首页 > 最新文献

Progress in Solid State Chemistry最新文献

英文 中文
Recent advances in La2NiMnO6 double perovskites for various applications; challenges and opportunities La2NiMnO6双钙钛矿的研究进展挑战与机遇
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-12-01 DOI: 10.1016/j.progsolidstchem.2023.100429
Suresh Chandra Baral, P. Maneesha, E.G. Rini, Somaditya Sen

Double perovskites R2NiMnO6 (R = Rare earth element) (RNMO) are a significant class of materials owing to their Multifunctional properties with the structural modifications. In particular, multifunctional double perovskite oxides La2NiMnO6 (LNMO) which possess both electric and magnetic orderings, chemical flexibility, versatility, and indispensable properties like high ferromagnetic curie temperature, high absorption rates, dielectrics, etc. have drawn a lot of attention due their rich physics and diverse applications in various technology. This justifies the intense research in this class of materials, and the keen interest they are subject to both the fundamental and practical side. In view of the demands of this material in lead-free perovskite solar cells, photocatalytic degradation of organic dyes, clean hydrogen production, electric tuneable devices, fuel cells, gas sensing, and biomedical applications, there is a need for an overview of all the literature so far, the ongoing research and the future prospective. This review summarised all the physical and structural properties of LNMO such as electric, magnetic, catalytic, and dielectric properties with their underlying mechanisms. This review article provides insight into the scope of studies in LNMO material for exploring unexposed properties in new material research and to identify areas of future investigation of the materials in the double perovskite family.

双钙钛矿R2NiMnO6 (R =稀土元素)(RNMO)是一类重要的材料,由于其结构修饰具有多功能性质。特别是具有电有序和磁有序、化学柔顺、通用性以及高铁磁居里温度、高吸收率、介电性等不可缺少的特性的多功能双钙钛矿氧化物La2NiMnO6 (LNMO),由于其丰富的物理性质和在各种技术中的广泛应用而备受关注。这证明了对这类材料的深入研究,以及对它们在基础和实用方面的浓厚兴趣是合理的。鉴于该材料在无铅钙钛矿太阳能电池、有机染料光催化降解、清洁制氢、电可调谐器件、燃料电池、气体传感和生物医学应用等方面的需求,有必要对迄今为止的所有文献、正在进行的研究和未来的展望进行概述。本文综述了LNMO的所有物理和结构性质,如电、磁、催化和介电性质及其潜在的机制。本文综述了LNMO材料在新材料研究中未暴露性能的研究范围,并确定了双钙钛矿家族材料的未来研究领域。
{"title":"Recent advances in La2NiMnO6 double perovskites for various applications; challenges and opportunities","authors":"Suresh Chandra Baral,&nbsp;P. Maneesha,&nbsp;E.G. Rini,&nbsp;Somaditya Sen","doi":"10.1016/j.progsolidstchem.2023.100429","DOIUrl":"10.1016/j.progsolidstchem.2023.100429","url":null,"abstract":"<div><p><span>Double perovskites </span><em>R</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>R</em> = Rare earth element) (<em>RNMO</em>) are a significant class of materials owing to their Multifunctional properties with the structural modifications. In particular, multifunctional double perovskite oxides <em>La</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> <em>(LNMO)</em><span><span> which possess both electric and magnetic orderings, chemical flexibility, versatility, and indispensable properties like high ferromagnetic curie temperature<span><span>, high absorption rates, dielectrics<span>, etc. have drawn a lot of attention due their rich physics and diverse applications in various technology. This justifies the intense research in this class of materials, and the keen interest they are subject to both the fundamental and practical side. In view of the demands of this material in lead-free </span></span>perovskite solar cells<span>, photocatalytic degradation of organic dyes, clean hydrogen production, electric tuneable devices, fuel cells, </span></span></span>gas sensing, and biomedical applications, there is a need for an overview of all the literature so far, the ongoing research and the future prospective. This review summarised all the physical and structural properties of </span><em>LNMO</em> such as electric, magnetic, catalytic, and dielectric properties with their underlying mechanisms. This review article provides insight into the scope of studies in <em>LNMO</em> material for exploring unexposed properties in new material research and to identify areas of future investigation of the materials in the double perovskite family.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100429"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134976512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications 二维硼罗芬纳米材料:新型可再生能源存储应用的最新进展
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-09-01 DOI: 10.1016/j.progsolidstchem.2023.100416
Chuan Li , Ayesha Khan Tareen , Jianyu Long , Muhammad Iqbal , Waqas Ahmad , Muhammad Farooq Khan , Jinghua Sun , Zhang Ye , Usman Khan , Adeela Nairan , Karim Khan

Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a "hollow hexagon" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.

The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.

Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic Young's modulus, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion batteries, and supercapacitors (SCs), is covered in great length at the very end.

