Pub Date : 2023-12-21DOI: 10.1016/j.progsolidstchem.2023.100437
Jyoti V. Patil, Sawanta S. Mali, Sachin R. Rondiya, Nelson Y. Dzade, Chang Kook Hong
Making highly efficient and stable perovskite solar cells (PSCs) are often based on the processing techniques, band gap of the material and effective interface charge separation. The efficiency of PSCs can be enhanced through several methods including the utilization of a solar-friendly absorber, interface passivation and the implementation of multi-junction spectrally matched absorbers or bilayered phase homojunction (BPHJ) consisting of identical absorbers. Here, we demonstrated BPHJ concept by stacking identical compositions of highly efficient and stable FA0.15MA0.85PbI3 perovskite absorbers adopting solution process (SP) and thermal evaporation (TEV) techniques. We successfully achieved FA0.15MA0.85PbI3 (SP)/FA0.15MA0.85PbI3-(TEV) based BPHJ normal n-i-p devices, which significantly crossing 22.
% PCE. These improvement stems from effective deposition method for achieving high-quality FA0.15MA0.85PbI3-based BPHJ enabling smooth charge transfer at the interfaces. The resulting BPHJ-based device achieve a 22.13 % PCE and retain >95 % its original efficiency over 1000 h.
{"title":"Bilayered graded phase homojunction FA0.15MA0.85PbI3-based organic-inorganic hybrid perovskite solar cells crossing 22 % efficiency","authors":"Jyoti V. Patil, Sawanta S. Mali, Sachin R. Rondiya, Nelson Y. Dzade, Chang Kook Hong","doi":"10.1016/j.progsolidstchem.2023.100437","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100437","url":null,"abstract":"<p>Making highly efficient and stable perovskite solar cells (PSCs) are often based on the processing techniques, band gap of the material and effective interface charge separation. The efficiency of PSCs can be enhanced through several methods including the utilization of a solar-friendly absorber, interface passivation and the implementation of multi-junction spectrally matched absorbers or bilayered phase homojunction (BPHJ) consisting of identical absorbers. Here, we demonstrated BPHJ concept by stacking identical compositions of highly efficient and stable FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub> perovskite absorbers adopting solution process (SP) and thermal evaporation (TEV) techniques. We successfully achieved FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub> (SP)/FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-(TEV) based BPHJ normal n-i-p devices, which significantly crossing 22.</p><p>% PCE. These improvement stems from effective deposition method for achieving high-quality FA<sub>0.15</sub>MA<sub>0.85</sub>PbI<sub>3</sub>-based BPHJ enabling smooth charge transfer at the interfaces. The resulting BPHJ-based device achieve a 22.13 % PCE and retain >95 % its original efficiency over 1000 h.</p>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"19 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroelectric ceramics, which exhibit the phenomenon of reversible spontaneous polarization, have been utilized in multiple conventional applications including sensors, actuators, nano-generators, micro-electromechanical systems (MEMS), memory storage systems, energy harvesting devices, etc. Recently, ferroelectric ceramics have been employed for catalysis-induced applications. One of such catalysis process is known as ‘pyrocatalysis’, which makes use of pyroelectric materials to execute catalysis reactions using temperature fluctuation-derived waste thermal energy/heat. This new and evolving pyrocatalysis process has shown promising potential in new and exciting applications including water-cleaning, water-splitting, bacterial disinfection, tooth whitening, carbon-dioxide reduction, tumor therapy, etc. In principle, ferroelectric ceramics are always pyroelectric in nature, which enables them to be utilized for pyrocatalytic applications. High pyrocatalytic performances of ferroelectric ceramics have been reported by various reports in multiple applications. This review starts with the basic introduction to ferroelectric ceramics, pyroelectric effect, and pyrocatalysis process. Further, it provides the review of recent studies utilizing ferroelectric ceramics for pyrocatalytic applications. The strategies to improve pyrocatalytic performance of ferroelectric ceramics are discussed in detail. At last, this review provides insights to new future directions for researchers working on ferroelectric pyrocatalysts.
