Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.8573
Silvia Yolanda Kristi
At present, the petrochemical industry is growing rapidly. Products from the petrochemical industry are produced from petroleum or natural gas which produces various compounds such as BTX (Benzene, Toluene, and Xylene). BTX is such a poisonous aromatic compound that the International Cancer Research Agency classifies benzene as carcinogenic to humans and other BTX species have a variety of detrimental health effects even at low concentrations. Thus the separation of benzene, toluene and xylene compounds is very important. The analysis technique that is commonly used to determine the BTX compound is gas chromatography, which in this case uses GC-FID. The results shown by this instrument show that all the data obtained meet the acceptance requirements with the test parameters performed.
{"title":"METHOD FOR DETERMINING BTX (BENZENA, TOLUENA, AND XILENE) USING GAS-FID CHROMATOGRAPHY (FLAME IONIZATION DETECTOR)","authors":"Silvia Yolanda Kristi","doi":"10.25105/PETRO.V10I1.8573","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.8573","url":null,"abstract":"At present, the petrochemical industry is growing rapidly. Products from the petrochemical industry are produced from petroleum or natural gas which produces various compounds such as BTX (Benzene, Toluene, and Xylene). BTX is such a poisonous aromatic compound that the International Cancer Research Agency classifies benzene as carcinogenic to humans and other BTX species have a variety of detrimental health effects even at low concentrations. Thus the separation of benzene, toluene and xylene compounds is very important. The analysis technique that is commonly used to determine the BTX compound is gas chromatography, which in this case uses GC-FID. The results shown by this instrument show that all the data obtained meet the acceptance requirements with the test parameters performed.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115820053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.8582
D. H. K. Triaji
Energy Saving and Efficiency Methods in the Petrochemical Industry are indispensable for the petroleum industry. Energy saving and efficiency is now recognized as the most important goal worldwide. Therefore, it is currently common to combine traditional mechanism methods based on momentum transport, energy transport, quality transport (TT) and reaction engineering (RG) (TT-RG), with data-driven artificial intelligence methods. The aim is to achieve production optimization and energy savings. By streamlining and saving energy in the petrochemical industry, we can take petroleum and petrochemicals in a more advanced and efficient direction. The methods that can be used are AP based mechanism method, TT-RG, data-based artificial intelligence method, and hybrid method which combines mechanism and data-driven. For the most appropriate method, we can choose according to our needs by weighing the advantages and disadvantages of each method. Finally, the future development direction for energy efficiency evaluation in complex petrochemical industries is given.
{"title":"REVIEW ARTICLE: ENERGY SAVING AND EFFICIENCY METHODS IN PETROCHEMICAL INDUSTRY","authors":"D. H. K. Triaji","doi":"10.25105/PETRO.V10I1.8582","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.8582","url":null,"abstract":"Energy Saving and Efficiency Methods in the Petrochemical Industry are indispensable for the petroleum industry. Energy saving and efficiency is now recognized as the most important goal worldwide. Therefore, it is currently common to combine traditional mechanism methods based on momentum transport, energy transport, quality transport (TT) and reaction engineering (RG) (TT-RG), with data-driven artificial intelligence methods. The aim is to achieve production optimization and energy savings. By streamlining and saving energy in the petrochemical industry, we can take petroleum and petrochemicals in a more advanced and efficient direction. The methods that can be used are AP based mechanism method, TT-RG, data-based artificial intelligence method, and hybrid method which combines mechanism and data-driven. For the most appropriate method, we can choose according to our needs by weighing the advantages and disadvantages of each method. Finally, the future development direction for energy efficiency evaluation in complex petrochemical industries is given.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126778108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.8905
FX Krisna Putra Tapangan, Lestari Lestari, Aqlyna Fattahanisa
Reservoir ZX merupakan reservoir gas basah ( wet gas reservoir ) yang diketahui jenisn reservoirnya melalui metode kualitatif dengan analisa komposisi hidrokarbon reservoir, karakteristik fluida reservoir dan data PVT. Pada penelitian yang dilakukan, analisa komposisi hidrokarbon mulai dari karbon C1 hingga C7+, data karakteristik fluida reservoir yaitu GLR, API, dan SG gas. Karena reservoir ZX adalah reservoir gas basah ( wet gas reservoir ), dilakukan pengkoreksian kumulatif dari gas yang diproduksi dari Gpdry menjadi Gpwet dengan metode vapor equivalent dengan nilai Veq didapatkan sebesar 1690. Dalam penelitian, penentuan jenis tenaga dorong dari reservoir ZX menggunakan metode energy plot dan P/Z Vs Gp. Hasil metode energy plot tidak terdapat water influx yang menandakan jenis tenaga dorong pada reservoir gas adalah depletion gas drive dan sesuai dengan analisa pada garis plot metode P/Z Vs Gp yang menandakan jenis tenaga dorong depletion gas drive. Perhitungan isi awal gas di tempat pada penelitian digunakan metode volumetrik, Material Balance 3113,135 BSCF dan memiliki nilai recovery factor dari metode Material Balance adalah 80,523%.
