Complex turbomachinery systems produce a wide range of noise components. The goal is to identify noise source categories, determine their characteristic noise patterns and locations. Researchers can then use this information to quantify the impact of these noise sources, based on which new design guidelines can be proposed. Phased array microphone measurements processed with acoustic beamforming technology provide noise source maps for pre-determined frequency bands (i.e., bins) of the investigated spectrum. However, multiple noise generation mechanisms can be active in any given frequency bin. Therefore, the identification of individual noise sources is difficult and time consuming when using conventional methods, such as manual sorting. This study presents a method for combining beamforming with Principal Component Analysis (PCA) methods in order to identify and separate apart turbomachinery noise sources with strong harmonics. The method is presented through the investigation of Counter-Rotating Open Rotor (CROR) noise sources. It has been found that the proposed semi-automatic method was able to extract even weak noise source patterns that repeat throughout the data set of the beamforming maps. The analysis yields results that are easy to comprehend without special prior knowledge and is an effective tool for identifying and localizing noise sources for the acoustic investigation of various turbomachinery applications.
{"title":"Identification of Turbomachinery Noise Sources via Processing Beamforming Data Using Principal Component Analysis","authors":"B. Fenyvesi, Csaba Horváth","doi":"10.3311/ppme.18555","DOIUrl":"https://doi.org/10.3311/ppme.18555","url":null,"abstract":"Complex turbomachinery systems produce a wide range of noise components. The goal is to identify noise source categories, determine their characteristic noise patterns and locations. Researchers can then use this information to quantify the impact of these noise sources, based on which new design guidelines can be proposed. Phased array microphone measurements processed with acoustic beamforming technology provide noise source maps for pre-determined frequency bands (i.e., bins) of the investigated spectrum. However, multiple noise generation mechanisms can be active in any given frequency bin. Therefore, the identification of individual noise sources is difficult and time consuming when using conventional methods, such as manual sorting. This study presents a method for combining beamforming with Principal Component Analysis (PCA) methods in order to identify and separate apart turbomachinery noise sources with strong harmonics. The method is presented through the investigation of Counter-Rotating Open Rotor (CROR) noise sources. It has been found that the proposed semi-automatic method was able to extract even weak noise source patterns that repeat throughout the data set of the beamforming maps. The analysis yields results that are easy to comprehend without special prior knowledge and is an effective tool for identifying and localizing noise sources for the acoustic investigation of various turbomachinery applications.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"12 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84199717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermal output, surface temperatures, and supply and return water temperature were measured for a wall cooling system involving pipe attached to a wall section made of thermally insulating blocks. The experiment was performed for warm climatic conditions typical of, e.g., summer in Central and Northern Europe. The outdoor environment was simulated by a climatic chamber while the indoor climate was simulated by attaching a hotbox to the wall surface. The sensitivity of thermal output to several design parameters was investigated by 2D numerical simulations. The measurements showed a fast thermal response of the wall system. The cooling output was 38.3 W per m2 of the cooling area which equalled about 4.8 W/m2 per 1 K temperature difference between water and hotbox. The lowest surface temperature of 19.6 °C was measured at the pipe. Thus, the cooling output could be enhanced by reducing the surface temperature closer to the dew point temperature. The temperature of water in the pipe was very close to the surface temperature. It was illustrated how this characteristic of the wall cooling system tested positively affects the efficiency and cooling capacity of an air-to-water heat pump.
