materials in light of this critical study.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100381"},"PeriodicalIF":12.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen oxides (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO2, NO, and N2O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO2) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and zeolites. Moreover, a variety of materials such as ionic liquid, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N2O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.
{"title":"Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review","authors":"Tamanna Harihar Panigrahi , Satya Ranjan Sahoo , Gajiram Murmu , Dipak Maity , Sumit Saha","doi":"10.1016/j.progsolidstchem.2022.100380","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100380","url":null,"abstract":"<div><p><span>Nitrogen oxides<span> (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO</span></span><sub>2</sub><span>, NO, and N</span><sub>2</sub>O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO<sub>2</sub><span><span>) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and </span>zeolites<span>. Moreover, a variety of materials such as ionic liquid<span>, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N</span></span></span><sub>2</sub>O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100380"},"PeriodicalIF":12.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1527683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.progsolidstchem.2022.100378
Elizabeth Sobalvarro Converse , Gabriella King , Jun Li , M.A. Subramanian
Bond valence sum analysis is a powerful tool used in evaluating and validating crystal structures; especially when those structures are complex in nature. The pyrochlore structure type is versatile in not only the unique bonding that it exhibits, but also in the properties that results from the structure. This paper aims to center the discussion of evaluating the pyrochlore structure using the bond valence sum method. In this study, novel quaternary pyrochlores with a general stoichiometry of ABiMTeO7 (A = Cd, Ca; M = Cr, Ga, Sc, In, Fe) were synthesized and characterized for their structural, magnetic, and dielectric properties. Two representative compounds within this series of pyrochlores, BiCaFeTeO7 and BiCdFeTeO7, were structurally characterized utilizing a combination of high-resolution synchrotron X-ray diffraction and neutron diffraction revealing oxygen deficient pyrochlore systems which were off from the expected stoichiometry with respect to the M site. The A site of both pyrochlores were found to be moved off-center from the expected 16d site to the 96h displaced position at a magnitude of 0.25 Å and 0.22 Å for the Bi/Ca and Bi/Cd systems, respectively. These structures were evaluated using the bond valence sum method and compared with trends in the literature. The properties are also reported for the Bi/Ca system for the first time, showing relatively high dielectric constants with a low dielectric loss which are primarily independent of frequency and temperature. The magnetic measurements for the Bi/Ca system for the magnetic substitutions reveal a paramagnet and antiferromagnetic properties for the Fe and Cr analogs, respectively. The novel BiCaMTeO7 quaternary pyrochlore system shows great promise as an emerging dielectric material.
键价和分析是评价和验证晶体结构的有力工具;尤其是当这些结构本质上很复杂的时候。焦绿石结构类型是通用的,不仅在其独特的键,而且在其结构的结果性质。本文主要讨论了用键价和法评价焦绿石结构的方法。在本研究中,具有ABiMTeO7 (a = Cd, Ca;合成了M = Cr, Ga, Sc, In, Fe),并对其结构,磁性和介电性能进行了表征。利用高分辨率同步x射线衍射和中子衍射的结合,对该系列中两个具有代表性的化合物BiCaFeTeO7和BiCdFeTeO7进行了结构表征,揭示了与M位点的化学计量学不同的缺氧焦绿石系统。在Bi/Ca和Bi/Cd体系中,两种焦绿石的A位点从预期的16d位置偏移到96h位置,其偏移幅度分别为0.25 Å和0.22 Å。用键价和法对这些结构进行了评价,并与文献趋势进行了比较。Bi/Ca体系的性质也首次被报道,表现出相对较高的介电常数和较低的介电损耗,主要不受频率和温度的影响。磁取代的Bi/Ca体系的磁测量结果显示,Fe和Cr类似物分别具有顺磁性和反铁磁性。新型BiCaMTeO7季焦氯化物体系作为一种新兴的介电材料,具有广阔的应用前景。
{"title":"Bond valence sum analysis of pyrochlore oxides including the novel dielectric Te6+ pyrochlores: ABiMTeO7-y (A = Cd, Ca; M = Cr, Ga, Sc, In, Fe)","authors":"Elizabeth Sobalvarro Converse , Gabriella King , Jun Li , M.A. Subramanian","doi":"10.1016/j.progsolidstchem.2022.100378","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100378","url":null,"abstract":"<div><p><span>Bond valence sum analysis is a powerful tool used in evaluating and validating crystal structures; especially when those structures are complex in nature. The pyrochlore structure type is versatile in not only the unique bonding that it exhibits, but also in the properties that results from the structure. This paper aims to center the discussion of evaluating the pyrochlore structure using the bond valence sum method. In this study, novel quaternary pyrochlores with a general stoichiometry of </span><em>A</em>Bi<em>M</em>TeO<sub>7</sub> (<em>A</em> = Cd, Ca; <em>M</em><span> = Cr, Ga, Sc, In, Fe) were synthesized and characterized for their structural, magnetic, and dielectric properties. Two representative compounds within this series of pyrochlores, BiCaFeTeO</span><sub>7</sub> and BiCdFeTeO<sub>7</sub><span>, were structurally characterized utilizing a combination of high-resolution synchrotron X-ray diffraction and neutron diffraction revealing oxygen deficient pyrochlore systems which were off from the expected stoichiometry with respect to the </span><em>M</em> site. The <em>A</em> site of both pyrochlores were found to be moved off-center from the expected 16<em>d</em> site to the 96<em>h</em><span> displaced position at a magnitude of 0.25 Å and 0.22 Å for the Bi/Ca and Bi/Cd systems, respectively. These structures were evaluated using the bond valence sum method and compared with trends in the literature. The properties are also reported for the Bi/Ca system for the first time, showing relatively high dielectric constants with a low dielectric loss which are primarily independent of frequency and temperature. The magnetic measurements for the Bi/Ca system for the magnetic substitutions reveal a paramagnet and antiferromagnetic properties for the Fe and Cr analogs, respectively. The novel BiCa</span><em>M</em>TeO<sub>7</sub> quaternary pyrochlore system shows great promise as an emerging dielectric material.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100378"},"PeriodicalIF":12.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1811649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.progsolidstchem.2022.100379
Zhiwei Wang , Yuqian Wang , M.A. Subramanian , Peng Jiang
Oxides such as BaAl12O19 and BaAl2O4 in the BaO–Al2O3 system demonstrate potential for optical applications due to the abundant tetrahedral and octahedral sites in their structures, as well as their high thermal stability, good chemical stability, high surface area and strong light absorption capacity. Rare earth element doping or transition metal ion doping in oxides in the BaO–Al2O3 system contributes to promising photoluminescent, visible color and catalytic properties. In this review, the structures of BaAl12O19, BaAl2O4, Ba3Al2O6, Ba4Al2O7, and Ba7Al2O10 in the BaO–Al2O3 system are introduced. Their applications in phosphors, pigments and catalysts are also summarized herein.
