首页 > 最新文献

Progress in Solid State Chemistry最新文献

英文 中文
Influence of initial crystalline phase of TiO2 to obtain TiN thin films from sol-gel route by rapid thermal nitridation process 通过快速热氮化工艺从溶胶-凝胶路线获得 TiN 薄膜的 TiO2 初始晶相的影响。
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-01 DOI: 10.1016/j.progsolidstchem.2024.100462

Titanium Nitride (TiN) is widely used in many industrial sectors for its outstanding performances including its mechanical properties, high chemical and thermal stability. Associated with its plasmonic behavior, TiN thin films are very promising for the manufacturing of optical metasurfaces devices or new plasmonic materials. Among the processes that make it easy to obtain metal nitride coatings, nitriding of metal oxide films has become increasingly popular in recent years. A multitude of synthesis processes can be used to obtain TiO2 films, with different crystalline states (amorphous, anatase or rutile) depending on the technique used, which can then be converted into TiN coatings. In this paper, the effect of the initial crystalline state of TiO2 layers was investigated on the structural properties, plasmonic properties and the friction behavior of TiN thin films obtained by Rapid Thermal Nitridation (RTN). The results indicate that, regardless of the crystalline state of the starting TiO2 film, the RTN process leads to complete nitridation of TiN coating. Moreover, even though surface morphology and friction properties differ slightly, depending on the crystallization of the starting TiO2, plasmonic properties remain very similar, thus highlighting the great versatility and uniformity of this nitriding technique, enabling TiN to be produced for a wide range of applications.

氮化钛(TiN)因其卓越的性能,包括机械性能、高化学稳定性和热稳定性,被广泛应用于许多工业领域。氮化钛薄膜具有等离子特性,因此在制造光学元表面器件或新型等离子材料方面大有可为。近年来,金属氧化物薄膜的氮化工艺越来越受到人们的青睐。可以使用多种合成工艺获得 TiO2 薄膜,根据所用技术的不同,薄膜的结晶状态也不同(非晶态、锐钛态或金红石态),然后可以将其转化为 TiN 涂层。本文研究了 TiO2 层的初始结晶状态对通过快速热氮化(RTN)获得的 TiN 薄膜的结构特性、等离子特性和摩擦行为的影响。结果表明,无论初始 TiO2 薄膜的结晶状态如何,RTN 过程都能使 TiN 涂层完全氮化。此外,尽管表面形貌和摩擦特性因起始二氧化钛的结晶状态而略有不同,但等离子特性仍然非常相似,从而突出了这种氮化技术的巨大通用性和均匀性,使生产出的 TiN 能够广泛应用于各种领域。
{"title":"Influence of initial crystalline phase of TiO2 to obtain TiN thin films from sol-gel route by rapid thermal nitridation process","authors":"","doi":"10.1016/j.progsolidstchem.2024.100462","DOIUrl":"10.1016/j.progsolidstchem.2024.100462","url":null,"abstract":"<div><p><span><span>Titanium Nitride<span> (TiN) is widely used in many industrial sectors for its outstanding performances including its mechanical properties, high chemical and thermal stability. Associated with its plasmonic behavior, TiN thin films are very promising for the manufacturing of optical metasurfaces devices or new </span></span>plasmonic materials<span>. Among the processes that make it easy to obtain metal nitride coatings, nitriding of metal oxide films has become increasingly popular in recent years. A multitude of synthesis processes can be used to obtain TiO</span></span><sub>2</sub> films, with different crystalline states (amorphous, anatase or rutile) depending on the technique used, which can then be converted into TiN coatings. In this paper, the effect of the initial crystalline state of TiO<sub>2</sub> layers was investigated on the structural properties, plasmonic properties and the friction behavior of TiN thin films obtained by Rapid Thermal Nitridation (RTN). The results indicate that, regardless of the crystalline state of the starting TiO<sub>2</sub><span> film, the RTN process leads to complete nitridation of TiN coating. Moreover, even though surface morphology and friction properties differ slightly, depending on the crystallization of the starting TiO</span><sub>2</sub>, plasmonic properties remain very similar, thus highlighting the great versatility and uniformity of this nitriding technique, enabling TiN to be produced for a wide range of applications.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100462"},"PeriodicalIF":9.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial ISNT 2023 ISNT 2023 编辑
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-01 DOI: 10.1016/j.progsolidstchem.2024.100475
Franck Tessier, Laurent Le Gendre, Samuel Bernard, Régis Gautier
{"title":"Editorial ISNT 2023","authors":"Franck Tessier,&nbsp;Laurent Le Gendre,&nbsp;Samuel Bernard,&nbsp;Régis Gautier","doi":"10.1016/j.progsolidstchem.2024.100475","DOIUrl":"10.1016/j.progsolidstchem.2024.100475","url":null,"abstract":"","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100475"},"PeriodicalIF":9.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MIL-125 and its derivatives based photoelectrodes for photoelectrochemical applications 基于 MIL-125 及其衍生物的光电电极在光电化学中的应用
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-27 DOI: 10.1016/j.progsolidstchem.2024.100476
Ying Yang , Miao Li , Long Chen , Yuelan Zhang , Xiaoqing Qiu