{"title":"Ferroelectric ceramics for pyrocatalytic applications","authors":"Gurpreet Singh , Moolchand Sharma , Jagmohan Datt Sharma , Sanjeev Kumar , Rahul Vaish","doi":"10.1016/j.progsolidstchem.2023.100428","DOIUrl":"10.1016/j.progsolidstchem.2023.100428","url":null,"abstract":"<div><p><span>Ferroelectric ceramics, which exhibit the phenomenon of reversible spontaneous polarization, have been utilized in multiple conventional applications including sensors, actuators, nano-generators, micro-electromechanical systems (MEMS), memory storage systems, </span>energy harvesting<span><span> devices, etc. Recently, ferroelectric ceramics have been employed for catalysis-induced applications. One of such catalysis process is known as ‘pyrocatalysis’, which makes use of </span>pyroelectric materials to execute catalysis reactions using temperature fluctuation-derived waste thermal energy/heat. This new and evolving pyrocatalysis process has shown promising potential in new and exciting applications including water-cleaning, water-splitting, bacterial disinfection, tooth whitening, carbon-dioxide reduction, tumor therapy, etc. In principle, ferroelectric ceramics are always pyroelectric in nature, which enables them to be utilized for pyrocatalytic applications. High pyrocatalytic performances of ferroelectric ceramics have been reported by various reports in multiple applications. This review starts with the basic introduction to ferroelectric ceramics, pyroelectric effect, and pyrocatalysis process. Further, it provides the review of recent studies utilizing ferroelectric ceramics for pyrocatalytic applications. The strategies to improve pyrocatalytic performance of ferroelectric ceramics are discussed in detail. At last, this review provides insights to new future directions for researchers working on ferroelectric pyrocatalysts.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100428"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Being a highly proficient material for electrochemical energy storage systems, MXene is gaining popularity. MXene pseudocapacitive charge storage system with electric double layer behaviour has improved the efficiency of supercapacitors. Furthermore, the proper interlayer spacing and distinct chemistry have enabled batteries to attain high capacity while enabling quick charge-discharge. Such breakthroughs are a result of MXene inherent characteristics, including its strong electrical conductivity, well defined layered structure, and capacity for modification, which allows it to customize electrodes to a particular purpose. Additionally, MXenes have shown their value by allowing supercapacitors and batteries to defy convention and explore the world of hybrid capacitors, micro-supercapacitors (MSCs), and batteries other than Li-ion. This article covers the MXene-based supercapcitor electrodes and difficulties associated with them. By using logical analysis, we also present several important directions for future study that could assist in resolving these issues and enabling the family of MXene materials to reach its full potential.
{"title":"3D MXenes for supercapacitors: Current status, opportunities and challenges","authors":"Sonali Verma , Bhavya Padha , Sheng-Joue Young , Yen-Lin Chu , Rajesh Bhardwaj , Rajneesh Kumar Mishra , Sandeep Arya","doi":"10.1016/j.progsolidstchem.2023.100425","DOIUrl":"10.1016/j.progsolidstchem.2023.100425","url":null,"abstract":"<div><p><span>Being a highly proficient material for electrochemical energy storage systems, MXene is gaining popularity. MXene pseudocapacitive charge storage system with electric double layer behaviour has improved the efficiency of </span>supercapacitors<span>. Furthermore, the proper interlayer spacing and distinct chemistry have enabled batteries to attain high capacity while enabling quick charge-discharge. Such breakthroughs are a result of MXene inherent characteristics, including its strong electrical conductivity, well defined layered structure, and capacity for modification, which allows it to customize electrodes to a particular purpose. Additionally, MXenes have shown their value by allowing supercapacitors and batteries to defy convention and explore the world of hybrid capacitors, micro-supercapacitors (MSCs), and batteries other than Li-ion. This article covers the MXene-based supercapcitor electrodes and difficulties associated with them. By using logical analysis, we also present several important directions for future study that could assist in resolving these issues and enabling the family of MXene materials to reach its full potential.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100425"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135406689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1016/j.progsolidstchem.2023.100430
Shivangini Bhatt , Sumit Saha
Today, carbon dioxide (CO2) is one of the most pervasive greenhouse gases in the atmosphere, mainly because of the burning of fossil fuels. The carbon dioxide reduction reaction by photocatalysis and electrocatalysis is one approach that holds a lot of promise for easing the global crisis on the environmental and energy fronts. Developing and constructing high-performance photo- and electrocatalysts is a challenge that is being studied. The class of anionic metal-oxo clusters known as polyoxometalates (POMs) brings diverse and interesting chemical and physical characteristics that can be modified easily. The studies reveal that POMs are emerging to be distinctive photo/electrocatalysts for these reactions because of their unmatched advantages, like thermal and redox stability, light-absorbing capacity, quasi-semiconductor properties, etc. Numerous studies have demonstrated the capability of tungsten and molybdenum-based photo- and electrocatalysts for CO2 reduction and conversion into value-added products. This review has covered the most recent developments in tungsten and molybdenum-based POMs that convert CO2 into multiple products (CO, H2, HCOOH, HCHO, CH3OH, etc.). Perspectives for designing and constructing different kinds of POM-based catalytic systems have been offered.