硼罗芬由于缺陷形成能极低,与其他二维(2D)材料有明显区别,其晶体与硼(B)空位缺陷难以区分。与石墨烯等其他二维材料相比,波罗芬在其体态时不会形成层。此外,硼罗芬纳米的原子结构与石墨烯不同,它由连通的三角形组成,而不是六边形。这种原子构型在原子缺失的地方有间隙,导致了一个被称为“空心六边形”(HH)的缺陷。在硼罗芬相中,这些HHs可以以各种比例存在。硼罗芬的相混合是在二维材料中发现的“有序”缺陷的一个全新例子。大多数二维材料在不同畴或相之间的边界处存在缺陷或原子排列中断。在二维系统中,由于几乎所有的原子都在表面上,缺陷对确定材料的性质起着重要的影响。例如,与金属石墨烯中的绝缘缺陷相比,硼罗芬中沿相边界的线缺陷对材料在环境温度下的电特性没有影响。硼罗芬边缘的原子很容易沿着线断层排列,并采用相邻原子的结构,不会造成破坏。此外,线缺陷不会破坏硼罗芬的无缝结构,保持其稳定性和金属性能。实验上,四种硼罗芬相均已合成,且均为金属相。讨论了硼苯NM的一系列特性,包括其负泊松比和极各向异性的杨氏模量。在这里我们也强调了B的导电和超导性质。最后,对硼罗芬纳米在能源领域的应用进行了概述,包括金属离子电池和超级电容器(sc)。
{"title":"Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications","authors":"Chuan Li ,&nbsp;Ayesha Khan Tareen ,&nbsp;Jianyu Long ,&nbsp;Muhammad Iqbal ,&nbsp;Waqas Ahmad ,&nbsp;Muhammad Farooq Khan ,&nbsp;Jinghua Sun ,&nbsp;Zhang Ye ,&nbsp;Usman Khan ,&nbsp;Adeela Nairan ,&nbsp;Karim Khan","doi":"10.1016/j.progsolidstchem.2023.100416","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100416","url":null,"abstract":"<div><p>Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a \"hollow hexagon\" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.</p><p>The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials<span> in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.</span></p><p><span>Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic </span>Young's modulus<span>, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion<span> batteries, and supercapacitors (SCs), is covered in great length at the very end.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100416"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the structural and thermal properties of aluminum-rich Ca–Al–Si–O–N glasses 富铝Ca-Al-Si-O-N玻璃的结构和热性能研究
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-09-01 DOI: 10.1016/j.progsolidstchem.2023.100414
Sharafat Ali , Jacek Ryl , Abbas Saeed Hakeem , Katarzyna Grochowska , Natalia Anna Wójcik

In this paper, we investigate the structure and thermal properties of aluminum-rich transparent Ca–Al–Si–O–N glasses. The obtained glasses were prepared by a traditional melt-quenching technique at 1650 °C using AlN as the nitrogen source. The obtained glasses have a nAl/nSi>1 and contain up to 17 eq.% of N. The structure of the glasses was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, infrared, and Raman spectroscopy techniques. The structure analysis shows a higher preference for Si–N bond formation relative to Al–N bond formation and aluminum is predominately present in tetrahedral coordination as AlO4 units. The thermal properties of samples were studied by differential thermal analysis and the obtained glass transition temperature ranges from 875 °C to 950 °C, and is primarily influenced by the N content. The glass stability can be correlated with both the N and Al contents in the studied glasses. It is improved due to the increased degree of network polymerization by the incorporation of nitrogen.