Among the Material of Institute Lavoisier (MIL) compounds, MIL-125 has been proved to be potentially high photoactive electrode in the photoelectrochemical (PEC) devices. The great progress has been achieved in the preparation, structural optimization and applications of MIL-125, especially in the PEC technology, as witnessed by the quick increase in the number of published papers. Consequently, a comprehensive review of the current research status of MIL-125 based electrodes in PEC is warranted. This review provides an in-depth analysis of various PEC applications employing MIL-125 based photoelectrodes, such as sensing (including PEC biosensors, organic pollutant detection, and heavy metal ion sensing), water splitting for hydrogen production, photovoltaic cells (including dye-sensitized solar cells, quantum dot-sensitized solar cells, perovskite solar cells, and organic solar cells), photoelectrocatalysis, and photocathodic protection. Particular emphasis is placed on the signal amplification strategies, modification design, and reaction mechanisms of MIL-125 for PEC applications. Finally, the development opportunities and unsolved challenges associated with MIL-125 based materials in the PEC field are also highlighted. This comprehensive review is expected to expand the knowledge of recent advancements in MIL-125 and its derivatives modified electrodes and encourage researchers to promote the construction of efficient PEC systems.

在拉瓦锡研究所材料(MIL)化合物中,MIL-125 已被证明是光电化学(PEC)设备中潜在的高光活性电极。MIL-125 在制备、结构优化和应用方面取得了巨大进步,尤其是在光致化学电池技术方面,这一点从发表论文数量的快速增长中可见一斑。因此,有必要对基于 MIL-125 的 PEC 电极的研究现状进行全面回顾。本综述深入分析了采用 MIL-125 基光电电极的各种 PEC 应用,如传感(包括 PEC 生物传感器、有机污染物检测和重金属离子传感)、用于制氢的水分离、光伏电池(包括染料敏化太阳能电池、量子点敏化太阳能电池、过氧化物太阳能电池和有机太阳能电池)、光电催化和光阴极保护。特别强调了 MIL-125 在 PEC 应用中的信号放大策略、改性设计和反应机制。最后,还强调了基于 MIL-125 的材料在 PEC 领域的发展机遇和尚未解决的挑战。这篇全面的综述有望扩展人们对 MIL-125 及其衍生物改性电极最新进展的了解,并鼓励研究人员推动高效 PEC 系统的构建。
{"title":"MIL-125 and its derivatives based photoelectrodes for photoelectrochemical applications","authors":"Ying Yang ,&nbsp;Miao Li ,&nbsp;Long Chen ,&nbsp;Yuelan Zhang ,&nbsp;Xiaoqing Qiu","doi":"10.1016/j.progsolidstchem.2024.100476","DOIUrl":"10.1016/j.progsolidstchem.2024.100476","url":null,"abstract":"<div><p>Among the Material of Institute Lavoisier (MIL) compounds, MIL-125 has been proved to be potentially high photoactive electrode in the photoelectrochemical (PEC) devices. The great progress has been achieved in the preparation, structural optimization and applications of MIL-125, especially in the PEC technology, as witnessed by the quick increase in the number of published papers. Consequently, a comprehensive review of the current research status of MIL-125 based electrodes in PEC is warranted. This review provides an in-depth analysis of various PEC applications employing MIL-125 based photoelectrodes, such as sensing (including PEC biosensors, organic pollutant detection, and heavy metal ion sensing), water splitting for hydrogen production, photovoltaic cells (including dye-sensitized solar cells, quantum dot-sensitized solar cells, perovskite solar cells, and organic solar cells), photoelectrocatalysis, and photocathodic protection. Particular emphasis is placed on the signal amplification strategies, modification design, and reaction mechanisms of MIL-125 for PEC applications. Finally, the development opportunities and unsolved challenges associated with MIL-125 based materials in the PEC field are also highlighted. This comprehensive review is expected to expand the knowledge of recent advancements in MIL-125 and its derivatives modified electrodes and encourage researchers to promote the construction of efficient PEC systems.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100476"},"PeriodicalIF":9.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards improved stability of transition metal nitrides in aqueous solutions 提高过渡金属氮化物在水溶液中的稳定性
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-15 DOI: 10.1016/j.progsolidstchem.2024.100474
Xiang Li , Anna Bergljót Gunnarsdóttir , Valery Pershina , Árni Björn Höskuldsson , Marc Francis Hidalgo , Egill Skúlason , Helga Dögg Flosadóttir , Cristina Giordano

Transition metal nitrides (TMNs), in some cases referred as metallic ceramics, have unique physical and chemical properties, thanks to their ceramic-metallic nature, and are considered an attractive alternative to noble metals for electrochemical processes. In particular, theoretical work predicts TMNs as promising electrocatalysts towards the nitrogen reduction reaction (NRR). However, recent experimental studies under realistic conditions, have shown the release of lattice nitride to ammonia in a noncatalytic process, suggesting inherent instability of these materials. TMNs stability can be increased by the incorporation of a second metal in the lattice, to form bimetallic systems. Herein, we present a robust approach to prepare nonprecious transition multi-metallic nitride nano-catalysts, followed by a comprehensive study on their stability. The stability of the as-prepared catalysts was tested in electrolytes relevant for electrocatalysis, showing a higher chemical resistance of the bimetallic catalysts over the monometallic ones. This study suggests a novel approach to matching electrolyte pH and catalyst to ensure chemical stability in the electrochemical environment.