ZX水库是已知的湿气体(湿气体水库)水库jenisn reservoirnya通过定性的方法分析水库,水库流体特征和碳氢化合物成分的PVT。数据分析的研究,从碳C1到碳氢化合物成分的C7 +流体特征数据,即GLR水库、火灾和煤气SG。由于ZX水库是湿气体水库,由Gpdry生产的累积气体将其与vapor equivalent方法进行累加校正,共计为1690年。在研究中,用能量图和P/Z Vs Gp来确定ZX蓄水池的强度类型。能源计划的结果是,水带影响的影响油藏类型的推进是气体驱动的消化道,与P/Z对Gp方法的分析相符,这与P/Z对Gp方法的影响程度相吻合。初步的气体平衡计算是用体积法测定的动量方法3113.135 BSCF和平衡材料方法的恢复值为80.523%。
{"title":"PENGGUNAAN METODE MATERIAL BALANCE DALAM PENENTUAN ISI AWAL GAS DI TEMPAT PADA RESERVOIR ZX","authors":"FX Krisna Putra Tapangan, Lestari Lestari, Aqlyna Fattahanisa","doi":"10.25105/PETRO.V10I1.8905","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.8905","url":null,"abstract":"Reservoir ZX merupakan reservoir gas basah ( wet gas reservoir ) yang diketahui jenisn reservoirnya melalui metode kualitatif dengan analisa komposisi hidrokarbon reservoir, karakteristik fluida reservoir dan data PVT. Pada penelitian yang dilakukan, analisa komposisi hidrokarbon mulai dari karbon C1 hingga C7+, data karakteristik fluida reservoir yaitu GLR, API, dan SG gas. Karena reservoir ZX adalah reservoir gas basah ( wet gas reservoir ), dilakukan pengkoreksian kumulatif dari gas yang diproduksi dari Gpdry menjadi Gpwet dengan metode vapor equivalent dengan nilai Veq didapatkan sebesar 1690. Dalam penelitian, penentuan jenis tenaga dorong dari reservoir ZX menggunakan metode energy plot dan P/Z Vs Gp. Hasil metode energy plot tidak terdapat water influx yang menandakan jenis tenaga dorong pada reservoir gas adalah depletion gas drive dan sesuai dengan analisa pada garis plot metode P/Z Vs Gp yang menandakan jenis tenaga dorong depletion gas drive. Perhitungan isi awal gas di tempat pada penelitian digunakan metode volumetrik, Material Balance 3113,135 BSCF dan memiliki nilai recovery factor dari metode Material Balance adalah 80,523%.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121179660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.8772
Havidh Pramadika, Bayu Satiyawira, Cahaya Rosyidan, Zakiah Darajat
Emulsion is one of the problems that is often found in the petroleum production process which needs to be avoided because it can reduce the economic value of oil, the large water content in oil makes the selling price low, even if the water content of the oil is above the standard, the oil may not be accepted in the market. Therefore, this study will try to reduce the water content in the oil, while the formulation of the problem in this study is, knowing whether citric acid from lemon can be used as a demulsifier, knowing what concentration is the most optimal, and knowing whether citral acid from lemon is more optimal than in the NaCl and KCl demulsifier, increasing the concentration of 60% was proven to also increase separate water, where at a concentration of 30% citric acid was the highest to make water separate by 58% while increasing the concentration to 60% was also able to increase water separated by up to 92% minutes 1440 , from that experiment on do the concentration greatly affects the separate water and lemon citric acid can be used as a demulsifier.