{"title":"Testing of a Radiant Wall Cooling System with Pipes Coupled to Aerated Blocks","authors":"M. Simko, D. Petráš, M. Krajčík, D. Szabó","doi":"10.3311/ppme.18734","DOIUrl":"https://doi.org/10.3311/ppme.18734","url":null,"abstract":"Thermal output, surface temperatures, and supply and return water temperature were measured for a wall cooling system involving pipe attached to a wall section made of thermally insulating blocks. The experiment was performed for warm climatic conditions typical of, e.g., summer in Central and Northern Europe. The outdoor environment was simulated by a climatic chamber while the indoor climate was simulated by attaching a hotbox to the wall surface. The sensitivity of thermal output to several design parameters was investigated by 2D numerical simulations. The measurements showed a fast thermal response of the wall system. The cooling output was 38.3 W per m2 of the cooling area which equalled about 4.8 W/m2 per 1 K temperature difference between water and hotbox. The lowest surface temperature of 19.6 °C was measured at the pipe. Thus, the cooling output could be enhanced by reducing the surface temperature closer to the dew point temperature. The temperature of water in the pipe was very close to the surface temperature. It was illustrated how this characteristic of the wall cooling system tested positively affects the efficiency and cooling capacity of an air-to-water heat pump.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"93 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80828202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viktor Matvijchuk, A. Shtuts, M. Kolisnyk, I. Kupchuk, I. Derevenko
Forming of blanks during stamping by rolling (RS) is possible according to technological schemes of deposition, landing, direct and reverse extrusion, distribution and compression, etc. Controlling the relative position and shape of the deformed tool allows you to control the direction of flow of the workpiece material and the nature of its formation, as well as the stress-strain state of the material. The complexity and versatility of RS processes necessitate computer modeling for sound management of basic technological parameters.Physical experimental as well as computer modeling of the RS process in the DEFORM-3D software package was performed in the work.According to the results of computer simulation, the distribution of deformation components, stresses and temperatures in the deformed workpiece area was obtained, and using the Cockroft-Latham criterion, the destruction of metals during cold deformation was also predicted.Physical modeling of the SR process on lead blanks confirmed the nature of their deformation, obtained by computer simulation. And the analysis of the stress-strain state of the material based on the results of measurements of the deformed grid confirmed the validity of the appointment of boundary conditions in computer simulation.This approach is suitable for modeling by the method of SR of any metal models, for which it is necessary to know their mechanical characteristics, including boundary deformation curves.
{"title":"Investigation of the Tubular and Cylindrical Billets Stamping by Rolling Process with the Use of Computer Simulation","authors":"Viktor Matvijchuk, A. Shtuts, M. Kolisnyk, I. Kupchuk, I. Derevenko","doi":"10.3311/ppme.18659","DOIUrl":"https://doi.org/10.3311/ppme.18659","url":null,"abstract":"Forming of blanks during stamping by rolling (RS) is possible according to technological schemes of deposition, landing, direct and reverse extrusion, distribution and compression, etc. Controlling the relative position and shape of the deformed tool allows you to control the direction of flow of the workpiece material and the nature of its formation, as well as the stress-strain state of the material. The complexity and versatility of RS processes necessitate computer modeling for sound management of basic technological parameters.Physical experimental as well as computer modeling of the RS process in the DEFORM-3D software package was performed in the work.According to the results of computer simulation, the distribution of deformation components, stresses and temperatures in the deformed workpiece area was obtained, and using the Cockroft-Latham criterion, the destruction of metals during cold deformation was also predicted.Physical modeling of the SR process on lead blanks confirmed the nature of their deformation, obtained by computer simulation. And the analysis of the stress-strain state of the material based on the results of measurements of the deformed grid confirmed the validity of the appointment of boundary conditions in computer simulation.This approach is suitable for modeling by the method of SR of any metal models, for which it is necessary to know their mechanical characteristics, including boundary deformation curves.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"164 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88453778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Kombarov, Yevgen Tsegelnyk, Sergiy Plankovskyy, Ye. Aksonov, Ye. Kryzhyvets
Improving the accuracy, reliability, and performance of cyber-physical systems such as high-speed machining, laser cutting, welding and cladding etc. is one of the most pressing challenges in modern industry. CNC system carries out data processing and significantly affect on accuracy of operation such equipment. The paper considers the problem of controlled axes motion differential characteristics data processing in the internal representation of the discrete space of the CNC system. Equations for determining the required discreteness of the differential characteristics position and resolution, such as the speed, acceleration, and jerk are proposed. For the most widely used CNC equipment specific discreteness and resolution values have been determined.