过渡金属氮化物(TMNs)在某些情况下被称为金属陶瓷,由于其陶瓷-金属性质而具有独特的物理和化学特性,被认为是电化学过程中贵金属的一种有吸引力的替代品。特别是,理论研究预测 TMNs 是氮还原反应 (NRR) 的理想电催化剂。然而,最近在现实条件下进行的实验研究表明,在非催化过程中,氮化晶格会释放出氨气,这表明这些材料具有固有的不稳定性。通过在晶格中加入第二种金属,形成双金属系统,可以提高 TMN 的稳定性。在此,我们提出了一种制备非贵金属过渡多金属氮化物纳米催化剂的可靠方法,并随后对其稳定性进行了全面研究。在与电催化相关的电解质中测试了所制备催化剂的稳定性,结果表明双金属催化剂的耐化学性高于单金属催化剂。这项研究提出了一种匹配电解质 pH 值和催化剂的新方法,以确保在电化学环境中的化学稳定性。
{"title":"Towards improved stability of transition metal nitrides in aqueous solutions","authors":"Xiang Li ,&nbsp;Anna Bergljót Gunnarsdóttir ,&nbsp;Valery Pershina ,&nbsp;Árni Björn Höskuldsson ,&nbsp;Marc Francis Hidalgo ,&nbsp;Egill Skúlason ,&nbsp;Helga Dögg Flosadóttir ,&nbsp;Cristina Giordano","doi":"10.1016/j.progsolidstchem.2024.100474","DOIUrl":"10.1016/j.progsolidstchem.2024.100474","url":null,"abstract":"<div><p>Transition metal nitrides (TMNs), in some cases referred as metallic ceramics, have unique physical and chemical properties, thanks to their ceramic-metallic nature, and are considered an attractive alternative to noble metals for electrochemical processes. In particular, theoretical work predicts TMNs as promising electrocatalysts towards the nitrogen reduction reaction (NRR). However, recent experimental studies under realistic conditions, have shown the release of lattice nitride to ammonia in a noncatalytic process, suggesting inherent instability of these materials. TMNs stability can be increased by the incorporation of a second metal in the lattice, to form bimetallic systems. Herein, we present a robust approach to prepare nonprecious transition multi-metallic nitride nano-catalysts, followed by a comprehensive study on their stability. The stability of the as-prepared catalysts was tested in electrolytes relevant for electrocatalysis, showing a higher chemical resistance of the bimetallic catalysts over the monometallic ones. This study suggests a novel approach to matching electrolyte pH and catalyst to ensure chemical stability in the electrochemical environment.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100474"},"PeriodicalIF":9.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the sintering methods on the electrical properties of cerium-doped aluminium nitride ceramics 烧结方法对掺铈氮化铝陶瓷电气性能的影响
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-11 DOI: 10.1016/j.progsolidstchem.2024.100473
Hatim Saidi , M. Coëffe-Desvaux , N. Pradeilles , P. Marchet , M. Joinet , A. Maître

This article investigates the densification of AlN ceramics through both Gas Pressure Sintering (GPS) and Spark Plasma Sintering (SPS) methods, employing cerium aluminates (CeAlO3) as sintering aids and comparing their influence to that of the usual cerium oxide (CeO2). While sintering aids like CeO2 promote densification, CeAlO3 exhibited lower reactivity during both SPS and GPS sintering. Chemical reactions between cerium oxide and aluminium oxide primarily involved the reduced phase as cerium sesquioxide (Ce2O3). On the basis on the Ce2O3–Al2O3 pseudo-binary system, the formation of secondary phases, such as CeAlO3 and CeAl11O18, during sintering was explained and confirmed by XRD. From complementary characterizations, it has been shown that sintering significantly impacted secondary phase composition and distribution. By employing specific densification cycles, SPS yielded smaller grains and thicker secondary phase cordons which led to enhanced electrical conductivity. Conversely, GPS produced coarser microstructures including larger grains and a network of secondary phases and some agglomerations at the triple points. These modifications influenced the overall conductivity. SPSed samples with 3 wt.% CeO2 and short dwelling times demonstrated higher electrical conductivity, exceeding by about 6 orders of magnitude the electrical conductivity of those obtained by GPS.