{"title":"Tungsten and molybdenum based polyoxometalates for photo and electrocatalytic carbon dioxide conversion – A critical review","authors":"Shivangini Bhatt , Sumit Saha","doi":"10.1016/j.progsolidstchem.2023.100430","DOIUrl":"10.1016/j.progsolidstchem.2023.100430","url":null,"abstract":"<div><p>Today, carbon dioxide (CO<sub>2</sub><span>) is one of the most pervasive greenhouse gases<span><span><span> in the atmosphere, mainly because of the burning of fossil fuels. The carbon dioxide reduction reaction by photocatalysis and </span>electrocatalysis is one approach that holds a lot of promise for easing the global crisis on the environmental and energy fronts. Developing and constructing high-performance photo- and </span>electrocatalysts<span><span> is a challenge that is being studied. The class of anionic metal-oxo clusters known as polyoxometalates<span> (POMs) brings diverse and interesting chemical and physical characteristics that can be modified easily. The studies reveal that POMs are emerging to be distinctive photo/electrocatalysts for these reactions because of their unmatched advantages, like thermal and redox stability, light-absorbing capacity, quasi-semiconductor properties, etc. Numerous studies have demonstrated the capability of tungsten and molybdenum-based photo- and electrocatalysts for </span></span>CO</span></span></span><sub>2</sub> reduction and conversion into value-added products. This review has covered the most recent developments in tungsten and molybdenum-based POMs that convert CO<sub>2</sub> into multiple products (CO, H<sub>2</sub>, HCOOH, HCHO, CH<sub>3</sub>OH, etc.). Perspectives for designing and constructing different kinds of POM-based catalytic systems have been offered.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100430"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This comprehensive review paper offers an extensive overview of recent developments in doping strategies to enhance the applications of M-type hexaferrites. These distinctive materials have gained considerable attention across a range of technological fields. The paper focuses on structural attributes of M-type hexaferrites, delves into their diverse applications—such as permanent magnets, high-density storage media, EMI shielding, photocatalysis for wastewater treatment, and potential for hydrogen storage—and underscores their suitability for these uses. The review also investigates the influence of doping on the performance of M-type hexaferrites in various applications. The insights presented herein not only provide a deeper understanding of the potential of M-type hexaferrites but also pave the way for future advancements in this dynamic field.
{"title":"Advancements in doping strategies for enhancing applications of M-type hexaferrites: A comprehensive review","authors":"Rohit Jasrotia , Jyoti Prakash , Himanshi , Nikhil Thakur , Kanika Raj , Abhishek Kandwal , Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2023.100427","DOIUrl":"10.1016/j.progsolidstchem.2023.100427","url":null,"abstract":"<div><p><span>This comprehensive review paper offers an extensive overview of recent developments in doping strategies to enhance the applications of M-type hexaferrites. These distinctive materials have gained considerable attention across a range of technological fields. The paper focuses on structural attributes of M-type hexaferrites, delves into their diverse applications—such as permanent magnets, high-density storage media, </span>EMI<span> shielding, photocatalysis for wastewater treatment, and potential for hydrogen storage—and underscores their suitability for these uses. The review also investigates the influence of doping on the performance of M-type hexaferrites in various applications. The insights presented herein not only provide a deeper understanding of the potential of M-type hexaferrites but also pave the way for future advancements in this dynamic field.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100427"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135407903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CuAl2-type VN2, which is synthesized under high pressure, is a recoverable material at ambient conditions and has a high bulk modulus. In this study, we investigated the thermal expansion behavior of CuAl2-type VN2 by low-temperature X-ray diffraction measurements between 109.3(5) K and 298.3(8) K. The axial thermal expansion coefficient of VN2 was determined to be αa = 2.7(9) × 10−6 K−1 and αc = 17.8(12) × 10−6 K−1 at 298.3(8) K, which has large anisotropy similar to that of compression behavior. It is found that the small coefficient of thermal expansion of the a-axis is due to the negative and positive effects on the a-axis length with increasing temperature of the bond angles and bond lengths of VN2, respectively. As a result, VN2 exhibits very large anisotropic thermal expansion behavior.