{"title":"Investigation of the Required Discreteness of Interpolation Movement Parameters in Cyber-physical Systems","authors":"V. Kombarov, Yevgen Tsegelnyk, Sergiy Plankovskyy, Ye. Aksonov, Ye. Kryzhyvets","doi":"10.3311/ppme.17884","DOIUrl":"https://doi.org/10.3311/ppme.17884","url":null,"abstract":"Improving the accuracy, reliability, and performance of cyber-physical systems such as high-speed machining, laser cutting, welding and cladding etc. is one of the most pressing challenges in modern industry. CNC system carries out data processing and significantly affect on accuracy of operation such equipment. The paper considers the problem of controlled axes motion differential characteristics data processing in the internal representation of the discrete space of the CNC system. Equations for determining the required discreteness of the differential characteristics position and resolution, such as the speed, acceleration, and jerk are proposed. For the most widely used CNC equipment specific discreteness and resolution values have been determined.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"27 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85033910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the research work the fracture mechanical investigation of heat affected zones of thermomechanical rolled high strength steels (Voestalpine Alform 960M) were carried out. For production of appropriate heat affected zones Gleeble 3500 physical simulator was applied, with different heating cycles and specific cooling times. Following the simulation, fracture mechanical investigations were performed, in favor of determination crack tip opening displacement (CTOD or δ) values.
{"title":"Fracture Mechanical Analysis of Gleeble Simulated Heat Affected Zones in High Strength Steels","authors":"Z. Koncsik, J. Lukács, G. Nagy","doi":"10.3311/ppme.19077","DOIUrl":"https://doi.org/10.3311/ppme.19077","url":null,"abstract":"During the research work the fracture mechanical investigation of heat affected zones of thermomechanical rolled high strength steels (Voestalpine Alform 960M) were carried out. For production of appropriate heat affected zones Gleeble 3500 physical simulator was applied, with different heating cycles and specific cooling times. Following the simulation, fracture mechanical investigations were performed, in favor of determination crack tip opening displacement (CTOD or δ) values.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"72 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81755488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper exhibits a study of car passive and active- suspension system to improving drive exhilarate to passengers while also enhancing vehicle stability by decreasing the effect of oscillation on the suspension. Modeling and simulation by using the bond diagram. They much concede a prime arrangement of the machine to the exterior surrounding: street quality, atmospherically circumstances, while guarantying driver as well as passengers, major safeness and more potentially exhilarate. Automotive aid it course manners. The result cleared this action plan at different set during the vehicle mean, but particularly in evolution level. It is also clear the proportion of suspension system's mass to the vehicle's mass. Also graphical representation of suspension system' parameters like vertical passenger displacement, potential energy of mass of suspension system and acceleration. To foretell the comportment of a car, it is necessary to make design, modeling, and simulation. Honda Civic Lx 2019 sedan car has used for modeling, and simulation.
{"title":"Modeling Analysis and Simulation of Wheel Suspension System's Response for Quarter Car Model by Using 20-sim Software for Honda Civic Lx 2019 Sedan","authors":"H. H. Hadwan, M. A. Mahdi, Ahmed W Hussein","doi":"10.3311/ppme.18239","DOIUrl":"https://doi.org/10.3311/ppme.18239","url":null,"abstract":"This paper exhibits a study of car passive and active- suspension system to improving drive exhilarate to passengers while also enhancing vehicle stability by decreasing the effect of oscillation on the suspension. Modeling and simulation by using the bond diagram. They much concede a prime arrangement of the machine to the exterior surrounding: street quality, atmospherically circumstances, while guarantying driver as well as passengers, major safeness and more potentially exhilarate. Automotive aid it course manners. The result cleared this action plan at different set during the vehicle mean, but particularly in evolution level. It is also clear the proportion of suspension system's mass to the vehicle's mass. Also graphical representation of suspension system' parameters like vertical passenger displacement, potential energy of mass of suspension system and acceleration. To foretell the comportment of a car, it is necessary to make design, modeling, and simulation. Honda Civic Lx 2019 sedan car has used for modeling, and simulation.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89377393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the ejection/demolding of continuous production of injection molded Poly(Lactic Acid) tensile testing specimens and analyzed the effect of 1 wt% Calcium-Stearate additive as demolding agent (sliding or mold release agent) on this process. We demonstrated that the Poly(Lactic Acid) specimens could get stuck in the mold or even break during demolding during continuous injection molding in a certain type of mold, which has a low draft angle and varying cavity width along the flow path. The standard dumbbell-shaped tensile testing specimen is produced in such a mold. Demolding was rated with the use of a high-speed camera into three categories (problem-free demolding / stuck, but demolded undamaged product / stuck and damaged product). Moreover, the ejector force required to push the product out of the cavity was monitored over 30 continuous injection molding cycles. We also investigated the effect of processing parameters, such as injection rate (screw speed), holding pressure, holding time, mold temperature, melt temperature, backpressure, screw rotational speed, and pre-process drying (drying or not drying the pellets before injection molding). We managed to avoid product breakage during demolding with the proper settings of certain process parameters and the use of Calcium-Stearate, an effective demolding agent. This ensured problem-free demolding and thus continuous injection molding.