本文通过气压烧结 (GPS) 和火花等离子体烧结 (SPS) 两种方法研究了氮化铝陶瓷的致密化问题,采用铝酸铈 (CeAlO3) 作为烧结助剂,并比较了它们与普通氧化铈 (CeO2) 的影响。虽然 CeO2 等烧结辅助材料能促进致密化,但 CeAlO3 在 SPS 和 GPS 烧结过程中的反应活性较低。氧化铈和氧化铝之间的化学反应主要涉及还原相倍半二氧化铈(Ce2O3)。在 Ce2O3-Al2O3 伪二元体系的基础上,XRD 解释并证实了烧结过程中 CeAlO3 和 CeAl11O18 等次生相的形成。补充性表征结果表明,烧结显著影响了次生相的组成和分布。通过采用特定的致密化循环,SPS 产生了更小的晶粒和更厚的次生相带,从而提高了导电性。相反,GPS 产生了更粗的微观结构,包括更大的晶粒和次生相网络,以及三相点处的一些团聚。这些变化影响了整体导电性。含有 3 wt.% CeO2 且停留时间较短的 SPSed 样品具有更高的导电性,比 GPS 所获得的导电性高出约 6 个数量级。
{"title":"Influence of the sintering methods on the electrical properties of cerium-doped aluminium nitride ceramics","authors":"Hatim Saidi ,&nbsp;M. Coëffe-Desvaux ,&nbsp;N. Pradeilles ,&nbsp;P. Marchet ,&nbsp;M. Joinet ,&nbsp;A. Maître","doi":"10.1016/j.progsolidstchem.2024.100473","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2024.100473","url":null,"abstract":"<div><p>This article investigates the densification of AlN ceramics through both Gas Pressure Sintering (GPS) and Spark Plasma Sintering (SPS) methods, employing cerium aluminates (CeAlO<sub>3</sub>) as sintering aids and comparing their influence to that of the usual cerium oxide (CeO<sub>2</sub>). While sintering aids like CeO<sub>2</sub> promote densification, CeAlO<sub>3</sub> exhibited lower reactivity during both SPS and GPS sintering. Chemical reactions between cerium oxide and aluminium oxide primarily involved the reduced phase as cerium sesquioxide (Ce<sub>2</sub>O<sub>3</sub>). On the basis on the Ce<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> pseudo-binary system, the formation of secondary phases, such as CeAlO<sub>3</sub> and CeAl<sub>11</sub>O<sub>18</sub>, during sintering was explained and confirmed by XRD. From complementary characterizations, it has been shown that sintering significantly impacted secondary phase composition and distribution. By employing specific densification cycles, SPS yielded smaller grains and thicker secondary phase cordons which led to enhanced electrical conductivity. Conversely, GPS produced coarser microstructures including larger grains and a network of secondary phases and some agglomerations at the triple points. These modifications influenced the overall conductivity. SPSed samples with 3 wt.% CeO<sub>2</sub> and short dwelling times demonstrated higher electrical conductivity, exceeding by about 6 orders of magnitude the electrical conductivity of those obtained by GPS.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100473"},"PeriodicalIF":9.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elpasolite-type superstructures in inverse perovskite nitrides 反向过氧化物氮化物中的埃尔帕索石型超结构
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-06-01 DOI: 10.1016/j.progsolidstchem.2024.100444
Lukas Link , Haichen Wang , Thomas C. Hansen , Volodymyr Baran , Rainer Niewa

We present a range of inverse perovskite nitrides with an elpasolite-type superstructure. (Ca3N0.682(9))Sn and (Ca3N0.559(7))Pb are variants of the previously described (Ca3N)Sn and (Ca3N)Pb which contain less nitrogen and crystallize in Fm3̄m. (Ba3N0.5)Sn and (Ba3N0.5)Pb resemble the previously reported perovskites (Ba3Nx)Sn and (Ba3Nx)Pb, but with both the superstructure and octahedral tilting, resulting in space group R3̄. (Ca3N0.77(2))Si, (Ca3N0.669(6))Ge, (Sr3N0.5)Ge and (Ba3N0.5)Ge all crystallize in P21/n. Among these, only (Ca3Nx)Ge has been previously described as (Ca3N)Ge. (Ca3N0.77(2))Si is notably the first compound in which mutually isolated N3− and Si4− ions coexist. There also exists a version with composition (Ca3N0.86(6))Si, which crystallizes in the cubic perovskite aristotype structure with space group Pm3̄m. Similarly, there are versions of (Sr3N0.5)Ge, (Ba3N0.5)Sn and (Ba3N0.5)Pb with elevated nitrogen contents, less strongly tilted octahedra and no apparent superstructure. Electronic structure calculations indicate a metallic nature of the title compounds, with rather narrow improper band gaps for the strontium and barium compounds.