{"title":"PEMANFAATAN BIODEMULSIFIER UNTUK MENURUNKAN KADAR AIR TERCAMPUR","authors":"Havidh Pramadika, Bayu Satiyawira, Cahaya Rosyidan, Zakiah Darajat","doi":"10.25105/PETRO.V10I1.8772","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.8772","url":null,"abstract":"Emulsion is one of the problems that is often found in the petroleum production process which needs to be avoided because it can reduce the economic value of oil, the large water content in oil makes the selling price low, even if the water content of the oil is above the standard, the oil may not be accepted in the market. Therefore, this study will try to reduce the water content in the oil, while the formulation of the problem in this study is, knowing whether citric acid from lemon can be used as a demulsifier, knowing what concentration is the most optimal, and knowing whether citral acid from lemon is more optimal than in the NaCl and KCl demulsifier, increasing the concentration of 60% was proven to also increase separate water, where at a concentration of 30% citric acid was the highest to make water separate by 58% while increasing the concentration to 60% was also able to increase water separated by up to 92% minutes 1440 , from that experiment on do the concentration greatly affects the separate water and lemon citric acid can be used as a demulsifier.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"62 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114002566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.8302
Ragil Sudira Wardana, M. Siallagan, R. Wardana
With current oil price downturn many oil wells become uneconomic. These uneconomic wells are left in an inactive state and become idle wells. Idle well is an environmental liability due to its risk of well integrity problems. Impacted by the downturn, the number of idle wells in the industry has been increasing in the industry. One of the solutions to mitigate these liabilities is by conducting plug & abandonment (P&A) on high-risk idle wellss. This research develops a combined framework of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with the Analytic Hierarchy Process (AHP) as a risk assessment framework to prioritize high-risk idle wells for the P&A activity. In the assessment framework, surface condition, subsurface condition, and public exposure factors are taken as evaluation criteria to determine the risk level. The result of this research is 247 idle wells considered as high-risk wells and submitted as P&A candidates. The empirical result from this research can serve as a reference for oil companies in conducting a risk assessment on idle wells to design the proper activities to reduce environmental liabilities.
{"title":"REDUCING THE RISK OF WELL INTEGRITY INCIDENT BY INTEGRATING TOPSIS AND AHP MULTICRITERIA DECISION-MAKING ANALYSIS","authors":"Ragil Sudira Wardana, M. Siallagan, R. Wardana","doi":"10.25105/PETRO.V10I1.8302","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.8302","url":null,"abstract":"With current oil price downturn many oil wells become uneconomic. These uneconomic wells are left in an inactive state and become idle wells. Idle well is an environmental liability due to its risk of well integrity problems. Impacted by the downturn, the number of idle wells in the industry has been increasing in the industry. One of the solutions to mitigate these liabilities is by conducting plug & abandonment (P&A) on high-risk idle wellss. This research develops a combined framework of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with the Analytic Hierarchy Process (AHP) as a risk assessment framework to prioritize high-risk idle wells for the P&A activity. In the assessment framework, surface condition, subsurface condition, and public exposure factors are taken as evaluation criteria to determine the risk level. The result of this research is 247 idle wells considered as high-risk wells and submitted as P&A candidates. The empirical result from this research can serve as a reference for oil companies in conducting a risk assessment on idle wells to design the proper activities to reduce environmental liabilities.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126240169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.25105/PETRO.V10I1.9131
Mulia Ginting, Ziad Tourik, Cornelius Rezi