{"title":"The Effect of Processing Parameters and Calcium-stearate on the Ejection Process of Injection Molded Poly(Lactic Acid) Products","authors":"T. Tábi, K. Pölöskei","doi":"10.3311/ppme.18246","DOIUrl":"https://doi.org/10.3311/ppme.18246","url":null,"abstract":"We investigated the ejection/demolding of continuous production of injection molded Poly(Lactic Acid) tensile testing specimens and analyzed the effect of 1 wt% Calcium-Stearate additive as demolding agent (sliding or mold release agent) on this process. We demonstrated that the Poly(Lactic Acid) specimens could get stuck in the mold or even break during demolding during continuous injection molding in a certain type of mold, which has a low draft angle and varying cavity width along the flow path. The standard dumbbell-shaped tensile testing specimen is produced in such a mold. Demolding was rated with the use of a high-speed camera into three categories (problem-free demolding / stuck, but demolded undamaged product / stuck and damaged product). Moreover, the ejector force required to push the product out of the cavity was monitored over 30 continuous injection molding cycles. We also investigated the effect of processing parameters, such as injection rate (screw speed), holding pressure, holding time, mold temperature, melt temperature, backpressure, screw rotational speed, and pre-process drying (drying or not drying the pellets before injection molding). We managed to avoid product breakage during demolding with the proper settings of certain process parameters and the use of Calcium-Stearate, an effective demolding agent. This ensured problem-free demolding and thus continuous injection molding.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"318 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72987037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the low number of experimental investigations on the sizing of safety valves in multiphase flow, a novel set of measurement data of an air-water mixture is reported. This paper presents an experimental study on three different geometries of safety valves, a poppet valve with jet angle θ = 120°, and two-disc valves with deflection angles θ = 0° and θ = 90°, respectively. Our test rig comprises a pipeline with 42.5 mm inner diameter, spray nozzles to supply the added water quality (water mass fraction) to the pressurized airflow up to 40 % mass fraction and an inlet pressure up to 6.6 bar(g). The time histories of force, valve lift, and pressures were recorded. We present correlation data for the force coefficient and the discharge coefficient. The widely used omega technique for the Homogenous Equilibrium Model (HEM) is employed to predict the theoretical mass flux. The results show that the poppet valve experiences less momentum force and lower mass flow rates compared to disc valves, while the disc valve with deflection angle θ = 90° presents the highest discharged flow rates among the tested geometries. Our most important finding is that up to 60 % relative valve lift and 40 % mass fraction, neither the force nor the discharge coefficient changes significantly compared to the pure-air case. Finally, we propose a new correlation with a single equation for the resultant force and the discharge coefficient as a function of the relative valve lift for all tested water mass fractions.