我们介绍了一系列具有椭圆沸石型上层结构的反包晶氮化物。(CaN)Sn和(CaN)Pb是之前描述过的(CaN)Sn和(CaN)Pb的变体,它们含氮较少,结晶为......。(BaN)Sn和(BaN)Pb与之前报道过的包晶(BaN)Sn和(BaN)Pb相似,但都具有上层结构和八面体倾斜,从而形成空间群。 (CaN)Si, (CaN)Ge, (SrN)Ge和(BaN)Ge都在2/中结晶,其中只有(CaN)Ge之前被描述为(CaN)Ge。值得注意的是,(CaN)Si 是第一种相互孤立的 N 离子和 Si 离子共存的化合物。还有一种成分为(CaN)Si的化合物,其结晶为空间群为......的立方包晶芳香结构。同样,(SrN)Ge、(BaN)Sn 和(BaN)Pb 也存在氮含量较高、八面体倾斜度较小且无明显上层结构的版本。电子结构计算表明,标题化合物具有金属性质,锶和钡化合物的不适当带隙相当窄。
{"title":"Elpasolite-type superstructures in inverse perovskite nitrides","authors":"Lukas Link ,&nbsp;Haichen Wang ,&nbsp;Thomas C. Hansen ,&nbsp;Volodymyr Baran ,&nbsp;Rainer Niewa","doi":"10.1016/j.progsolidstchem.2024.100444","DOIUrl":"10.1016/j.progsolidstchem.2024.100444","url":null,"abstract":"<div><p>We present a range of inverse perovskite nitrides with an elpasolite-type superstructure. (Ca<sub>3</sub>N<sub>0.682(9)</sub>)Sn and (Ca<sub>3</sub>N<sub>0.559(7)</sub>)Pb are variants of the previously described (Ca<sub>3</sub>N)Sn and (Ca<sub>3</sub>N)Pb which contain less nitrogen and crystallize in <span><math><mi>F</mi><mi>m</mi><mrow><mover><mrow><mn>3</mn></mrow><mo>̄</mo></mover></mrow><mi>m</mi></math></span>. (Ba<sub>3</sub>N<sub>0.5</sub>)Sn and (Ba<sub>3</sub>N<sub>0.5</sub>)Pb resemble the previously reported perovskites (Ba<sub>3</sub>N<sub><em>x</em></sub>)Sn and (Ba<sub>3</sub>N<sub><em>x</em></sub>)Pb, but with both the superstructure and octahedral tilting, resulting in space group <span><math><mi>R</mi><mrow><mover><mrow><mn>3</mn></mrow><mo>̄</mo></mover></mrow></math></span>. (Ca<sub>3</sub>N<sub>0.77(2)</sub>)Si, (Ca<sub>3</sub>N<sub>0.669(6)</sub>)Ge, (Sr<sub>3</sub>N<sub>0.5</sub>)Ge and (Ba<sub>3</sub>N<sub>0.5</sub>)Ge all crystallize in <em>P</em>2<sub>1</sub>/<em>n</em>. Among these, only (Ca<sub>3</sub>N<sub><em>x</em></sub>)Ge has been previously described as (Ca<sub>3</sub>N)Ge. (Ca<sub>3</sub>N<sub>0.77(2)</sub>)Si is notably the first compound in which mutually isolated N<sup>3−</sup> and Si<sup>4−</sup> ions coexist. There also exists a version with composition (Ca<sub>3</sub>N<sub>0.86(6)</sub>)Si, which crystallizes in the cubic perovskite aristotype structure with space group <span><math><mi>P</mi><mi>m</mi><mrow><mover><mrow><mn>3</mn></mrow><mo>̄</mo></mover></mrow><mi>m</mi></math></span>. Similarly, there are versions of (Sr<sub>3</sub>N<sub>0.5</sub>)Ge, (Ba<sub>3</sub>N<sub>0.5</sub>)Sn and (Ba<sub>3</sub>N<sub>0.5</sub>)Pb with elevated nitrogen contents, less strongly tilted octahedra and no apparent superstructure. Electronic structure calculations indicate a metallic nature of the title compounds, with rather narrow improper band gaps for the strontium and barium compounds.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100444"},"PeriodicalIF":12.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From quartz (qtz) to diamond (dia) carbon topologies: Stepwise rationale from crystal chemistry and DFT investigations 从石英(qtz)到钻石(dia)碳拓扑:从晶体化学和 DFT 研究逐步推进的原理
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-06-01 DOI: 10.1016/j.progsolidstchem.2024.100453
Samir F. Matar

From crystal chemistry and density functional theory DFT calculations, a stepwise rationale is proposed for the transformation from standalone distorted tetrahedron α-C5 favored over standalone regular tetrahedron β-C5 to high density – ultra hard orthorhombic α-C6 and β-C6 with qtz (quartz-based) topology characterized by 3D arrangements of distorted tetrahedra to lower density dia-C topology (diamond-like, with regular C4 tetrahedra). Progressive C insertions into orthorhombic α-C5, α-C6, and lastly into C7 were operated leading to ultimate C8 stoichiometry identified as diamond-like. C7 was also used as template to devise C3N4 carbonitride with exceptional mechanical properties. The induced structural and physical changes are supported with elastic properties pointing to ultra-hardness, larger for qtz α,β-C6 than dia C8 and inferred dynamic stability for all stoichiometries from the phonons band structures. The thermodynamic quantities as the specific heat were compared with diamond experimental CV. The electronic band structures reveal semi-conducting C6, metallic C7 characterized by diamond-defect structure, and insulating C8. The results are meant to help further systemic understanding of tetrahedral carbon allotropes.

