首页 > 最新文献

Progress in Surface Science最新文献

英文 中文
Line tension and its influence on droplets and particles at surfaces 线张力及其对表面液滴和颗粒的影响
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2017-02-01 DOI: 10.1016/j.progsurf.2016.12.002
Bruce M. Law , Sean P. McBride , Jiang Yong Wang , Haeng Sub Wi , Govind Paneru , Santigo Betelu , Baku Ushijima , Youichi Takata , Bret Flanders , Fernando Bresme , Hiroki Matsubara , Takanori Takiue , Makoto Aratono

In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (∼1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW|  1–100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav  +1–10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.

在这篇综述中,我们研究了线张力τ对表面液滴和粒子的影响。线张力影响液滴在液体和固体表面的成核行为和接触角,改变固体颗粒与液体表面的附着力。在很宽的长度范围内发生的许多因素都会造成线张力。在原子尺度上,亚分子组分的原子重排和取向会产生原子线张力贡献τ原子(~ 1 nN),这取决于液滴/粒子表面组成与其所在表面的相似性/不相似性。在纳米尺度上,范德华界面势的积分产生中尺度贡献|τvdW| ~ 1-100 pN,而在毫米尺度上,引力势提供引力贡献τ重力~ + 1-10 μN。τ重力总是正的,而τvdW可以有任意一种符号。接近润湿时,对于接触角非常小的液滴,负的线张力可能引起接触线不稳定。我们在这篇综述中研究这些和其他问题。
{"title":"Line tension and its influence on droplets and particles at surfaces","authors":"Bruce M. Law ,&nbsp;Sean P. McBride ,&nbsp;Jiang Yong Wang ,&nbsp;Haeng Sub Wi ,&nbsp;Govind Paneru ,&nbsp;Santigo Betelu ,&nbsp;Baku Ushijima ,&nbsp;Youichi Takata ,&nbsp;Bret Flanders ,&nbsp;Fernando Bresme ,&nbsp;Hiroki Matsubara ,&nbsp;Takanori Takiue ,&nbsp;Makoto Aratono","doi":"10.1016/j.progsurf.2016.12.002","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.12.002","url":null,"abstract":"<div><p>In this review we examine the influence of the line tension <em>τ</em><span> on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics<span> of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution </span></span><em>τ<sub>atom</sub></em> (∼1<!--> <!-->nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |<em>τ<sub>vdW</sub></em>|<!--> <!-->∼<!--> <!-->1–100<!--> <span>pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution </span><em>τ<sub>grav</sub></em> <!-->∼<!--> <!-->+1–10<!--> <!-->μN. <em>τ<sub>grav</sub></em> is always positive, whereas, <em>τ<sub>vdW</sub></em> can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3390901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues 复杂分子表面和界面的和频产生振动光谱(SFG-VS):谱线测量和分析以及一些有争议的问题
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-12-01 DOI: 10.1016/j.progsurf.2016.10.001
Hong-Fei Wang

Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

和频产生振动光谱(SFG-VS)在20世纪80年代首次发展起来,它已被证明是一种独特的敏感和表面/界面选择性光谱探针,用于表征分子表面和界面的结构,构象和动力学。近年来,SFG-VS工具箱在方法和仪器的开发方面取得了许多进展,大大拓宽了其在复杂分子表面和界面上的应用。在本文中,在对SFG-VS谱线形态的理论和方法进行了统一的阐述之后,以及随着这一发展在SFG-VS应用中的新机遇,讨论了一些一直困扰业界的有争议的问题。这篇综述的目的是向对分子表面和界面科学感兴趣的研究人员和学生提供最新的观点,补充现有的SFG-VS教科书和综述。
{"title":"Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues","authors":"Hong-Fei Wang","doi":"10.1016/j.progsurf.2016.10.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.10.001","url":null,"abstract":"<div><p><span>Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of </span>molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2621774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 84
Review on charge transfer and chemical activity of TiO2: Mechanism and applications TiO2的电荷转移和化学活性研究进展:机理及应用
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-12-01 DOI: 10.1016/j.progsurf.2016.11.001
Yongqing Cai , Yuan Ping Feng

Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

电荷在两种材料界面上的分离和转移在各种原子尺度过程和能量转换系统中起着重要的作用。在本文中,我们介绍了二氧化钛的电荷转移机制和结果,二氧化钛在环境科学领域的光催化应用得到了广泛的探索。我们列出了几种估计电荷转移量的实验和计算方法。讨论了功函数、缺陷和掺杂、外加电场对电荷转移调制的影响。讨论了带弯曲与载流子在TiO2表面和界面上的输运之间的相互作用。我们发现电荷转移也可以通过其产生的内置电场强烈影响沉积在TiO2上的纳米颗粒的行为。本文综述了二氧化钛与石墨烯、二硫化钼、磷烯等二维材料复合材料的研究进展。本文还讨论了tio2 -有机卤化物钙钛矿中电荷输运与界面电子空穴分离的关系。
{"title":"Review on charge transfer and chemical activity of TiO2: Mechanism and applications","authors":"Yongqing Cai ,&nbsp;Yuan Ping Feng","doi":"10.1016/j.progsurf.2016.11.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.11.001","url":null,"abstract":"<div><p>Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO<sub>2</sub>, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO<sub>2</sub><span> is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO</span><sub>2</sub> through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO<sub>2</sub> is combined with two-dimensional materials like graphene, MoS<sub>2</sub>, phosphorene, etc. The charge transport in the TiO<sub>2</sub><span>-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2067677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
Antibacterial surface design – Contact kill 抗菌表面设计-接触杀灭
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-08-01 DOI: 10.1016/j.progsurf.2016.09.001
Rajbir Kaur , Song Liu

Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

设计抗菌表面对于减少医疗保健相关感染已经变得非常重要,这是全球死亡的主要原因。先前的杀菌剂释放方法是基于浸出包裹的杀菌剂,如银和三氯生,这对环境产生负面影响,并可能导致细菌耐药性的发展。可浸出化合物的这一缺点导致了人们对一种更可持续、更环保的方法的兴趣转变:接触杀伤表面。可以结合在表面上使底物具有接触活性抗菌活性的杀菌剂包括季铵化合物(QACs)、季磷(QPs)、碳纳米管、抗菌肽和n -氯胺。其中,QACs和n -氯胺是研究最多的接触活性杀菌剂。本文综述了使用QACs或n -氯胺制备接触活性表面的工程、作用模式和测试方法。详细讨论了期望抗菌效果的阳离子表面的电荷密度阈值以及结合各种杀菌剂以产生新的接触活性表面的尝试。表面正电荷密度是确定抗菌效果的关键参数。鉴于自消毒表面对医疗保健相关感染、食品安全以及石油管道和船体等工业表面所需的耐腐蚀/污垢的潜在影响,我们预计这一研究领域将继续吸引更多的研究兴趣。
{"title":"Antibacterial surface design – Contact kill","authors":"Rajbir Kaur ,&nbsp;Song Liu","doi":"10.1016/j.progsurf.2016.09.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.09.001","url":null,"abstract":"<div><p><span>Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver<span> and triclosan<span><span><span> which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary </span>ammonium compounds (QACs), quaternary phosphoniums (QPs), </span>carbon nanotubes<span>, antibacterial peptides, and </span></span></span></span><em>N</em>-chloramines. Among the above, QACs and <em>N</em>-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or <em>N</em><span>-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.09.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2621776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 193
Self-assembly of metal–organic coordination structures on surfaces 金属有机配位结构在表面上的自组装
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-08-01 DOI: 10.1016/j.progsurf.2016.08.001
Lei Dong , Zi’Ang Gao , Nian Lin