本文研究了富铝透明Ca-Al-Si-O-N玻璃的结构和热性能。以AlN为氮源,在1650℃下采用传统的熔融淬火工艺制备玻璃。所制得的玻璃具有nAl/nSi>1,含氮量高达17等%。通过x射线衍射、x射线光电子能谱、红外和拉曼光谱技术对玻璃的结构进行了表征。结构分析表明,相对于Al-N键的形成,Si-N键更倾向于形成,铝主要作为AlO4单元存在于四面体配位中。通过差热分析研究了样品的热性能,得到的玻璃化转变温度范围为875℃~ 950℃,主要受N含量的影响。玻璃的稳定性与所研究玻璃中的N和Al含量相关。由于氮的加入增加了网络聚合的程度,它得到了改善。
{"title":"Investigation of the structural and thermal properties of aluminum-rich Ca–Al–Si–O–N glasses","authors":"Sharafat Ali ,&nbsp;Jacek Ryl ,&nbsp;Abbas Saeed Hakeem ,&nbsp;Katarzyna Grochowska ,&nbsp;Natalia Anna Wójcik","doi":"10.1016/j.progsolidstchem.2023.100414","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100414","url":null,"abstract":"<div><p><span>In this paper, we investigate the structure and thermal properties<span> of aluminum-rich transparent Ca–Al–Si–O–N glasses. The obtained glasses were prepared by a traditional melt-quenching technique at 1650 °C using AlN as the nitrogen source. The obtained glasses have a </span></span><em>n</em><sub>Al</sub>/<em>n</em><sub>Si</sub><span>&gt;1 and contain up to 17 eq.% of N. The structure of the glasses was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, infrared, and Raman spectroscopy<span> techniques. The structure analysis shows a higher preference for Si–N bond formation relative to Al–N bond formation and aluminum is predominately present in tetrahedral coordination as AlO</span></span><sub>4</sub><span> units. The thermal properties of samples were studied by differential thermal analysis and the obtained glass transition temperature ranges from 875 °C to 950 °C, and is primarily influenced by the N content. The glass stability can be correlated with both the N and Al contents in the studied glasses. It is improved due to the increased degree of network polymerization by the incorporation of nitrogen.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100414"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal chemistry and ab initio investigations of new hard tetragonal C9 and C12 allotropes with edge- and corner-sharing C4 tetrahedra and diamond-related properties 具有边角共享的新型硬四面体C9和C12同素异形体的晶体化学和从头计算研究及金刚石相关性质
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-09-01 DOI: 10.1016/j.progsolidstchem.2023.100415
Samir F. Matar , Vladimir L. Solozhenko

Stable tetragonal C9 and C12 with original topologies have been devised based on crystal chemistry rationale and unconstrained geometry optimization calculations within the density functional theory (DFT). The two new carbon allotropes characterized by corner- and edge-sharing tetrahedra, are mechanically (elastic constants) and dynamically (phonons) stable and exhibit thermal and mechanical properties close to diamond. The electronic band structures show insulating behavior with band gaps close to 5 eV, like diamond.

基于晶体化学原理和密度泛函理论(DFT)中的无约束几何优化计算,设计了具有原始拓扑结构的稳定四边形C9和C12。这两种新的碳同素异形体的特征是角和边共享四面体,具有机械(弹性常数)和动态(声子)稳定,并表现出接近金刚石的热力学性能。电子能带结构表现出与金刚石类似的绝缘性,带隙接近5 eV。
{"title":"Crystal chemistry and ab initio investigations of new hard tetragonal C9 and C12 allotropes with edge- and corner-sharing C4 tetrahedra and diamond-related properties","authors":"Samir F. Matar ,&nbsp;Vladimir L. Solozhenko","doi":"10.1016/j.progsolidstchem.2023.100415","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100415","url":null,"abstract":"<div><p>Stable tetragonal C<sub>9</sub> and C<sub>12</sub><span><span><span> with original topologies have been devised based on crystal chemistry rationale and unconstrained geometry optimization calculations within the </span>density functional theory (DFT). The two new carbon allotropes characterized by corner- and edge-sharing tetrahedra, are mechanically (elastic constants) and dynamically (phonons) stable and exhibit thermal and </span>mechanical properties<span> close to diamond. The electronic band structures show insulating behavior with band gaps close to 5 eV, like diamond.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100415"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of Z-type hexaferrite based magnetic nanomaterials: Structure, synthesis, properties, and potential applications z型六铁氧体磁性纳米材料的结构、合成、性能及应用前景
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-06-01 DOI: 10.1016/j.progsolidstchem.2023.100404
Kirti Singha , Rohit Jasrotia , Himanshi , Louis WY. Liu , Jyoti Prakash , Ankit Verma , Pawan Kumar , Sachin Kumar Godara , Monika Chandel , Virender Pratap Singh , Sourbh Thakur , Ranjan Das , Abhishek Kandwal , H.H. Hegazy , Pankaj Sharma

The vast range of uses that Z-type hexaferrite nanoparticles (ZTHNPs) offer in a variety of fields, including antennas, microwave absorption, and biomedicine has sparked a lot of scientific interest in these nanoparticles. Z-type hexaferrite possesses a soft magnetic character, planar magneto-crystalline anisotropy, and acceptable ultra-high frequency electromagnetic characteristics. The major topics of this review paper are the crystal structure, synthesis strategies (sol-gel, co-precipitation, solid-state reaction, hydrothermal techniques), characteristics, and prospective uses of Z-type hexaferrite, with a special emphasis on recently published research. Firstly, the crystal structure and most prominent synthesis strategies of ZTHNPs, with their benefits and drawbacks, are described. Secondly, we focused more of our attention on the magnetic, structural, and electromagnetic behaviours of this material. The final section discusses the prospective applications of these novel multifunctional materials.