C C4 C 支持
{"title":"From quartz (qtz) to diamond (dia) carbon topologies: Stepwise rationale from crystal chemistry and DFT investigations","authors":"Samir F. Matar","doi":"10.1016/j.progsolidstchem.2024.100453","DOIUrl":"10.1016/j.progsolidstchem.2024.100453","url":null,"abstract":"<div><p><em>From crystal chemistry and density functional theory DFT calculations, a stepwise rationale is proposed for the transformation from standalone distorted tetrahedron α-</em>C<sub>5</sub> <em>favored over standalone regular tetrahedron β-C</em><sub><em>5</em></sub> <em>to high density – ultra hard orthorhombic α-C</em><sub><em>6</em></sub> <em>and β-C</em><sub><em>6</em></sub> <em>with</em> <strong><em>qtz</em></strong> <em>(quartz-based) topology characterized by 3D arrangements of distorted tetrahedra to lower density</em> <strong><em>dia</em></strong><em>-C topology (diamond-like, with regular</em> C4 <em>tetrahedra). Progressive C insertions into orthorhombic α-</em>C<sub>5</sub><em>, α-C</em><sub><em>6</em></sub><em>, and lastly into C</em><sub><em>7</em></sub> <em>were operated leading to ultimate C</em><sub><em>8</em></sub> <em>stoichiometry identified as diamond-like. C</em><sub><em>7</em></sub> <em>was also used as template to devise C</em><sub><em>3</em></sub><em>N</em><sub><em>4</em></sub> <em>carbonitride with exceptional mechanical properties. The induced structural and physical changes are</em> supported <em>with elastic properties pointing to ultra-hardness, larger for</em> <strong><em>qtz</em></strong> <em>α,β-C</em><sub><em>6</em></sub> <em>than</em> <strong><em>dia</em></strong> <em>C</em><sub><em>8</em></sub> <em>and inferred dynamic stability for all stoichiometries from the phonons band structures. The thermodynamic quantities as the specific heat were compared with diamond experimental C</em><sub><em>V</em></sub><em>. The electronic band structures reveal semi-conducting C</em><sub><em>6</em></sub><em>, metallic C</em><sub><em>7</em></sub> <em>characterized by diamond-defect structure, and insulating C</em><sub><em>8</em></sub><em>. The results are meant to help further systemic understanding of tetrahedral carbon allotropes.</em></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100453"},"PeriodicalIF":12.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite solar cells: Fundamental aspects, stability challenges, and future prospects Perovskite 太阳能电池:基本方面、稳定性挑战和未来展望
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-06-01 DOI: 10.1016/j.progsolidstchem.2024.100463
Suman S. Kahandal , Rameshwar S. Tupke , Dinesh S. Bobade , Hansol Kim , Guanghai Piao , Babasaheb R. Sankapal , Zafar Said , Balasaheb P. Pagar , Anuradha C. Pawar , Ji Man Kim , Ravindra N. Bulakhe

Interest in perovskite solar cell (PSC) research is increasing because PSC has a remarkable power conversion efficiency (PCE), which has notably risen to 28.3 %. However, commercialization of PSCs faces a significant obstacle due to their stability issues. This review article primarily focuses on several key aspects of PSCs, including different types of solar cells, their construction and operational mechanisms, efficiency, and overall stability. It explains the structure and functioning of PSCs, covering materials and components used for absorber layer, electron-transport layer, hole-transport layer, and electrodes. This review emphasized stability challenges associated with PSCs and discussed various factors and issues contributing to the degradation of these solar cells over time. It then provided a concise overview of different strategies and ongoing efforts taken to enhance the stability of PSCs. It also summarized various approaches used to improve their durability. In summary, this article offers a comprehensive exploration of PSCs, encompassing their construction, operation, improvement in efficiency, and obstacles related to their long-term stability. Furthermore, it addresses factors influencing PSC stability and outlines future challenges, focusing on prolonging their lifespan and enhancing stability for broader applications. Finally, this article has tackled various possible solutions to address the challenges encountered by the PSCs.