Metal–organic coordination structures are materials comprising reticular metal centers and organic linkers in which the two constituents bind with each other via metal–ligand coordination interaction. The underlying chemistry is more than a century old but has attracted tremendous attention in the last two decades owing to the rapidly development of metal–organic (or porous coordination) frameworks. These metal-coordination materials exhibit extraordinarily versatile topologies and many potential applications. Since 2002, this traditionally three-dimensional chemistry has been extended to two-dimensional space, that is, to synthesize metal–organic coordination structures directly on solid surfaces. This endeavor has made possible a wide range of so-called surface-confined metal–organic networks (SMONs) whose topology, composition, property and function can be tailored by applying the principle of rational design. The coordination chemistry manifests unique characteristics at the surfaces, and in turn the surfaces provide additional control for design structures and properties that are inaccessible in three-dimensional space.

In this review, our goal is to comprehensively cover the progress made in the last 15 years in this rapidly developing field. The review summarizes (1) the experimental and theoretical techniques used in this field including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, density functional theory, and Monte Carlo and kinetic Monte Carlo simulation; (2) molecular ligands, metal atoms, substrates, and coordination motifs utilized for synthesizing SMON; (3) representative SMON structures with different topologies ranging from finite-size discrete clusters to one-dimensional chains, two-dimensional periodical frameworks and random networks; and (4) the properties and potential applications of SMONs. We conclude the review with some perspectives.

金属-有机配位结构是由网状金属中心和有机连接体组成的材料,其中两种成分通过金属-配位相互作用相互结合。基础化学已有一个多世纪的历史,但由于金属有机(或多孔配位)框架的迅速发展,在过去的二十年中引起了极大的关注。这些金属配位材料具有非常多用途的拓扑结构和许多潜在的应用。自2002年以来,这种传统的三维化学已扩展到二维空间,即直接在固体表面合成金属-有机配位结构。这一努力使得广泛的所谓表面受限金属有机网络(smon)成为可能,这些网络的拓扑结构、组成、性质和功能可以通过应用理性设计原则来定制。配位化学在表面上表现出独特的特征,反过来,这些表面为设计结构和性能提供了额外的控制,这些结构和性能在三维空间中是无法实现的。在这篇综述中,我们的目标是全面涵盖过去15年来在这一迅速发展的领域取得的进展。综述了该领域的实验和理论技术,包括扫描隧道显微镜和光谱学、低能电子衍射、x射线光电子能谱、x射线吸收能谱、密度泛函理论、蒙特卡罗和动力学蒙特卡罗模拟;(2)用于合成SMON的分子配体、金属原子、底物和配位基序;(3)具有代表性的具有不同拓扑结构的SMON结构,从有限大小的离散簇到一维链、二维周期框架和随机网络;(4) SMONs的性质和潜在应用。最后,我们提出了一些展望。
{"title":"Self-assembly of metal–organic coordination structures on surfaces","authors":"Lei Dong ,&nbsp;Zi’Ang Gao ,&nbsp;Nian Lin","doi":"10.1016/j.progsurf.2016.08.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.08.001","url":null,"abstract":"<div><p><span>Metal–organic coordination structures are materials comprising reticular metal centers and organic linkers in which the two constituents bind with each other via metal–ligand coordination interaction. The underlying chemistry<span> is more than a century old but has attracted tremendous attention in the last two decades owing to the rapidly development of metal–organic (or porous coordination) frameworks. These metal-coordination materials exhibit extraordinarily versatile topologies<span> and many potential applications. Since 2002, this traditionally three-dimensional chemistry has been extended to two-dimensional space, that is, to synthesize metal–organic coordination structures directly on solid surfaces<span>. This endeavor has made possible a wide range of so-called surface-confined metal–organic networks (SMONs) whose topology, composition, property and function can be tailored by applying the principle of rational design. The </span></span></span></span>coordination chemistry manifests unique characteristics at the surfaces, and in turn the surfaces provide additional control for design structures and properties that are inaccessible in three-dimensional space.</p><p>In this review, our goal is to comprehensively cover the progress made in the last 15<!--> <span><span><span>years in this rapidly developing field. The review summarizes (1) the experimental and theoretical techniques used in this field including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, </span>density functional theory, and Monte Carlo and kinetic </span>Monte Carlo simulation; (2) molecular ligands, metal atoms, substrates, and coordination motifs utilized for synthesizing SMON; (3) representative SMON structures with different topologies ranging from finite-size discrete clusters to one-dimensional chains, two-dimensional periodical frameworks and random networks; and (4) the properties and potential applications of SMONs. We conclude the review with some perspectives.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2621775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 186
Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory 分子在金属表面的吸附结构和能量学:桥接实验和理论
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-05-01 DOI: 10.1016/j.progsurf.2016.05.001
Reinhard J. Maurer , Victor G. Ruiz , Javier Camarillo-Cisneros , Wei Liu , Nicola Ferri , Karsten Reuter , Alexandre Tkatchenko

Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

有机分子在表面的吸附几何形状和稳定性是决定无机/有机杂化体系(HIOSs)可观察性质和功能的关键参数。尽管最近在精确的实验表征和第一性原理电子结构方法方面取得了许多进展,但大型吸附分子的结构和能量学的可靠数据库在很大程度上是错误的。在这篇综述中,我们提出了这样一个数据库的一系列分子吸附在金属单晶表面。我们分析的系统包括稀有气体原子、共轭芳香分子、碳纳米结构和吸附在五种不同金属表面的杂芳香化合物。总体目标是建立一个多样化的基准数据集,以评估当前和未来的电子结构方法,并激励进一步的实验研究,提供更可靠的数据。具体而言,本文将实验所得的基准结构和能量学与最近发展起来的范德华(vdW)包容密度泛函理论(DFT + vdWsurf)方法进行了比较。对比实验得到的23个吸附高度和17个吸附能,平均偏差分别为0.06 Å和0.16 eV。这证实了DFT + vdWsurf方法是一种准确有效的治疗hios的方法。详细的讨论确定了电子结构方法未来发展中需要解决的挑战,这里提出的基准数据库可以作为一个重要的参考。
{"title":"Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory","authors":"Reinhard J. Maurer ,&nbsp;Victor G. Ruiz ,&nbsp;Javier Camarillo-Cisneros ,&nbsp;Wei Liu ,&nbsp;Nicola Ferri ,&nbsp;Karsten Reuter ,&nbsp;Alexandre Tkatchenko","doi":"10.1016/j.progsurf.2016.05.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.05.001","url":null,"abstract":"<div><p><span><span>Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, </span>carbon nanostructures<span>, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT</span></span> <!-->+<!--> <!-->vdW<sup>surf</sup><span>. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06</span> <!-->Å and 0.16<!--> <!-->eV, respectively. This confirms the DFT<!--> <!-->+<!--> <!-->vdW<sup>surf</sup> method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3390754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 108
Superhydrophocity via gas-phase monomers grafting onto carbon nanotubes 通过气相单体接枝到碳纳米管的超疏水性
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-05-01 DOI: 10.1016/j.progsurf.2016.03.002
Jinlong Zha , Nicolas Batisse , Daniel Claves , Marc Dubois , Lawrence Frezet , Alexander P. Kharitonov , Leonid N. Alekseiko