z型六铁氧体纳米粒子(ZTHNPs)在各种领域的广泛应用,包括天线、微波吸收和生物医学,引发了对这些纳米粒子的许多科学兴趣。z型六铁氧体具有软磁特性、平面磁晶各向异性和可接受的超高频电磁特性。本文综述了z型六铁素体的晶体结构、合成策略(溶胶-凝胶法、共沉淀法、固相反应法、水热法)、性质及应用前景,重点介绍了z型六铁素体的最新研究进展。首先,介绍了ZTHNPs的晶体结构和最突出的合成策略,以及它们的优缺点。其次,我们将更多的注意力集中在这种材料的磁性、结构和电磁行为上。最后讨论了这些新型多功能材料的应用前景。
{"title":"A review of Z-type hexaferrite based magnetic nanomaterials: Structure, synthesis, properties, and potential applications","authors":"Kirti Singha ,&nbsp;Rohit Jasrotia ,&nbsp;Himanshi ,&nbsp;Louis WY. Liu ,&nbsp;Jyoti Prakash ,&nbsp;Ankit Verma ,&nbsp;Pawan Kumar ,&nbsp;Sachin Kumar Godara ,&nbsp;Monika Chandel ,&nbsp;Virender Pratap Singh ,&nbsp;Sourbh Thakur ,&nbsp;Ranjan Das ,&nbsp;Abhishek Kandwal ,&nbsp;H.H. Hegazy ,&nbsp;Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2023.100404","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100404","url":null,"abstract":"<div><p>The vast range of uses that Z-type hexaferrite<span> nanoparticles<span> (ZTHNPs) offer in a variety of fields, including antennas, microwave absorption, and biomedicine has sparked a lot of scientific interest in these nanoparticles. Z-type hexaferrite possesses a soft magnetic character, planar magneto-crystalline anisotropy, and acceptable ultra-high frequency electromagnetic characteristics. The major topics of this review paper are the crystal structure, synthesis strategies (sol-gel, co-precipitation, solid-state reaction, hydrothermal techniques), characteristics, and prospective uses of Z-type hexaferrite, with a special emphasis on recently published research. Firstly, the crystal structure and most prominent synthesis strategies of ZTHNPs, with their benefits and drawbacks, are described. Secondly, we focused more of our attention on the magnetic, structural, and electromagnetic behaviours of this material. The final section discusses the prospective applications of these novel multifunctional materials.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100404"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2623634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An overview of the recent developments in the structural correlation of magnetic and electrical properties of Pr2NiMnO6 double perovskite 综述了Pr2NiMnO6双钙钛矿磁性和电学性质结构相关性的研究进展
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-06-01 DOI: 10.1016/j.progsolidstchem.2023.100402
P. Maneesha, Suresh Chandra Baral, E.G. Rini, Somaditya Sen

Double perovskites R2NiMnO6 (R = Rare earth element) (RNMO) are a significant class of materials owing to their varied tunability of the magnetic and electrical properties with the structural modifications. Pr2NiMnO6 (PNMO) is one of the least explored members of this series, which shows spin-phonon coupling, magnetocaloric effect and electrochemical performance for various applications such as spintronics, magnetocaloric refrigerant and solid oxide fuel cells. Most of the studies in PNMO are limited to the application domain and focus on the comparative study with different rare earth elements. Detailed structural studies like neutron diffraction are sparse in PNMO samples which will give a perception of the A/B-site cationic (Pr/Ni/Mn-site cationic) ordering in the compound that strongly depends on the physical and chemical properties. This review article goes through the various aspects of PNMO materials that have been reported till now and showcases the octahedral distortions and corresponding structural changes and the exchange interactions, which in turn correlate with the magnetic and electrical properties. The comparison study of PNMO with other members of the RNMO (R = Rare earth) family and the relevance of PNMO over other members is also tried to showcase in this article. This review article provides insight into the scope of studies in PNMO material for exploring unexposed properties of the materials in the double perovskite family.