Salah satu faktor keberhasilan injeksi air adalah dilakukan program surveillance dan monitoring yang baik. Kegiatan surveillance dan monitoring dilakukan dengan, mengamati kondisi sumur injeksi, kondisi sumur produksi, respon sumur produksi terhadap sumur injeksi dan mengamati keefektifan penginjeksian.. Tujuan penelitian ini melakukan surveillance dan monitoring di lapangan “X” yang mempunyai 1 sumur injeksi air dan 6 sumur produksi . Surveillance (pengawasan) dan monitoring (pengamatan) dilakukan dengan menggunakan sinergi antara Metode Hall Plot, Chan diagnostic Plot, Analisa Konektivitas Sumur dan Voidage Replacement Ratio sehingga diperoleh gambaran keefektifan injeksi air yang dilakukan. Dari analisis Hall plot terhadap sumur injeksi Z-1 mengindikasikan bahwa sumur injeksi tersebut dalam keadaan normal. Dari analisis Chan’s diagnostic plot terhadap sumur-sumur produksi, diperoleh hasil bahwa sumur Z-3, Z-5 dan Z-7 mengalami coning dan sumur Z-2, Z-4, dan Z-6 mengalami channeling. Dari hasil konektivitas sumur injeksi dengan sumur produksi disekitarnya diperoleh hasil bahwa konektivitas sumur injeksi Z-1 dengan sumur Z-2, Z-3, Z-4 cukup bagus sementara konektivitas sumur injeksi Z-1 dengan sumur Z-5, Z-6, Z-7 dikategorikan buruk. Dari analisis VRR didapatkan nilai VRR sebesar 0,45. Berdasarkan hasil di atas dapat disimpulkan dari Surveillance dan Monitoring yang dilakukan pada injeksi air di lapangan “X”, penginjeksian yang dilakukan tidak terlalu efektif
{"title":"Surveillance dan Monitoring Injeksi Air di Lapangan “X”","authors":"Mulia Ginting, Ziad Tourik, Cornelius Rezi","doi":"10.25105/PETRO.V10I1.9131","DOIUrl":"https://doi.org/10.25105/PETRO.V10I1.9131","url":null,"abstract":"Salah satu faktor keberhasilan injeksi air adalah dilakukan program surveillance dan monitoring yang baik. Kegiatan surveillance dan monitoring dilakukan dengan, mengamati kondisi sumur injeksi, kondisi sumur produksi, respon sumur produksi terhadap sumur injeksi dan mengamati keefektifan penginjeksian.. Tujuan penelitian ini melakukan surveillance dan monitoring di lapangan “X” yang mempunyai 1 sumur injeksi air dan 6 sumur produksi . Surveillance (pengawasan) dan monitoring (pengamatan) dilakukan dengan menggunakan sinergi antara Metode Hall Plot, Chan diagnostic Plot, Analisa Konektivitas Sumur dan Voidage Replacement Ratio sehingga diperoleh gambaran keefektifan injeksi air yang dilakukan. Dari analisis Hall plot terhadap sumur injeksi Z-1 mengindikasikan bahwa sumur injeksi tersebut dalam keadaan normal. Dari analisis Chan’s diagnostic plot terhadap sumur-sumur produksi, diperoleh hasil bahwa sumur Z-3, Z-5 dan Z-7 mengalami coning dan sumur Z-2, Z-4, dan Z-6 mengalami channeling. Dari hasil konektivitas sumur injeksi dengan sumur produksi disekitarnya diperoleh hasil bahwa konektivitas sumur injeksi Z-1 dengan sumur Z-2, Z-3, Z-4 cukup bagus sementara konektivitas sumur injeksi Z-1 dengan sumur Z-5, Z-6, Z-7 dikategorikan buruk. Dari analisis VRR didapatkan nilai VRR sebesar 0,45. Berdasarkan hasil di atas dapat disimpulkan dari Surveillance dan Monitoring yang dilakukan pada injeksi air di lapangan “X”, penginjeksian yang dilakukan tidak terlalu efektif","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128522248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-03DOI: 10.25105/PETRO.V9I4.7859
M. Hasib, A. Susilo
Seismic method can provide detailed information on the subsurface structure to determine the prospect / potential of hydrocarbons. There are few previous studies have used KINGDOM software in processing and interpreting seismic data to determine hydrocarbon potential. Therefore, in this study we provide an overview of how the KINGDOM software works which can be used as an option in processing and interpreting seismic data. This research area is the area of East Java basin. The data used are secondary data. The seismic data used is the final PSTM - STACK - SUKOWATI 3D. Extension is used in the form of SGY File. Selected area in interpretation is inline within range 6100 to 6500 (dimensionless) and crossline within range 12700 to 13000 (dimensionless), with the increment about 10. KINGDOM 6.7.1 software is used for seismic data processing. Interpretation of seismic data is done to obtain information from seismic data, to provide a conclusion that can be accounted by the analysis of all available information or data in order to determine the subsurface structure of the prospect to do the drilling. As for the 3D, the form of the anticline is seen with details like the shape of the anticline in general. The apparent anticline probably indicates the presence of hydrocarbons (oil and gas).