{"title":"An Experimental Study on the Force Coefficient and the Discharge Coefficient of a Safety Valve in Air-water Mixture Flow","authors":"Mhd Ghaith Burhani, C. Hős","doi":"10.3311/ppme.17848","DOIUrl":"https://doi.org/10.3311/ppme.17848","url":null,"abstract":"Due to the low number of experimental investigations on the sizing of safety valves in multiphase flow, a novel set of measurement data of an air-water mixture is reported. This paper presents an experimental study on three different geometries of safety valves, a poppet valve with jet angle θ = 120°, and two-disc valves with deflection angles θ = 0° and θ = 90°, respectively. Our test rig comprises a pipeline with 42.5 mm inner diameter, spray nozzles to supply the added water quality (water mass fraction) to the pressurized airflow up to 40 % mass fraction and an inlet pressure up to 6.6 bar(g). The time histories of force, valve lift, and pressures were recorded. We present correlation data for the force coefficient and the discharge coefficient. The widely used omega technique for the Homogenous Equilibrium Model (HEM) is employed to predict the theoretical mass flux. The results show that the poppet valve experiences less momentum force and lower mass flow rates compared to disc valves, while the disc valve with deflection angle θ = 90° presents the highest discharged flow rates among the tested geometries. Our most important finding is that up to 60 % relative valve lift and 40 % mass fraction, neither the force nor the discharge coefficient changes significantly compared to the pure-air case. Finally, we propose a new correlation with a single equation for the resultant force and the discharge coefficient as a function of the relative valve lift for all tested water mass fractions.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"58 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84740725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research presents an energy performance analysis of the heat pump system with internal heat exchanger (IHX). The mathematical model of the heat pump outlined in this paper has been created by the author, it is steady-state with lumped parameters. The experimental validation of the model has been carried out using R1234yf and R134a as refrigerant. The aim of this work is to compare the energy performance in a wide range of operating conditions of a monitored heat pump system using both refrigerants. Finally, the heating capacity for R1234yf was lower from 0.63 % to 7.54 % compared with R134a, while the compressor power was similar from 0.12 % to 3.51 %. The COP values of R1234yf were lower than those obtained of R134a, ranging from 1.39 % to 4.22 %.
{"title":"Comparative Analysis of Heat Pump System with IHX Using R1234yf and R134a","authors":"R. Sánta","doi":"10.3311/ppme.18390","DOIUrl":"https://doi.org/10.3311/ppme.18390","url":null,"abstract":"This research presents an energy performance analysis of the heat pump system with internal heat exchanger (IHX). The mathematical model of the heat pump outlined in this paper has been created by the author, it is steady-state with lumped parameters. The experimental validation of the model has been carried out using R1234yf and R134a as refrigerant. The aim of this work is to compare the energy performance in a wide range of operating conditions of a monitored heat pump system using both refrigerants. Finally, the heating capacity for R1234yf was lower from 0.63 % to 7.54 % compared with R134a, while the compressor power was similar from 0.12 % to 3.51 %. The COP values of R1234yf were lower than those obtained of R134a, ranging from 1.39 % to 4.22 %.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"79 2 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73206434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel method for the evaluation of three-dimensional blood-flow simulations based, on the decomposition of the velocity field into localized coordinate systems along the vessels centerline. The method is based on the computation of accurate centerlines with the Vascular Modeling Toolkit (VMTK) library, to calculate the localized Frenet-frames along the centerline and the morphological features, namely the curvature and torsion. Using the Frenet-frame unit vectors, the velocity field can be decomposed into axial, circumferential and radial components and visualized in a diagram along the centerline. This paper includes case studies with four idealized geometries resembling the carotid siphon and two patient-specific cases to demonstrate the capability of the method and the connection between morphology and flow. The proposed evaluation method presented in this paper can be easily extended to other derived quantities of the velocity fields, such as the wall shear stress field. Furthermore, it can be used in other fields of engineering with tubular cross-sections with complex torsion and curvature distribution.
{"title":"Decomposition of Velocity Field Along a Centerline Curve Using Frenet-Frames: Application to Arterial Blood Flow Simulations","authors":"B. Csippa, Levente Sándor, G. Paál","doi":"10.3311/ppme.18517","DOIUrl":"https://doi.org/10.3311/ppme.18517","url":null,"abstract":"This paper presents a novel method for the evaluation of three-dimensional blood-flow simulations based, on the decomposition of the velocity field into localized coordinate systems along the vessels centerline. The method is based on the computation of accurate centerlines with the Vascular Modeling Toolkit (VMTK) library, to calculate the localized Frenet-frames along the centerline and the morphological features, namely the curvature and torsion. Using the Frenet-frame unit vectors, the velocity field can be decomposed into axial, circumferential and radial components and visualized in a diagram along the centerline. This paper includes case studies with four idealized geometries resembling the carotid siphon and two patient-specific cases to demonstrate the capability of the method and the connection between morphology and flow. The proposed evaluation method presented in this paper can be easily extended to other derived quantities of the velocity fields, such as the wall shear stress field. Furthermore, it can be used in other fields of engineering with tubular cross-sections with complex torsion and curvature distribution.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"62 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84976170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}