双钙钛矿R2NiMnO6 (R =稀土元素)(RNMO)是一类重要的材料,由于其磁性和电学性能随结构修饰而变化。Pr2NiMnO6 (PNMO)是该系列中被探索最少的成员之一,它在自旋电子学、磁热制冷剂和固体氧化物燃料电池等各种应用中表现出自旋声子耦合、磁热效应和电化学性能。目前对PNMO的研究大多局限于应用领域,多集中于不同稀土元素的对比研究。详细的结构研究,如中子衍射,在PNMO样品中是稀疏的,这将给化合物的a / b位阳离子(Pr/Ni/ mn位阳离子)排序的感知,这强烈依赖于物理和化学性质。本文综述了迄今为止报道的PNMO材料的各个方面,并展示了八面体畸变及其相应的结构变化和交换相互作用,这些变化反过来又与磁性和电学性质相关。本文还试图展示PNMO与RNMO (R = Rare earth)家族其他成员的对比研究,以及PNMO与其他成员的相关性。本文综述了PNMO材料的研究范围,以探索双钙钛矿族材料的未暴露特性。
{"title":"An overview of the recent developments in the structural correlation of magnetic and electrical properties of Pr2NiMnO6 double perovskite","authors":"P. Maneesha,&nbsp;Suresh Chandra Baral,&nbsp;E.G. Rini,&nbsp;Somaditya Sen","doi":"10.1016/j.progsolidstchem.2023.100402","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100402","url":null,"abstract":"<div><p><span>Double perovskites </span><em>R</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>R</em> = Rare earth element) (<em>RNM</em>O) are a significant class of materials owing to their varied tunability of the magnetic and electrical properties with the structural modifications. <em>Pr</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>PNMO</em><span>) is one of the least explored members of this series, which shows spin-phonon coupling, magnetocaloric effect<span> and electrochemical performance<span> for various applications such as spintronics, magnetocaloric refrigerant and solid oxide fuel cells. Most of the studies in </span></span></span><em>PNMO</em><span> are limited to the application domain and focus on the comparative study with different rare earth elements. Detailed structural studies like neutron diffraction are sparse in </span><em>PNMO</em> samples which will give a perception of the <em>A/B</em>-site cationic (<em>Pr/Ni/Mn</em>-site cationic) ordering in the compound that strongly depends on the physical and chemical properties. This review article goes through the various aspects of <em>PNMO</em> materials that have been reported till now and showcases the octahedral distortions and corresponding structural changes and the exchange interactions, which in turn correlate with the magnetic and electrical properties. The comparison study of <em>PNMO</em> with other members of the <em>RNMO</em> (<em>R</em> = Rare earth) family and the relevance of <em>PNMO</em> over other members is also tried to showcase in this article. This review article provides insight into the scope of studies in <em>PNMO</em> material for exploring unexposed properties of the materials in the double perovskite family.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100402"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Rationalizing the alkali ions distribution along the honeycomb layered (Li,Na)2SnO3 pseudo solid solution 使碱离子沿蜂窝层状(Li,Na)2SnO3伪固溶体的分布合理化
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-06-01 DOI: 10.1016/j.progsolidstchem.2023.100403
Romain Berthelot , Carla Crobu , Eunice Mumba Mpanga , Bernard Fraisse , Marie-Liesse Doublet

Alkali-rich layered oxides Li2SnO3 and Na2SnO3 are isostructural, but no alkali-mixed compositions have been reported so far. While the thermodynamic stability of such mixed compositions is predicted by DFT calculations mainly for the sodium-rich side, single-phase compounds Li2-xNaxSnO3 were successfully obtained in the whole composition range (0 ≤ x ≤ 2) by conventional solid-state synthesis thanks to a quenching procedure at the end of the heat treatment. From Li2SnO3 to Na2SnO2, the evolution of the cell parameters and the DFT calculations demonstrate that the lithium-to-sodium substitution occurs firstly inside the alkali layer up to Li0.5Na1.5SnO3 and then in the honeycomb layer.

富碱层状氧化物Li2SnO3和Na2SnO3是同结构的,但迄今为止还没有报道过混合碱的成分。这种混合成分的热力学稳定性主要是通过DFT计算来预测的,主要针对富钠的一面,而通过传统的固态合成方法,由于热处理结束时的淬火过程,成功地在整个成分范围(0≤x≤2)内获得了单相化合物Li2-xNaxSnO3。从Li2SnO3到Na2SnO2,电池参数的演变和DFT计算表明,锂-钠取代首先发生在碱层内部,直到Li0.5Na1.5SnO3,然后在蜂窝层中发生。
{"title":"Rationalizing the alkali ions distribution along the honeycomb layered (Li,Na)2SnO3 pseudo solid solution","authors":"Romain Berthelot ,&nbsp;Carla Crobu ,&nbsp;Eunice Mumba Mpanga ,&nbsp;Bernard Fraisse ,&nbsp;Marie-Liesse Doublet","doi":"10.1016/j.progsolidstchem.2023.100403","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100403","url":null,"abstract":"<div><p>Alkali-rich layered oxides Li<sub>2</sub>SnO<sub>3</sub> and Na<sub>2</sub>SnO<sub>3</sub><span> are isostructural, but no alkali-mixed compositions have been reported so far. While the thermodynamic stability of such mixed compositions is predicted by DFT calculations mainly for the sodium-rich side, single-phase compounds Li</span><sub>2-<em>x</em></sub>Na<sub><em>x</em></sub>SnO<sub>3</sub> were successfully obtained in the whole composition range (0 ≤ <em>x</em> ≤ 2) by conventional solid-state synthesis thanks to a quenching procedure at the end of the heat treatment. From Li<sub>2</sub>SnO<sub>3</sub> to Na<sub>2</sub>SnO<sub>2</sub>, the evolution of the cell parameters and the DFT calculations demonstrate that the lithium-to-sodium substitution occurs firstly inside the alkali layer up to Li<sub>0.5</sub>Na<sub>1.5</sub>SnO<sub>3</sub> and then in the honeycomb layer.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100403"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials MXenes和硼罗芬纳米材料的高效、卓越的传感器活性和储能性能
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-06-01 DOI: 10.1016/j.progsolidstchem.2023.100392
Chuan Li , Ayesha Khan Tareen , Karim Khan , JianYu Long , Iftikhar Hussain , Muhammad Farooq Khan , Muhammad Iqbal , Zhongjian Xie , Ye Zhang , Asif Mahmood , Nasir Mahmood , Waqas Ahmad , Han Zhang