{"title":"INTERPRETASI DATA SEISMIK DENGAN MENGGUNAKAN SOFTWARE KINGDOM 6.7.1","authors":"M. Hasib, A. Susilo","doi":"10.25105/PETRO.V9I4.7859","DOIUrl":"https://doi.org/10.25105/PETRO.V9I4.7859","url":null,"abstract":"Seismic method can provide detailed information on the subsurface structure to determine the prospect / potential of hydrocarbons. There are few previous studies have used KINGDOM software in processing and interpreting seismic data to determine hydrocarbon potential. Therefore, in this study we provide an overview of how the KINGDOM software works which can be used as an option in processing and interpreting seismic data. This research area is the area of East Java basin. The data used are secondary data. The seismic data used is the final PSTM - STACK - SUKOWATI 3D. Extension is used in the form of SGY File. Selected area in interpretation is inline within range 6100 to 6500 (dimensionless) and crossline within range 12700 to 13000 (dimensionless), with the increment about 10. KINGDOM 6.7.1 software is used for seismic data processing. Interpretation of seismic data is done to obtain information from seismic data, to provide a conclusion that can be accounted by the analysis of all available information or data in order to determine the subsurface structure of the prospect to do the drilling. As for the 3D, the form of the anticline is seen with details like the shape of the anticline in general. The apparent anticline probably indicates the presence of hydrocarbons (oil and gas).","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"92 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133191876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-03DOI: 10.25105/PETRO.V9I4.8211
Ghanima Yasmaniar, Maman Djumantara, S. Prakoso
ABSTRAK Lapangan X merupakan lapangan baru dan hanya memiliki satu existing well yaitu sumur X-1. Sumur ini belum berproduksi sehingga tidak ada data produksi dari Lapangan X. Walaupun demikian, pada sumur X-1 ini telah dilakukan DST (Drill Stem Test), dimana terdapat indikasi kandungan gas dari hasil tes tersebut.Penelitian ini dilakukan dengan menggunakan Black Oil Simulator dengan fluida yang terdiri dari gas dan air. Adapun model dari reservoir ini berdimensi 32×280×94 sehingga totalnya ada sebanyak 842.240 grid cell. Berdasarkan perhitungan volumetrik, diketahui bahwa GIIP (Gas Initial in Place) dari Lapangan X adalah sebesar 20,02 BSCF. Sedangkan dari hasil inisialisasi data pada proses simulasi, didapat GIIP sebesar 20,8 BSCF. Perbedaan yang didapat dari kedua hasil perhitungan di atas adalah sebesar 3,896%. Mengingat lapangan ini belum berproduksi, maka proses history matching dilakukan dengan menggunakan data DST dari sumur X-1.Skenario produksi pada penelitian ini dilakukan selama 15 tahun melalui analisis sensitivitas pergantian nilai laju alir gas dan THP (Tubing Head Pressure), sehingga totalnya ada 12 skenario produksi. Berdasarkan hasil simulasi dengan memperhatikan plateau time, maka skenario produksi terbaik didapat pada pengaturan laju alir 2 MMSCF dengan RF (Recovery Factor) sebesar 54,7% dan plateau rate bertahan sampai akhir simulasi. Apabila hanya memperhatikan sampai sumur mati, maka skenario terbaik didapat pada pengaturan laju alir 8 MMSCF dan THP 100 psia, yaitu diperoleh RF sebesar 79,56%. Kata Kunci : Simulasi reservoir, laju alir, tubing head pressure, plateau time, recovery factor ABSTRACT Field X is a new field and it consists of X-1 well as an exsisting well. This well has not been produced, so there is no production data from Field X. However, in this well has been carried out a DST (Drill Stem Test), which indicates the gas content of the test results. This research used Black Oil Simulator which the fluid consist of gas and water. The model of this reservoir has dimensions of 32 × 280 × 94, so there are a total of 842,240 grid cells. Based on volumetric calculations, it has known that the GIIP (Gas Initial in Place) from Field X is 20.02 BSCF. Meanwhile, from the results of initialization data is 20.8 BSCF, therefore the the difference