首页 > 最新文献

Trends in Biochemical Sciences最新文献

英文 中文
Cellular oxidants and the proteostasis network: balance between activation and destruction 细胞氧化剂与蛋白稳态网络:激活与破坏之间的平衡。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.07.001
Agnes Ulfig , Ursula Jakob

Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.

蛋白质失衡(蛋白稳态)是衰老和与年龄相关疾病的常见特征。蛋白稳态网络(PN)被认为是蛋白稳态的守护者,其作用是在蛋白质的生命周期内保持蛋白质的功能。然而,它的活性会随着年龄的增长而下降,从而导致疾病的发生。虽然活性氧(ROS)传统上被认为是这一过程的罪魁祸首,但最近的研究对这一观点提出了挑战。虽然高浓度的活性氧对人体有害,但适度的活性氧可通过激活分子伴侣、应激反应途径和自噬作用,保护细胞免受衰老介导的蛋白毒性的影响。这篇综述探讨了 ROS 在蛋白稳态中的微妙作用,并讨论了有关 PN 氧化还原调节的最新发现及其在延长健康寿命和延缓与年龄相关的病症方面的潜力。
{"title":"Cellular oxidants and the proteostasis network: balance between activation and destruction","authors":"Agnes Ulfig ,&nbsp;Ursula Jakob","doi":"10.1016/j.tibs.2024.07.001","DOIUrl":"10.1016/j.tibs.2024.07.001","url":null,"abstract":"<div><p>Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 761-774"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001646/pdfft?md5=e438983700d0e46168c3bfae96cab77d&pid=1-s2.0-S0968000424001646-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migrasome biogenesis: when biochemistry meets biophysics on membranes 移行体的生物发生:当生物化学与生物物理学在膜上相遇。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.06.004

Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.

移行体是新发现的细胞器,在细胞间通信中发挥着至关重要的作用,有助于器官发育和血管生成。这些囊泡形成于迁移细胞的回缩纤维上,显示出复杂的结构。最新研究发现,迁移体的生物发生是一个复杂而高度调控的过程。本综述总结了迁移小体的形成机制,提出了一个通过膜微域组装来理解生物生成的模型。它强调了生物化学和生物物理学之间的重要相互作用。生物发生分为三个不同的阶段:成核、成熟和扩展,每个阶段都具有独特的形态学、生物化学和生物物理学特征。我们还探讨了迁移体研究对膜生物学的广泛影响,并概述了代表未来研究重要方向的关键未解之谜。
{"title":"Migrasome biogenesis: when biochemistry meets biophysics on membranes","authors":"","doi":"10.1016/j.tibs.2024.06.004","DOIUrl":"10.1016/j.tibs.2024.06.004","url":null,"abstract":"<div><p>Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 829-840"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IUBMB Trainee Initiative: supporting emerging biochemists and molecular biologists around the world 国际生物化学和分子生物学联合会受训人员计划:支持世界各地的新兴生物化学家和分子生物学家。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.07.004
Ecaterina Cozma , Patrick Penndorf

The International Union of Biochemistry and Molecular Biology (IUBMB) Trainee Initiative aims to identify challenges experienced by biochemistry and molecular biology trainees and create programming to foster their growth and development as the next generation of scientists. Here, we highlight resources and events developed by the Trainee Initiative in their endeavor to support trainees around the world.

国际生物化学与分子生物学联合会(IUBMB)受训人员计划(Trainee Initiative)旨在确定生物化学与分子生物学受训人员所面临的挑战,并制定计划促进他们作为下一代科学家的成长与发展。在此,我们重点介绍 "受训人员计划 "为支持世界各地的受训人员而开发的资源和开展的活动。
{"title":"IUBMB Trainee Initiative: supporting emerging biochemists and molecular biologists around the world","authors":"Ecaterina Cozma ,&nbsp;Patrick Penndorf","doi":"10.1016/j.tibs.2024.07.004","DOIUrl":"10.1016/j.tibs.2024.07.004","url":null,"abstract":"<div><p>The International Union of Biochemistry and Molecular Biology (IUBMB) Trainee Initiative aims to identify challenges experienced by biochemistry and molecular biology trainees and create programming to foster their growth and development as the next generation of scientists. Here, we highlight resources and events developed by the Trainee Initiative in their endeavor to support trainees around the world.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 749-751"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001816/pdfft?md5=1766f2b5945a5294a72bfa46625178ac&pid=1-s2.0-S0968000424001816-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the bench: motivations and aspirations of the IUBMB Trainee Initiative Leadership Committee 工作台之外:国际生物化学和分子生物学联合会受训人员倡议领导委员会的动机和愿望。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.07.003
Mihaela Jovanović , Jessie Wong Ling Ai , Aishatu Muhammad Malami , Ecaterina Cozma
{"title":"Beyond the bench: motivations and aspirations of the IUBMB Trainee Initiative Leadership Committee","authors":"Mihaela Jovanović ,&nbsp;Jessie Wong Ling Ai ,&nbsp;Aishatu Muhammad Malami ,&nbsp;Ecaterina Cozma","doi":"10.1016/j.tibs.2024.07.003","DOIUrl":"10.1016/j.tibs.2024.07.003","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 745-748"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001804/pdfft?md5=7afd34d52e497ed766019a7d1d8b0473&pid=1-s2.0-S0968000424001804-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural transitions modulate the chaperone activities of Grp94 结构转变调节了 Grp94 的伴侣活性。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.06.007

A recent study by Amankwah et al. reports how co-chaperone proteins and ATP hydrolysis fine-tune the function of endoplasmic reticulum (ER)-resident Hsp90 paralog Grp94.