Sensors are regarded as a fundamental vector for sustainable development of future advanced civilization. To satisfy the demands of future generations, fabrication of advanced sensor systems integrated with artificial intelligence (AI), fifth generation (5G) connectivity, machine learning (ML), and internet of things (IoTs) is growing very fast. Incorporation of two-dimensional (2D) nanomaterials (NMs) with IoTs/5G/AI/ML technologies has transformed wide range of sensor applications in healthcare, wearable electronics for, safety, environment, military, space, and agriculture sectors. Finally, to operate those sensors we need powerful energy storage devices (ESDs) and hence advance 2D NMs. Since the discovery of MXenes NMs in 2011, and 2D boron nanosheets (NSs) (borophene) on Ag substrates (2015) their research has been accelerated in the domains of advanced nanotechnological world. Borophene and MXenes NMs have came out as an outstanding 2D NMs to construct next generation novel sensors and ESDs due to their novel physicochemical properties and surface functions. By lowering costs, requiring fewer resources (including labor), and minimizing contamination, ML/AI based theoretical simulation has effectively directed the study and manufacturing of improved 2D NMs based sensors/ESDs applications on large scale industrial level. Modern 2D NMs based flexible sensors and ESDs can fundamentally alter the traditional sensing/ESDs technologies since they are adaptable, wearable, intelligent, portable, biocompatible, energy-efficient, self-sustaining, point-of-care, affordable etc. this review summarized the MXenes and borophene NMs synthesis with corresponding achievements, and there advancement, limitations, and challenges in sensors/ESDs technological applications.

传感器被认为是未来先进文明可持续发展的基本载体。为了满足未来几代人的需求,与人工智能(AI)、第五代(5G)连接、机器学习(ML)和物联网(iot)相结合的先进传感器系统的制造正在快速增长。将二维(2D)纳米材料(NMs)与物联网/5G/人工智能/机器学习技术相结合,已经改变了医疗保健、可穿戴电子产品、安全、环境、军事、太空和农业领域的广泛传感器应用。最后,为了操作这些传感器,我们需要强大的能量存储设备(ESDs),从而推进二维NMs。自2011年发现MXenes纳米片和2015年在Ag衬底上发现2D硼纳米片(NSs)(硼苯)以来,它们在先进纳米技术领域的研究得到了加速。Borophene和MXenes纳米材料由于其新颖的物理化学性质和表面功能而成为构建下一代新型传感器和esd的优秀二维纳米材料。通过降低成本,需要更少的资源(包括劳动力),并最大限度地减少污染,基于ML/AI的理论模拟有效地指导了大规模工业水平上改进的基于二维NMs的传感器/ esd应用的研究和制造。现代基于二维纳米材料的柔性传感器和esd具有适应性强、可穿戴、智能、便携、生物相容性强、节能、自我维持、即时护理、价格合理等特点,可以从根本上改变传统的传感/ esd技术。本文综述了MXenes和硼罗芬纳米材料的合成及其相关成果,以及传感器/ esd技术应用的进展、局限性和挑战。
{"title":"Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials","authors":"Chuan Li ,&nbsp;Ayesha Khan Tareen ,&nbsp;Karim Khan ,&nbsp;JianYu Long ,&nbsp;Iftikhar Hussain ,&nbsp;Muhammad Farooq Khan ,&nbsp;Muhammad Iqbal ,&nbsp;Zhongjian Xie ,&nbsp;Ye Zhang ,&nbsp;Asif Mahmood ,&nbsp;Nasir Mahmood ,&nbsp;Waqas Ahmad ,&nbsp;Han Zhang","doi":"10.1016/j.progsolidstchem.2023.100392","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100392","url":null,"abstract":"<div><p><span><span>Sensors are regarded as a fundamental vector for sustainable development of future advanced civilization. To satisfy the demands of future generations, fabrication of advanced sensor systems integrated with artificial intelligence (AI), fifth generation (5G) connectivity, machine learning (ML), and </span>internet of things<span> (IoTs) is growing very fast. Incorporation of two-dimensional (2D) nanomaterials (NMs) with IoTs/5G/AI/ML technologies has transformed wide range </span></span>of sensor applications<span> in healthcare, wearable electronics for, safety, environment, military, space, and agriculture sectors. Finally, to operate those sensors we need powerful energy storage devices (ESDs) and hence advance 2D NMs. Since the discovery of MXenes NMs in 2011, and 2D boron nanosheets (NSs) (borophene) on Ag substrates (2015) their research has been accelerated in the domains of advanced nanotechnological world. Borophene and MXenes NMs have came out as an outstanding 2D NMs to construct next generation novel sensors and ESDs due to their novel physicochemical properties and surface functions. By lowering costs, requiring fewer resources (including labor), and minimizing contamination, ML/AI based theoretical simulation has effectively directed the study and manufacturing of improved 2D NMs based sensors/ESDs applications on large scale industrial level. Modern 2D NMs based flexible sensors and ESDs can fundamentally alter the traditional sensing/ESDs technologies since they are adaptable, wearable, intelligent, portable, biocompatible, energy-efficient, self-sustaining, point-of-care, affordable etc. this review summarized the MXenes and borophene NMs synthesis with corresponding achievements, and there advancement, limitations, and challenges in sensors/ESDs technological applications.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100392"},"PeriodicalIF":12.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing 透视超级电容器的电化学方面:从电化学结构到电极材料加工
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-03-01 DOI: 10.1016/j.progsolidstchem.2023.100390
Manickam Minakshi, Kethaki Wickramaarachchi

