Polyoxometalates (POMs) and their composites have emerged as promising candidates for degrading toxic chemical dyes in wastewater remediation. POMs, with their tunable structures and redox properties, exhibit high catalytic activity towards various organic pollutants, including dyes. The integration of POMs into composite materials creates a synergistic effect that enhances endurance and efficiency during dye degradation. POMs are classified based on metal composition and structure, highlighting their roles in dye removal processes. Categories include molybdenum-based, tungsten-based, vanadium-based, and mixed metal-based POMs, each with distinct properties affecting dye elimination efficacy. The application of POMs and their composites in degrading specific chemical dyes, including cationic, anionic, and azo dyes, is elaborately described. Various mechanisms for dye removal from aqueous media, such as photocatalysis, adsorption, Fenton-like reactions, and electrochemical processes, underscore the crucial role of POMs and their composites in toxic chemical dye degradation. The factors influencing dye-POM interactions, such as pH, temperature, POM composition, and dye structure, are analyzed to understand their impact on removal efficiency. The review discusses the influence of metal type, POM structure, and solution conditions on dye removal efficacy, providing insights into how specific metal-based POMs interact with different dye molecules. Challenges and future perspectives for implementing POM-based materials in dye wastewater treatment are outlined, emphasizing the need for further research to optimize performance and ensure practical feasibility in large-scale applications.
Currently, the development of single-phase white emitters is an interesting research topic. Researchers have paid much attention to tune white-emitting of Dy3+-activated phosphors via Tm3+ sensitization strategy. However, the role of Tm3+ sensitization on luminescence thermostability was usually underestimated. Herein, color-tunable germanate phosphors Ba2Y2Ge4O13 (BYGO):Tm3+,Dy3+ were prepared. The white light emission is achieved due to the effective energy transfer from Tm3+ to Dy3+. A BYGO:Tm3+,Dy3+-based w-LED exhibits warm white-emitting. Moreover, the back-energy transfer of Dy3+→Tm3+ contributes to the improvement of luminescence thermal stability. Meanwhile, the difference of temperature-dependent Tm3+ and Dy3+ emissions realizes satisfactory temperature sensing properties. This work provides a deep understanding for the role of Tm3+ sensitization strategy on color tuning and thermostable improvement, promoting multifunctional utilizations of Dy3+-activated phosphors.
Titanium Nitride (TiN) is widely used in many industrial sectors for its outstanding performances including its mechanical properties, high chemical and thermal stability. Associated with its plasmonic behavior, TiN thin films are very promising for the manufacturing of optical metasurfaces devices or new plasmonic materials. Among the processes that make it easy to obtain metal nitride coatings, nitriding of metal oxide films has become increasingly popular in recent years. A multitude of synthesis processes can be used to obtain TiO2 films, with different crystalline states (amorphous, anatase or rutile) depending on the technique used, which can then be converted into TiN coatings. In this paper, the effect of the initial crystalline state of TiO2 layers was investigated on the structural properties, plasmonic properties and the friction behavior of TiN thin films obtained by Rapid Thermal Nitridation (RTN). The results indicate that, regardless of the crystalline state of the starting TiO2 film, the RTN process leads to complete nitridation of TiN coating. Moreover, even though surface morphology and friction properties differ slightly, depending on the crystallization of the starting TiO2, plasmonic properties remain very similar, thus highlighting the great versatility and uniformity of this nitriding technique, enabling TiN to be produced for a wide range of applications.
Among the Material of Institute Lavoisier (MIL) compounds, MIL-125 has been proved to be potentially high photoactive electrode in the photoelectrochemical (PEC) devices. The great progress has been achieved in the preparation, structural optimization and applications of MIL-125, especially in the PEC technology, as witnessed by the quick increase in the number of published papers. Consequently, a comprehensive review of the current research status of MIL-125 based electrodes in PEC is warranted. This review provides an in-depth analysis of various PEC applications employing MIL-125 based photoelectrodes, such as sensing (including PEC biosensors, organic pollutant detection, and heavy metal ion sensing), water splitting for hydrogen production, photovoltaic cells (including dye-sensitized solar cells, quantum dot-sensitized solar cells, perovskite solar cells, and organic solar cells), photoelectrocatalysis, and photocathodic protection. Particular emphasis is placed on the signal amplification strategies, modification design, and reaction mechanisms of MIL-125 for PEC applications. Finally, the development opportunities and unsolved challenges associated with MIL-125 based materials in the PEC field are also highlighted. This comprehensive review is expected to expand the knowledge of recent advancements in MIL-125 and its derivatives modified electrodes and encourage researchers to promote the construction of efficient PEC systems.
Transition metal nitrides (TMNs), in some cases referred as metallic ceramics, have unique physical and chemical properties, thanks to their ceramic-metallic nature, and are considered an attractive alternative to noble metals for electrochemical processes. In particular, theoretical work predicts TMNs as promising electrocatalysts towards the nitrogen reduction reaction (NRR). However, recent experimental studies under realistic conditions, have shown the release of lattice nitride to ammonia in a noncatalytic process, suggesting inherent instability of these materials. TMNs stability can be increased by the incorporation of a second metal in the lattice, to form bimetallic systems. Herein, we present a robust approach to prepare nonprecious transition multi-metallic nitride nano-catalysts, followed by a comprehensive study on their stability. The stability of the as-prepared catalysts was tested in electrolytes relevant for electrocatalysis, showing a higher chemical resistance of the bimetallic catalysts over the monometallic ones. This study suggests a novel approach to matching electrolyte pH and catalyst to ensure chemical stability in the electrochemical environment.