Amankwah 等人最近的一项研究报告了共伴侣蛋白和 ATP 水解如何微调内质网(ER)驻留 Hsp90 旁系亲属 Grp94 的功能。
{"title":"Structural transitions modulate the chaperone activities of Grp94","authors":"","doi":"10.1016/j.tibs.2024.06.007","DOIUrl":"10.1016/j.tibs.2024.06.007","url":null,"abstract":"<div><p>A recent study by <span><span>Amankwah <em>et al.</em></span><svg><path></path></svg></span><span> reports how co-chaperone proteins and ATP hydrolysis<span><span> fine-tune the function of endoplasmic reticulum (ER)-resident Hsp90 </span>paralog Grp94.</span></span></p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 752-753"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/S0968-0004(24)00200-7
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(24)00200-7","DOIUrl":"10.1016/S0968-0004(24)00200-7","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Page e1"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile JMJD proteins: juggling histones and much more 多用途 JMJD 蛋白:组蛋白和更多杂耍。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.06.009

Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes. In this review we focus on the 33 human JMJD proteins and their established and controversial catalytic properties, survey their epigenetic and non-epigenetic functions, emphasize their contribution to sex-specific disease differences, and highlight how they sense metabolic changes. All this underlines not only their key roles in development and homeostasis, but also that JMJD proteins are destined to become drug targets in multiple diseases.

含 Jumonji C 结构域的蛋白质(JMJD)存在于细菌、真菌、动物和植物中。它们属于 2-氧代戊二酸依赖性加氧酶超家族,具有多种酶活性,包括组蛋白的去甲基化和非组蛋白的羟基化。许多 JMJD 蛋白参与了基因表达的表观遗传学控制,但它们也调节着无数其他细胞过程。在这篇综述中,我们将重点介绍 33 种人类 JMJD 蛋白及其既有的和有争议的催化特性,考察它们的表观遗传和非表观遗传功能,强调它们对性别特异性疾病差异的贡献,并着重介绍它们如何感知新陈代谢的变化。所有这一切不仅强调了它们在发育和体内平衡中的关键作用,而且还表明 JMJD 蛋白注定会成为多种疾病的药物靶点。
{"title":"Versatile JMJD proteins: juggling histones and much more","authors":"","doi":"10.1016/j.tibs.2024.06.009","DOIUrl":"10.1016/j.tibs.2024.06.009","url":null,"abstract":"<div><p>Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes. In this review we focus on the 33 human JMJD proteins and their established and controversial catalytic properties, survey their epigenetic and non-epigenetic functions, emphasize their contribution to sex-specific disease differences, and highlight how they sense metabolic changes. All this underlines not only their key roles in development and homeostasis, but also that JMJD proteins are destined to become drug targets in multiple diseases.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 804-818"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/S0968-0004(24)00197-X
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(24)00197-X","DOIUrl":"10.1016/S0968-0004(24)00197-X","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages i-ii"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096800042400197X/pdfft?md5=4cf0e61b464c1e32c0d7234ffa2149e3&pid=1-s2.0-S096800042400197X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional implications of fumarate-induced cysteine succination 富马酸诱导半胱氨酸琥珀酸化的功能影响
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.05.003

Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.

代谢酶的突变与遗传性和散发性癌症有关。例如,影响富马酸氢化酶(FH)(三羧酸循环酶)的功能缺失突变会导致毫摩尔水平的富马酸积累,从而引发一种侵袭性肾癌。富马酸盐的一个显著特点是,它能够自发地与半胱氨酸的硫醇基团发生化学反应,这种反应被称为琥珀酸化。虽然一些蛋白质的琥珀酸化与富马酸缺失性癌症的分子特征有因果关系,但琥珀酸化的化学计量、更广泛的功能性后果以及对疾病发展的贡献在很大程度上仍未得到探讨。我们将讨论富马酸盐诱导的琥珀酸化在 FH 缺陷细胞中的功能影响、可用的方法以及目前研究这种翻译后修饰所面临的挑战。
{"title":"Functional implications of fumarate-induced cysteine succination","authors":"","doi":"10.1016/j.tibs.2024.05.003","DOIUrl":"10.1016/j.tibs.2024.05.003","url":null,"abstract":"<div><p>Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 775-790"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001130/pdfft?md5=df3dc6aac16d13e59cc8af993548abc8&pid=1-s2.0-S0968000424001130-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orange carotenoid proteins: structural understanding of evolution and function 橙色类胡萝卜素蛋白:从结构上理解进化和功能。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.tibs.2024.04.010

Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.

蓝藻独特地含有一种原始的水溶性类胡萝卜素蛋白--橙色类胡萝卜素蛋白(OCP)。几乎所有现存的蓝藻基因组都含有 OCP 或其同源物的基因,这意味着蓝藻在进化过程中必须保护其功能。编码 OCP 及其两个组成结构域(N-末端结构域、类胡萝卜素螺旋蛋白(HCP)及其 C-末端结构域)的基因存在于现生蓝藻的最基系中。这三种类胡萝卜素蛋白体现了类胡萝卜素蛋白在响应环境变化、促进光响应和能量淬灭方面的重要特性,包括蛋白质动力学。在此,我们回顾了对这些类胡萝卜素蛋白结构的新认识,并介绍了该蛋白在目前对其功能的了解中所起的作用。
{"title":"Orange carotenoid proteins: structural understanding of evolution and function","authors":"","doi":"10.1016/j.tibs.2024.04.010","DOIUrl":"10.1016/j.tibs.2024.04.010","url":null,"abstract":"<div><p>Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 819-828"},"PeriodicalIF":11.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Biochemical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1