{"title":"Structure and functional properties of oxides in the BaO–Al2O3 system: Phosphors, pigments and catalysts","authors":"Zhiwei Wang , Yuqian Wang , M.A. Subramanian , Peng Jiang","doi":"10.1016/j.progsolidstchem.2022.100379","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100379","url":null,"abstract":"<div><p>Oxides such as BaAl<sub>12</sub>O<sub>19</sub> and BaAl<sub>2</sub>O<sub>4</sub> in the BaO–Al<sub>2</sub>O<sub>3</sub><span> system demonstrate potential for optical applications due to the abundant tetrahedral and octahedral sites in their structures, as well as their high thermal stability, good chemical stability, high surface area and strong light absorption<span><span> capacity. Rare earth element doping or transition </span>metal ion doping in oxides in the BaO–Al</span></span><sub>2</sub>O<sub>3</sub> system contributes to promising photoluminescent, visible color and catalytic properties. In this review, the structures of BaAl<sub>12</sub>O<sub>19</sub>, BaAl<sub>2</sub>O<sub>4</sub>, Ba<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>, Ba<sub>4</sub>Al<sub>2</sub>O<sub>7</sub>, and Ba<sub>7</sub>Al<sub>2</sub>O<sub>10</sub> in the BaO–Al<sub>2</sub>O<sub>3</sub> system are introduced. Their applications in phosphors, pigments and catalysts are also summarized herein.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100379"},"PeriodicalIF":12.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1811650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.progsolidstchem.2022.100370
Karim Khan , Ayesha Khan Tareen , Muhammad Iqbal , Ye Zhang , Asif Mahmood , Nasir Mahmood , Jinde Yin , Rabia Khatoon , Han Zhang
A strong electrocatalytic activity of the MXenes nanomaterials (NMs) has gained a lot of concentration as cutting edge materials in a variety of electrocatalytic devices in a broad range of industrial uses. In recent years, the production and utilization of the MXenes NMs as an electrocatalysts has progressed, with more than 50 distinct variants found and used. We reviewed and discussed in this article the latest detail progress in the synthesis, selected properties and potential applications of the MXenes as an electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), overall water splitting, oxygen reduction reaction (ORR), nitrogen reduction reaction (N2RR), CO2 reduction reaction (CO2RR) etc. We will also discuss the numerous approaches for increasing MXenes electrocatalytic activity for target products. At the end, we will also talk about the present obstacles and future suggestions for the MXenes as HER, ORR, OER, NO2RR and CO2RR electrocatalysts.
{"title":"Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies","authors":"Karim Khan , Ayesha Khan Tareen , Muhammad Iqbal , Ye Zhang , Asif Mahmood , Nasir Mahmood , Jinde Yin , Rabia Khatoon , Han Zhang","doi":"10.1016/j.progsolidstchem.2022.100370","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2022.100370","url":null,"abstract":"<div><p><span>A strong electrocatalytic activity of the MXenes nanomaterials<span><span><span> (NMs) has gained a lot of concentration as cutting edge materials in a variety of electrocatalytic devices in a broad range of industrial uses. In recent years, the production and utilization of the MXenes NMs as an electrocatalysts<span> has progressed, with more than 50 distinct variants found and used. We reviewed and discussed in this article the latest detail progress in the synthesis, selected properties and potential applications of the MXenes as an electrocatalysts for the hydrogen evolution reaction (HER), </span></span>oxygen evolution reaction (OER), overall water splitting, </span>oxygen reduction reaction (ORR), nitrogen reduction reaction (N</span></span><sub>2</sub>RR), CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) etc. We will also discuss the numerous approaches for increasing MXenes electrocatalytic activity for target products. At the end, we will also talk about the present obstacles and future suggestions for the MXenes as HER, ORR, OER, NO<sub>2</sub>RR and CO<sub>2</sub>RR electrocatalysts.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100370"},"PeriodicalIF":12.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}