An electrochemical asymmetric capacitor is a device fabricated with a dissimilar electrode configuration possessing a pseudocapacitive (Faradaic process) or capacitive (non-Faradaic process) nature with different charge storage mechanisms leading to high power and long cycle life. However, the energy density and power density are improved by increasing the specific capacitance and the operating voltage of the device through novel materials processing. In this perspective, electrochemical techniques (in different cell configurations) will be analyzed to divulge the electrochemical aspects of supercapacitors (SCs). The two different active materials for cathode and anode in SCs using abundant, low-cost, environmentally friendly materials processed via facile experimental methods, exploiting green energy transition, are presented. In view of these facts, manganese dioxide (MnO2) with the occurrence of a redox reaction (diffusion-controlled kinetics), and activated carbon (AC) with the electrostatic contribution (surface-controlled kinetics) are paired as positive and negative electrodes that can be principal electrode materials for SCs. MnO2 can be synthesized using different techniques, the electrochemical technique yields the highly pure electrolytic manganese dioxide (EMD). On the other hand, AC is synthesized via the thermochemical conversion process of carbonization and activation. Here, a brief description of the procedures and schematics of the methods to produce EMD and AC in bulk has been summarised. The electrochemical analysis of materials processing inspires and enables simple modifications to the synthesis that could catalyze changes in storage properties.

电化学不对称电容器是一种具有假电容性(法拉第过程)或电容性(非法拉第过程)的不同电极结构的器件,具有不同的电荷存储机制,从而具有高功率和长循环寿命。通过新型材料加工,提高器件的比电容和工作电压,提高了器件的能量密度和功率密度。从这个角度来看,电化学技术(在不同的电池配置下)将被分析,以揭示超级电容器(SCs)的电化学方面。本文介绍了利用丰富的、低成本的、环境友好的材料,通过简单的实验方法加工而成的两种不同的阴极和阳极活性材料,利用绿色能源转型。考虑到这些事实,二氧化锰(MnO2)发生氧化还原反应(扩散控制动力学)和活性炭(AC)的静电贡献(表面控制动力学)配对作为正负极,可以作为主要电极材料的SCs。二氧化锰的合成可以采用不同的工艺,电化学技术可以得到高纯度的电解二氧化锰(EMD)。另一方面,AC是通过炭化活化的热化学转化过程合成的。在此,简要介绍了批量生产EMD和AC的方法的程序和原理图。材料加工过程的电化学分析激发并使简单的合成修改成为可能,从而催化存储性能的变化。
{"title":"Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing","authors":"Manickam Minakshi,&nbsp;Kethaki Wickramaarachchi","doi":"10.1016/j.progsolidstchem.2023.100390","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100390","url":null,"abstract":"<div><p><span><span>An electrochemical asymmetric capacitor is a device fabricated with a dissimilar electrode configuration possessing a pseudocapacitive (Faradaic process) or capacitive (non-Faradaic process) nature with different charge storage mechanisms leading to high power and long cycle life. However, the energy density and power density are improved by increasing the specific capacitance and the operating voltage of the device through </span>novel materials<span> processing. In this perspective, electrochemical techniques<span> (in different cell configurations) will be analyzed to divulge the electrochemical aspects of supercapacitors (SCs). The two different active materials for cathode and anode in SCs using abundant, low-cost, environmentally friendly materials processed via facile experimental methods, exploiting green energy transition, are presented. In view of these facts, manganese dioxide (MnO</span></span></span><sub>2</sub><span><span>) with the occurrence of a redox reaction (diffusion-controlled kinetics), and activated carbon (AC) with the </span>electrostatic contribution (surface-controlled kinetics) are paired as positive and negative electrodes that can be principal electrode materials for SCs. MnO</span><sub>2</sub> can be synthesized using different techniques, the electrochemical technique yields the highly pure electrolytic manganese dioxide (EMD). On the other hand, AC is synthesized via the thermochemical conversion process of carbonization and activation. Here, a brief description of the procedures and schematics of the methods to produce EMD and AC in bulk has been summarised. The electrochemical analysis of materials processing inspires and enables simple modifications to the synthesis that could catalyze changes in storage properties.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"69 ","pages":"Article 100390"},"PeriodicalIF":12.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1527682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Recent progress on optical properties of double perovskite phosphors 双钙钛矿荧光粉光学性质研究进展
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-03-01 DOI: 10.1016/j.progsolidstchem.2023.100391
Sadhana Yadav , Dinesh Kumar , Ram Sagar Yadav , Akhilesh Kumar Singh