Superhydrophobic films were prepared using dispersions of fluorinated multi-walled carbon nanotubes (MWCNTs) or nanofibers (CNFs) in toluene. The grafting of polystyrene allowed stable dispersions to be obtained. The grafting of polystyrene (PS), polyacrylic acid (PAA) and polyaniline (PANI) onto nanofibers and MWCNTs was first evidenced by solid state NMR and Infrared Spectroscopy. The graft polymerization of styrene, acrylic acid and aniline monomers was initiated by radicals (dangling bonds) formed due to the initial fluorination. The process appeared as highly versatile and efficient for different polymers. The consumption of those radicals in the course of grafting was evidenced by EPR, through decrease of the spin density. The hydrophobic/hydrophilic character was tuned according to the grafted polymer nature, i.e. hydrophobic with PS or hydrophilic with PAA. Finally, in order to reach superhydrophobicity, films were prepared from CNFs or MWCNTs, irrespective of their average diameter, that allowed adequate structuring of the surface. The presence of fluorine atoms on their surface also favors superhydrophobicity. Water contact angles of 155 ± 2° and 159 ± 2° were measured for the films casted from fluorinated CNFs or MWCNTs with grafted polystyrene, respectively.

采用氟化多壁碳纳米管(MWCNTs)或纳米纤维(CNFs)在甲苯中的分散体制备了超疏水薄膜。聚苯乙烯的接枝可以得到稳定的分散体。聚苯乙烯(PS)、聚丙烯酸(PAA)和聚苯胺(PANI)在纳米纤维和MWCNTs上的接枝反应首次被固体核磁共振和红外光谱证实。苯乙烯、丙烯酸和苯胺单体的接枝聚合是由初始氟化形成的自由基(悬空键)引发的。该工艺对不同的聚合物具有高度的通用性和效率。EPR通过自旋密度的降低证明了这些自由基在接枝过程中的消耗。根据接枝聚合物的性质调整其疏水/亲水性,即与PS疏水或与PAA亲水。最后,为了达到超疏水性,无论其平均直径如何,都可以用cnf或MWCNTs制备薄膜,以使表面具有足够的结构。表面氟原子的存在也有利于超疏水性。用接枝聚苯乙烯的氟化CNFs和MWCNTs浇铸的膜分别测量了155±2°和159±2°的水接触角。
{"title":"Superhydrophocity via gas-phase monomers grafting onto carbon nanotubes","authors":"Jinlong Zha ,&nbsp;Nicolas Batisse ,&nbsp;Daniel Claves ,&nbsp;Marc Dubois ,&nbsp;Lawrence Frezet ,&nbsp;Alexander P. Kharitonov ,&nbsp;Leonid N. Alekseiko","doi":"10.1016/j.progsurf.2016.03.002","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.03.002","url":null,"abstract":"<div><p><span>Superhydrophobic<span> films were prepared using dispersions of fluorinated multi-walled carbon nanotubes<span><span> (MWCNTs) or nanofibers<span><span> (CNFs) in toluene. The grafting of polystyrene allowed stable dispersions to be obtained. The grafting of polystyrene (PS), polyacrylic acid (PAA) and polyaniline (PANI) onto nanofibers and MWCNTs was first evidenced by </span>solid state NMR<span> and Infrared Spectroscopy. The graft polymerization of styrene, </span></span></span>acrylic acid<span><span> and aniline monomers<span> was initiated by radicals (dangling bonds) formed due to the initial fluorination<span>. The process appeared as highly versatile and efficient for different polymers. The consumption of those radicals in the course of grafting was evidenced by EPR, through decrease of the spin density. The hydrophobic/hydrophilic character was tuned according to the grafted polymer nature, i.e. hydrophobic with PS or hydrophilic with PAA. Finally, in order to reach superhydrophobicity, films were prepared from CNFs or MWCNTs, irrespective of their average diameter, that allowed adequate structuring of the surface. The presence of </span></span></span>fluorine atoms on their surface also favors superhydrophobicity. Water contact angles of 155</span></span></span></span> <!-->±<!--> <!-->2° and 159<!--> <!-->±<!--> <!-->2° were measured for the films casted from fluorinated CNFs or MWCNTs with grafted polystyrene, respectively.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2401962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Surface physics of semiconducting nanowires 半导体纳米线的表面物理
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-02-01 DOI: 10.1016/j.progsurf.2015.11.001
Michele Amato , Riccardo Rurali

Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics.

Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio.

In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

半导体纳米线(NWs)是新型纳米电子器件的有力候选材料,也是基础物理研究的丰硕成果。直径小于10 nm的超薄纳米线由于波函数的限制,表现出奇异的量子效应,如电子带隙变宽、掺杂态加深等。然而,尽管迄今为止有一些关于10纳米以下的纳米线的报道,但最常见的纳米线的直径范围在20到200纳米之间,其中这些量子效应不存在或只起很小的作用。然而,这一领域的研究活动非常激烈,这些材料仍然有望为新兴电子设备的设计和不同类型的应用提供重要的范式转变。那么一个合理的问题是:纳米线与体系统有何不同?答案当然是巨大的表面体积比。在这篇文章中,我们讨论了iv族半导体纳米线中最显著的表面物理和化学特征,主要集中在Si NWs上。首先,我们回顾了NW生长的最新技术,以实现光滑和受控的表面形态。接下来我们讨论了适当的表面钝化的重要性及其对NW电子性能的作用。最后,强调大表面体积比的重要性,并强调在西北方向表面是大多数作用发生的地方,我们讨论了分子传感和分子掺杂。
{"title":"Surface physics of semiconducting nanowires","authors":"Michele Amato ,&nbsp;Riccardo Rurali","doi":"10.1016/j.progsurf.2015.11.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2015.11.001","url":null,"abstract":"<div><p>Semiconducting nanowires<span> (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics.</span></p><p>Ultra-thin nanowires, with diameters below 10<!--> <!-->nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10<!--> <!-->nm wires exist to date, the most common NWs have diameters that range from 20 to 200<!--> <!-->nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio.</p><p>In this article we discuss the most salient features of surface physics and chemistry<span> in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.</span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2015.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2401963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Oxygen adsorption on surfaces studied by a spin- and alignment-controlled O2 beam 用自旋和对准控制的氧束研究表面上的氧吸附
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2016-02-01 DOI: 10.1016/j.progsurf.2016.03.001
Mitsunori Kurahashi

Molecular oxygen (O2) is a paramagnetic linear molecule, yet the effect of its molecular alignment and electron spin on the dynamics of O2 adsorption has remained unclear. Recently, it has been however shown that the use of magnetic hexapolar field allows us to prepare a single spin-rotational state [(J,M) = (2, 2)] selected O2 beam for which both the molecular alignment and the spin state of O2 are well defined. State-resolved studies of O2 sticking on Si(1 0 0), Al(1 1 1), Ni(1 1 1) surfaces conducted with this beam have clarified that the O2 sticking probability depends strongly on the molecular alignment and the spin orientation of O2 relative to the surface. The mechanism of O2 adsorption on Al(1 1 1) has been disputed in the past few decades, but the observed steric effect has provided a reasonable picture for it. The preparation method of the state-selected O2 beam and its application to the alignment- and spin-resolved O2 sticking studies are reviewed.