obtained from the calculation is 3,896%. Considering that this field has not been produced, the history matching process was carried out using DST data from X-1 well. The production scenario in this study was carried out for 15 years through a sensitivity analysis of changes in the value of gas flow rate and THP (Tubing Head Pressure), so that there are a total of 12 production scenarios. Based on the simulation results regarding the plateau time, the best production scenario is obtained at a flow rate setting of 2 MMSCF with an RF (Recovery Factor) of 54.7% and the plateau rate lasts until the end of the simulation. If we just consider the production until the well is dead, th
{"title":"STUDI SIMULASI UNTUK PREDIKSI PRODUKSI GAS DI LAPANGAN X MELALUI SENSITIVITAS LAJU ALIR DAN TUBING HEAD PRESSURE","authors":"Ghanima Yasmaniar, Maman Djumantara, S. Prakoso","doi":"10.25105/PETRO.V9I4.8211","DOIUrl":"https://doi.org/10.25105/PETRO.V9I4.8211","url":null,"abstract":"ABSTRAK Lapangan X merupakan lapangan baru dan hanya memiliki satu existing well yaitu sumur X-1. Sumur ini belum berproduksi sehingga tidak ada data produksi dari Lapangan X. Walaupun demikian, pada sumur X-1 ini telah dilakukan DST (Drill Stem Test), dimana terdapat indikasi kandungan gas dari hasil tes tersebut.Penelitian ini dilakukan dengan menggunakan Black Oil Simulator dengan fluida yang terdiri dari gas dan air. Adapun model dari reservoir ini berdimensi 32×280×94 sehingga totalnya ada sebanyak 842.240 grid cell. Berdasarkan perhitungan volumetrik, diketahui bahwa GIIP (Gas Initial in Place) dari Lapangan X adalah sebesar 20,02 BSCF. Sedangkan dari hasil inisialisasi data pada proses simulasi, didapat GIIP sebesar 20,8 BSCF. Perbedaan yang didapat dari kedua hasil perhitungan di atas adalah sebesar 3,896%. Mengingat lapangan ini belum berproduksi, maka proses history matching dilakukan dengan menggunakan data DST dari sumur X-1.Skenario produksi pada penelitian ini dilakukan selama 15 tahun melalui analisis sensitivitas pergantian nilai laju alir gas dan THP (Tubing Head Pressure), sehingga totalnya ada 12 skenario produksi. Berdasarkan hasil simulasi dengan memperhatikan plateau time, maka skenario produksi terbaik didapat pada pengaturan laju alir 2 MMSCF dengan RF (Recovery Factor) sebesar 54,7% dan plateau rate bertahan sampai akhir simulasi. Apabila hanya memperhatikan sampai sumur mati, maka skenario terbaik didapat pada pengaturan laju alir 8 MMSCF dan THP 100 psia, yaitu diperoleh RF sebesar 79,56%. Kata Kunci : Simulasi reservoir, laju alir, tubing head pressure, plateau time, recovery factor ABSTRACT Field X is a new field and it consists of X-1 well as an exsisting well. This well has not been produced, so there is no production data from Field X. However, in this well has been carried out a DST (Drill Stem Test), which indicates the gas content of the test results. This research used Black Oil Simulator which the fluid consist of gas and water. The model of this reservoir has dimensions of 32 × 280 × 94, so there are a total of 842,240 grid cells. Based on volumetric calculations, it has known that the GIIP (Gas Initial in Place) from Field X is 20.02 BSCF. Meanwhile, from the results of initialization data is 20.8 BSCF, therefore the the difference obtained from the calculation is 3,896%. Considering that this field has not been produced, the history matching process was carried out using DST data from X-1 well. The production scenario in this study was carried out for 15 years through a sensitivity analysis of changes in the value of gas flow rate and THP (Tubing Head Pressure), so that there are a total of 12 production scenarios. Based on the simulation results regarding the plateau time, the best production scenario is obtained at a flow rate setting of 2 MMSCF with an RF (Recovery Factor) of 54.7% and the plateau rate lasts until the end of the simulation. If we just consider the production until the well is dead, th","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133949946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}