The double perovskite phosphor materials are physically, chemically and thermally stable in nature. The generalized formula of double perovskite is AA'BB'O6 type. The transition metal and lanthanide ions can be doped in the double perovskite materials. The structure of perovskite materials is the key factor for optical properties of the phosphor materials. The transition metal ions produce broad emission band covering from near blue to NIR regions. They can even produce white light. Some combinations of transition metal ions show the energy transfer between them. On the other hand, the lanthanide ions emit sharp and narrow band emissions from UV to NIR regions because their transitions are not affected by the outer environment due to the shielding effect. The combinations of transition metals and lanthanide ions also involve in the energy transfer. This article comprises the recent development on the optical properties of transition metal (Mn4+) and lanthanide metal (Eu3+) doped double perovskite phosphor materials. The optical processes involved in photoluminescence have been discussed in detail. The applications of transition metal and lanthanide doped and co-doped double perovskite phosphor materials have also been summarized herein.

双钙钛矿荧光粉材料具有物理、化学和热稳定性。双钙钛矿的概式为AA'BB'O6型。在双钙钛矿材料中可以掺杂过渡金属和镧系离子。钙钛矿材料的结构是影响其光学性能的关键因素。过渡金属离子产生从近蓝色到近红外的宽发射带。它们甚至可以发出白光。过渡金属离子的某些组合表现出它们之间的能量转移。另一方面,由于屏蔽效应,镧系离子的跃迁不受外界环境的影响,从紫外到近红外区域发射出尖锐的窄带辐射。过渡金属和镧系离子的结合也参与了能量转移。本文综述了过渡金属(Mn4+)和镧系金属(Eu3+)掺杂双钙钛矿磷光材料光学性质的最新研究进展。详细讨论了光致发光的光学过程。本文还综述了过渡金属和镧系掺杂及共掺杂双钙钛矿磷光材料的应用。
{"title":"Recent progress on optical properties of double perovskite phosphors","authors":"Sadhana Yadav ,&nbsp;Dinesh Kumar ,&nbsp;Ram Sagar Yadav ,&nbsp;Akhilesh Kumar Singh","doi":"10.1016/j.progsolidstchem.2023.100391","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100391","url":null,"abstract":"<div><p><span>The double perovskite phosphor materials are physically, chemically and thermally stable in nature. The generalized formula of double perovskite is AA'BB'O</span><sub>6</sub><span> type. The transition metal and lanthanide<span><span> ions can be doped in the double perovskite materials. The structure of perovskite materials is the key factor for optical properties<span> of the phosphor materials. The transition metal ions produce broad emission band covering from near blue to NIR regions. They can even produce white light. Some combinations of transition metal ions show the energy transfer between them. On the other hand, the lanthanide ions emit sharp and </span></span>narrow band emissions from UV to NIR regions because their transitions are not affected by the outer environment due to the shielding effect. The combinations of transition metals and lanthanide ions also involve in the energy transfer. This article comprises the recent development on the optical properties of transition metal (Mn</span></span><sup>4+</sup>) and lanthanide metal (Eu<sup>3+</sup><span>) doped double perovskite phosphor materials. The optical processes involved in photoluminescence have been discussed in detail. The applications of transition metal and lanthanide doped and co-doped double perovskite phosphor materials have also been summarized herein.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"69 ","pages":"Article 100391"},"PeriodicalIF":12.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1677298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Progress in Solid State Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1