分子氧(O2)是一种顺磁性线性分子,其分子排列和电子自旋对氧吸附动力学的影响尚不清楚。然而,最近有研究表明,利用磁六极场可以制备单自旋态[(J,M) =(2,2)]的O2束,其中O2的分子取向和自旋态都得到了很好的定义。用该光束对O2在Si(10 0 0)、Al(11 11 1)、Ni(11 11 1)表面上的粘附进行了状态分辨研究,表明O2的粘附概率很大程度上取决于分子排列和O2相对于表面的自旋取向。在过去的几十年里,对氧在Al(1111)上的吸附机理一直存在争议,但观察到的空间效应为其提供了一个合理的图景。综述了状态选择O2束的制备方法及其在定向和自旋分辨O2粘着研究中的应用。
{"title":"Oxygen adsorption on surfaces studied by a spin- and alignment-controlled O2 beam","authors":"Mitsunori Kurahashi","doi":"10.1016/j.progsurf.2016.03.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2016.03.001","url":null,"abstract":"<div><p><span>Molecular oxygen (O</span><sub>2</sub><span>) is a paramagnetic linear molecule, yet the effect of its molecular alignment and electron spin on the dynamics of O</span><sub>2</sub> adsorption has remained unclear. Recently, it has been however shown that the use of magnetic hexapolar field allows us to prepare a single spin-rotational state [(<span><math><mrow><mi>J</mi><mtext>,</mtext><mi>M</mi></mrow></math></span>)<!--> <!-->=<!--> <!-->(2,<!--> <!-->2)] selected O<sub>2</sub><span> beam for which both the molecular alignment and the spin state of O</span><sub>2</sub> are well defined. State-resolved studies of O<sub>2</sub> sticking on Si(1<!--> <!-->0<!--> <!-->0), Al(1<!--> <!-->1<!--> <!-->1), Ni(1<!--> <!-->1<!--> <!-->1) surfaces conducted with this beam have clarified that the O<sub>2</sub><span> sticking probability depends strongly on the molecular alignment and the spin orientation of O</span><sub>2</sub> relative to the surface. The mechanism of O<sub>2</sub> adsorption on Al(1<!--> <!-->1<!--> <span>1) has been disputed in the past few decades, but the observed steric effect has provided a reasonable picture for it. The preparation method of the state-selected O</span><sub>2</sub> beam and its application to the alignment- and spin-resolved O<sub>2</sub> sticking studies are reviewed.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2120071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Growth morphology and properties of metals on graphene 金属在石墨烯上的生长形态和性能
IF 6.4 2区 工程技术 Q1 Physics and Astronomy Pub Date : 2015-12-01 DOI: 10.1016/j.progsurf.2015.07.001
Xiaojie Liu , Yong Han , James W. Evans , Albert K. Engstfeld , R. Juergen Behm , Michael C. Tringides , Myron Hupalo , Hai-Qing Lin , Li Huang , Kai-Ming Ho , David Appy , Patricia A. Thiel , Cai-Zhuang Wang

Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. Metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. Also of importance is whether the interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene. In this review, we will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.

石墨烯是一种单原子层石墨,由于其新颖的电子和结构特性而成为近年来研究的热点。在石墨烯上生长的金属也引起了人们的兴趣,因为它们可能用作石墨烯器件中的金属触点,用于自旋电子学应用和催化。所有这些应用都需要很好的理解和控制金属的生长形态,这在一定程度上反映了金属-石墨烯键的强度。同样重要的是石墨烯与金属之间的相互作用是否足够强,以改变石墨烯的电子结构。在这篇综述中,我们将讨论最近的实验和计算研究相关的金属沉积在各种衬底(SiC, SiO2和六角形密排金属表面)的石墨烯上。特别感兴趣的是金属-石墨烯相互作用(金属吸附原子的吸附能和扩散障碍),以及金属纳米团簇的晶体结构和热稳定性。
{"title":"Growth morphology and properties of metals on graphene","authors":"Xiaojie Liu ,&nbsp;Yong Han ,&nbsp;James W. Evans ,&nbsp;Albert K. Engstfeld ,&nbsp;R. Juergen Behm ,&nbsp;Michael C. Tringides ,&nbsp;Myron Hupalo ,&nbsp;Hai-Qing Lin ,&nbsp;Li Huang ,&nbsp;Kai-Ming Ho ,&nbsp;David Appy ,&nbsp;Patricia A. Thiel ,&nbsp;Cai-Zhuang Wang","doi":"10.1016/j.progsurf.2015.07.001","DOIUrl":"https://doi.org/10.1016/j.progsurf.2015.07.001","url":null,"abstract":"<div><p><span>Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. Metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. Also of importance is whether the interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene. In this review, we will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO</span><sub>2</sub><span>, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion<span> barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2015.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2401964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 112
期刊
Progress in Surface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1