{"title":"Thermal expansion behavior of vanadium pernitride, CuAl2-type VN2, synthesized under high pressures","authors":"Shuto Asano , Ken Niwa , Takuya Sasaki , Masashi Hasegawa","doi":"10.1016/j.progsolidstchem.2023.100426","DOIUrl":"10.1016/j.progsolidstchem.2023.100426","url":null,"abstract":"<div><p>CuAl<sub>2</sub>-type VN<sub>2</sub><span>, which is synthesized under high pressure, is a recoverable material at ambient conditions and has a high bulk modulus. In this study, we investigated the thermal expansion behavior of CuAl</span><sub>2</sub>-type VN<sub>2</sub> by low-temperature X-ray diffraction measurements between 109.3(5) K and 298.3(8) K. The axial thermal expansion coefficient of VN<sub>2</sub> was determined to be <em>α</em><sub><em>a</em></sub> = 2.7(9) × 10<sup>−6</sup> K<sup>−1</sup> and <em>α</em><sub><em>c</em></sub> = 17.8(12) × 10<sup>−6</sup> K<sup>−1</sup> at 298.3(8) K, which has large anisotropy similar to that of compression behavior. It is found that the small coefficient of thermal expansion of the <em>a</em>-axis is due to the negative and positive effects on the <em>a</em>-axis length with increasing temperature of the bond angles and bond lengths of VN<sub>2</sub>, respectively. As a result, VN<sub>2</sub> exhibits very large anisotropic thermal expansion behavior.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100426"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134917241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1016/j.progsolidstchem.2023.100429
Suresh Chandra Baral, P. Maneesha, E.G. Rini, Somaditya Sen
Double perovskites R2NiMnO6 (R = Rare earth element) (RNMO) are a significant class of materials owing to their Multifunctional properties with the structural modifications. In particular, multifunctional double perovskite oxides La2NiMnO6(LNMO) which possess both electric and magnetic orderings, chemical flexibility, versatility, and indispensable properties like high ferromagnetic curie temperature, high absorption rates, dielectrics, etc. have drawn a lot of attention due their rich physics and diverse applications in various technology. This justifies the intense research in this class of materials, and the keen interest they are subject to both the fundamental and practical side. In view of the demands of this material in lead-free perovskite solar cells, photocatalytic degradation of organic dyes, clean hydrogen production, electric tuneable devices, fuel cells, gas sensing, and biomedical applications, there is a need for an overview of all the literature so far, the ongoing research and the future prospective. This review summarised all the physical and structural properties of LNMO such as electric, magnetic, catalytic, and dielectric properties with their underlying mechanisms. This review article provides insight into the scope of studies in LNMO material for exploring unexposed properties in new material research and to identify areas of future investigation of the materials in the double perovskite family.
{"title":"Recent advances in La2NiMnO6 double perovskites for various applications; challenges and opportunities","authors":"Suresh Chandra Baral, P. Maneesha, E.G. Rini, Somaditya Sen","doi":"10.1016/j.progsolidstchem.2023.100429","DOIUrl":"10.1016/j.progsolidstchem.2023.100429","url":null,"abstract":"<div><p><span>Double perovskites </span><em>R</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>R</em> = Rare earth element) (<em>RNMO</em>) are a significant class of materials owing to their Multifunctional properties with the structural modifications. In particular, multifunctional double perovskite oxides <em>La</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> <em>(LNMO)</em><span><span> which possess both electric and magnetic orderings, chemical flexibility, versatility, and indispensable properties like high ferromagnetic curie temperature<span><span>, high absorption rates, dielectrics<span>, etc. have drawn a lot of attention due their rich physics and diverse applications in various technology. This justifies the intense research in this class of materials, and the keen interest they are subject to both the fundamental and practical side. In view of the demands of this material in lead-free </span></span>perovskite solar cells<span>, photocatalytic degradation of organic dyes, clean hydrogen production, electric tuneable devices, fuel cells, </span></span></span>gas sensing, and biomedical applications, there is a need for an overview of all the literature so far, the ongoing research and the future prospective. This review summarised all the physical and structural properties of </span><em>LNMO</em> such as electric, magnetic, catalytic, and dielectric properties with their underlying mechanisms. This review article provides insight into the scope of studies in <em>LNMO</em> material for exploring unexposed properties in new material research and to identify areas of future investigation of the materials in the double perovskite family.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100429"},"PeriodicalIF":12.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134976512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.progsolidstchem.2023.100416
Chuan Li , Ayesha Khan Tareen , Jianyu Long , Muhammad Iqbal , Waqas Ahmad , Muhammad Farooq Khan , Jinghua Sun , Zhang Ye , Usman Khan , Adeela Nairan , Karim Khan
Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a "hollow hexagon" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.
The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.
Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic Young's modulus, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion batteries, and supercapacitors (SCs), is covered in great length at the very end.
{"title":"Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications","authors":"Chuan Li , Ayesha Khan Tareen , Jianyu Long , Muhammad Iqbal , Waqas Ahmad , Muhammad Farooq Khan , Jinghua Sun , Zhang Ye , Usman Khan , Adeela Nairan , Karim Khan","doi":"10.1016/j.progsolidstchem.2023.100416","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100416","url":null,"abstract":"<div><p>Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a \"hollow hexagon\" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.</p><p>The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials<span> in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.</span></p><p><span>Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic </span>Young's modulus<span>, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion<span> batteries, and supercapacitors (SCs), is covered in great length at the very end.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100416"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.progsolidstchem.2023.100414
Sharafat Ali , Jacek Ryl , Abbas Saeed Hakeem , Katarzyna Grochowska , Natalia Anna Wójcik
In this paper, we investigate the structure and thermal properties of aluminum-rich transparent Ca–Al–Si–O–N glasses. The obtained glasses were prepared by a traditional melt-quenching technique at 1650 °C using AlN as the nitrogen source. The obtained glasses have a nAl/nSi>1 and contain up to 17 eq.% of N. The structure of the glasses was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, infrared, and Raman spectroscopy techniques. The structure analysis shows a higher preference for Si–N bond formation relative to Al–N bond formation and aluminum is predominately present in tetrahedral coordination as AlO4 units. The thermal properties of samples were studied by differential thermal analysis and the obtained glass transition temperature ranges from 875 °C to 950 °C, and is primarily influenced by the N content. The glass stability can be correlated with both the N and Al contents in the studied glasses. It is improved due to the increased degree of network polymerization by the incorporation of nitrogen.
{"title":"Investigation of the structural and thermal properties of aluminum-rich Ca–Al–Si–O–N glasses","authors":"Sharafat Ali , Jacek Ryl , Abbas Saeed Hakeem , Katarzyna Grochowska , Natalia Anna Wójcik","doi":"10.1016/j.progsolidstchem.2023.100414","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100414","url":null,"abstract":"<div><p><span>In this paper, we investigate the structure and thermal properties<span> of aluminum-rich transparent Ca–Al–Si–O–N glasses. The obtained glasses were prepared by a traditional melt-quenching technique at 1650 °C using AlN as the nitrogen source. The obtained glasses have a </span></span><em>n</em><sub>Al</sub>/<em>n</em><sub>Si</sub><span>>1 and contain up to 17 eq.% of N. The structure of the glasses was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, infrared, and Raman spectroscopy<span> techniques. The structure analysis shows a higher preference for Si–N bond formation relative to Al–N bond formation and aluminum is predominately present in tetrahedral coordination as AlO</span></span><sub>4</sub><span> units. The thermal properties of samples were studied by differential thermal analysis and the obtained glass transition temperature ranges from 875 °C to 950 °C, and is primarily influenced by the N content. The glass stability can be correlated with both the N and Al contents in the studied glasses. It is improved due to the increased degree of network polymerization by the incorporation of nitrogen.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100414"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.progsolidstchem.2023.100415
Samir F. Matar , Vladimir L. Solozhenko
Stable tetragonal C9 and C12 with original topologies have been devised based on crystal chemistry rationale and unconstrained geometry optimization calculations within the density functional theory (DFT). The two new carbon allotropes characterized by corner- and edge-sharing tetrahedra, are mechanically (elastic constants) and dynamically (phonons) stable and exhibit thermal and mechanical properties close to diamond. The electronic band structures show insulating behavior with band gaps close to 5 eV, like diamond.
{"title":"Crystal chemistry and ab initio investigations of new hard tetragonal C9 and C12 allotropes with edge- and corner-sharing C4 tetrahedra and diamond-related properties","authors":"Samir F. Matar , Vladimir L. Solozhenko","doi":"10.1016/j.progsolidstchem.2023.100415","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2023.100415","url":null,"abstract":"<div><p>Stable tetragonal C<sub>9</sub> and C<sub>12</sub><span><span><span> with original topologies have been devised based on crystal chemistry rationale and unconstrained geometry optimization calculations within the </span>density functional theory (DFT). The two new carbon allotropes characterized by corner- and edge-sharing tetrahedra, are mechanically (elastic constants) and dynamically (phonons) stable and exhibit thermal and </span>mechanical properties<span> close to diamond. The electronic band structures show insulating behavior with band gaps close to 5 eV, like diamond.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100415"},"PeriodicalIF":12.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}