人们对过氧化物太阳能电池(PSC)研究的兴趣与日俱增,因为过氧化物太阳能电池具有出色的功率转换效率(PCE),目前已显著提高到 28.3%。然而,由于其稳定性问题,PSC 的商业化面临着巨大障碍。这篇综述文章主要关注 PSC 的几个关键方面,包括不同类型的太阳能电池、其结构和运行机制、效率和整体稳定性。文章解释了 PSC 的结构和功能,涵盖了用于吸收层、电子传输层、空穴传输层和电极的材料和元件。这篇综述强调了与 PSC 相关的稳定性挑战,并讨论了导致这些太阳能电池随时间退化的各种因素和问题。然后,它简要概述了为提高 PSC 的稳定性而采取的不同策略和正在进行的努力。文章还总结了用于提高其耐用性的各种方法。总之,本文全面探讨了 PSC,包括其构造、运行、效率提高以及与其长期稳定性相关的障碍。此外,文章还讨论了影响 PSC 稳定性的因素,并概述了未来的挑战,重点是延长其使用寿命和提高稳定性,以实现更广泛的应用。最后,本文探讨了各种可能的解决方案,以应对 PSC 所遇到的挑战。
{"title":"Perovskite solar cells: Fundamental aspects, stability challenges, and future prospects","authors":"Suman S. Kahandal ,&nbsp;Rameshwar S. Tupke ,&nbsp;Dinesh S. Bobade ,&nbsp;Hansol Kim ,&nbsp;Guanghai Piao ,&nbsp;Babasaheb R. Sankapal ,&nbsp;Zafar Said ,&nbsp;Balasaheb P. Pagar ,&nbsp;Anuradha C. Pawar ,&nbsp;Ji Man Kim ,&nbsp;Ravindra N. Bulakhe","doi":"10.1016/j.progsolidstchem.2024.100463","DOIUrl":"10.1016/j.progsolidstchem.2024.100463","url":null,"abstract":"<div><p>Interest in perovskite solar cell (PSC) research is increasing because PSC has a remarkable power conversion efficiency (PCE), which has notably risen to 28.3 %. However, commercialization of PSCs faces a significant obstacle due to their stability issues. This review article primarily focuses on several key aspects of PSCs, including different types of solar cells, their construction and operational mechanisms, efficiency, and overall stability. It explains the structure and functioning of PSCs, covering materials and components used for absorber layer, electron-transport layer, hole-transport layer, and electrodes. This review emphasized stability challenges associated with PSCs and discussed various factors and issues contributing to the degradation of these solar cells over time. It then provided a concise overview of different strategies and ongoing efforts taken to enhance the stability of PSCs. It also summarized various approaches used to improve their durability. In summary, this article offers a comprehensive exploration of PSCs, encompassing their construction, operation, improvement in efficiency, and obstacles related to their long-term stability. Furthermore, it addresses factors influencing PSC stability and outlines future challenges, focusing on prolonging their lifespan and enhancing stability for broader applications. Finally, this article has tackled various possible solutions to address the challenges encountered by the PSCs.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100463"},"PeriodicalIF":12.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Fe3+-activated luminescent materials for near-infrared light sources 用于近红外光源的 Fe3+ 激活型发光材料的研究进展
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-06-01 DOI: 10.1016/j.progsolidstchem.2024.100456
Fangyi Zhao, Zhen Song, Quanlin Liu

Fe3+-activated near-infrared (NIR) luminescent materials have attracted growing research interests for their tunable broadband emission and extensive application potentials in the fields of night vision, biomedical imaging, nondestructive food analysis, etc. Deep insight into the relation between crystal structure and luminescence performance plays a significant role in developing novel efficient NIR functional materials. In this review, after a brief introduction, we first discuss the mechanism of Fe3+ luminescence in octahedral and tetrahedral crystal fields based on the Tanabe-Sugano energy level diagram. Next, the research progress of Fe3+-doped NIR luminescent materials, including structure, property and potential application, is summarized, followed by the strategies to enhance NIR steady-state luminescence, persistent luminescence and mechanoluminescence performances. Then we conduct a comparison of luminescence efficiency and luminescence thermal stability of Fe3+-doped NIR materials. At last, we propose several challenges and outlooks in the research of Fe3+-activated NIR luminescent materials. This review is aimed to provide a deeper understanding of not only Fe3+ luminescence mechanism but also the current research progress of Fe3+-doped materials, so as to provide constructive strategy in the exploitation of efficient Fe3+-activated NIR luminescent materials.

铁激活的近红外(NIR)发光材料因其可调谐的宽带发射和在夜视、生物医学成像、无损食品分析等领域的广泛应用潜力而吸引了越来越多的研究兴趣。深入了解晶体结构与发光性能之间的关系对于开发新型高效近红外功能材料具有重要作用。在这篇综述中,在简要介绍之后,我们首先基于 Tanabe-Sugano 能级图讨论了八面体和四面体晶场中铁的发光机理。接着,总结了掺铁近红外发光材料的研究进展,包括结构、性质和潜在应用,然后介绍了增强近红外稳态发光、持续发光和机械发光性能的策略。然后,我们比较了掺铁近红外材料的发光效率和发光热稳定性。最后,我们提出了铁激活近红外发光材料研究中的几个挑战和展望。本综述的目的不仅在于加深对铁发光机理的理解,还在于介绍当前掺铁材料的研究进展,从而为开发高效的铁激活近红外发光材料提供建设性策略。
{"title":"Advances in Fe3+-activated luminescent materials for near-infrared light sources","authors":"Fangyi Zhao,&nbsp;Zhen Song,&nbsp;Quanlin Liu","doi":"10.1016/j.progsolidstchem.2024.100456","DOIUrl":"10.1016/j.progsolidstchem.2024.100456","url":null,"abstract":"<div><p>Fe<sup>3+</sup>-activated near-infrared (NIR) luminescent materials have attracted growing research interests for their tunable broadband emission and extensive application potentials in the fields of night vision, biomedical imaging, nondestructive food analysis, <em>etc.</em> Deep insight into the relation between crystal structure and luminescence performance plays a significant role in developing novel efficient NIR functional materials. In this review, after a brief introduction, we first discuss the mechanism of Fe<sup>3+</sup> luminescence in octahedral and tetrahedral crystal fields based on the Tanabe-Sugano energy level diagram. Next, the research progress of Fe<sup>3+</sup>-doped NIR luminescent materials, including structure, property and potential application, is summarized, followed by the strategies to enhance NIR steady-state luminescence, persistent luminescence and mechanoluminescence performances. Then we conduct a comparison of luminescence efficiency and luminescence thermal stability of Fe<sup>3+</sup>-doped NIR materials. At last, we propose several challenges and outlooks in the research of Fe<sup>3+</sup>-activated NIR luminescent materials. This review is aimed to provide a deeper understanding of not only Fe<sup>3+</sup> luminescence mechanism but also the current research progress of Fe<sup>3+</sup>-doped materials, so as to provide constructive strategy in the exploitation of efficient Fe<sup>3+</sup>-activated NIR luminescent materials.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100456"},"PeriodicalIF":12.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079678624000190/pdfft?md5=619708b6ecf22b01bf5d593ab9035f19&pid=1-s2.0-S0079678624000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B-site deficient hexagonal perovskites: Structural stability, ionic order-disorder and electrical properties 缺乏 B 位的六方过氧化物:结构稳定性、离子有序-无序和电学特性
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-06-01 DOI: 10.1016/j.progsolidstchem.2024.100459
Xiaoyan Yang , Alberto J. Fernández–Carrión , Xinyue Geng , Xiaojun Kuang

This review presents an overview on the structures and electrical properties of B-site deficient hexagonal perovskite oxides, which have been receiving increasing attention as key components as dielectric resonators in microwave telecommunications, as well as solid-state oxide ion and proton conductors in solid oxide fuel cells. The structural evolution and stability, order-disorder of cation and anions, and mechanisms underlying the dielectric and ionic conduction behaviors for the B-site deficient hexagonal perovskites are summarized and the roles of the B-site deficiency on the structural stability and option, ion order-disorder and electrical performance are highlighted. This provides useful guidance for design of new hexagonal perovskite oxide materials and structural control to enhance their electrical properties and discover new functionality as dielectric resonators and solid-state ionic conductors.

这篇综述概述了缺位六方包晶氧化物的结构和电学性质,这些氧化物作为微波通信中的介质谐振器以及固体氧化物燃料电池中的固态氧化物离子和质子导体的关键成分,受到越来越多的关注。本研究总结了六方过氧化物的结构演化和稳定性、阳离子和阴离子的阶次失调以及介电和离子传导行为的内在机制,并强调了"-位 "缺陷对结构稳定性和选择性、离子阶次失调和电性能的影响。这为新型六方包晶氧化物材料的设计和结构控制提供了有益的指导,从而提高了它们的电学性能,并发现了它们作为介质谐振器和固态离子导体的新功能。
{"title":"B-site deficient hexagonal perovskites: Structural stability, ionic order-disorder and electrical properties","authors":"Xiaoyan Yang ,&nbsp;Alberto J. Fernández–Carrión ,&nbsp;Xinyue Geng ,&nbsp;Xiaojun Kuang","doi":"10.1016/j.progsolidstchem.2024.100459","DOIUrl":"10.1016/j.progsolidstchem.2024.100459","url":null,"abstract":"<div><p>This review presents an overview on the structures and electrical properties of <em>B</em>-site deficient hexagonal perovskite oxides, which have been receiving increasing attention as key components as dielectric resonators in microwave telecommunications, as well as solid-state oxide ion and proton conductors in solid oxide fuel cells. The structural evolution and stability, order-disorder of cation and anions, and mechanisms underlying the dielectric and ionic conduction behaviors for the <em>B</em>-site deficient hexagonal perovskites are summarized and the roles of the <em>B</em>-site deficiency on the structural stability and option, ion order-disorder and electrical performance are highlighted. This provides useful guidance for design of new hexagonal perovskite oxide materials and structural control to enhance their electrical properties and discover new functionality as dielectric resonators and solid-state ionic conductors.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100459"},"PeriodicalIF":12.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079678624000220/pdfft?md5=a4dee29a6780c9496330221ed36d56e1&pid=1-s2.0-S0079678624000220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Solid State Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1