Pub Date : 2023-06-15DOI: 10.31025/2611-4135/2023.17275
P. Hennebert
Many plastic additives are mineral or organo-mineral substances having functions as pigments, heat stabilizers, flame retardants, process adjuvants and the like. Are additivated plastics hazardous when they become waste? Data from the Plastic Additives Initiative, a joint industry and EU effort, was used, along with substance hazard statements from the ECHA website and hazard properties from the waste classification. 20 elements of 91 substances, namely Al, B, Ba, Bi, Cd, Co, Cr, Cu, F, I, Li, Mn, Ni, Pb, Pr, Sb, Sn, Ti, V and Zn were selected, and their additives used in 11 polymers, considered. Of the 91 substances selected, 57 are non-hazardous or are hazardous but used at too low concentration to render the plastic hazardous when it becomes waste. 34 substances (= 37% of 91) are hazardous and make plastics hazardous as waste. These are mainly heat stabilizers (for PVC), or pigments and flame retardants (for all polymers). The sorting of these plastics by the mineral concentration of their additives with online XRF is theoretically achievable. With data from previous papers, 63 additives (= 27% of 233) make plastic hazardous. The brominated flame retardants are the less documented. Only essential use should be encouraged for pigments. Waste management today should focus on turning waste into non-waste, not waste leakage. With occupational safety and health regulations during processing, and with product regulations during its second life, the material should be managed as another hazardous or non-hazardous (virgin) raw material, and given end-of-waste status when it enters the loop.
{"title":"Hazardous properties of mineral and organo-mineral plastic additives and management of hazardous plastics","authors":"P. Hennebert","doi":"10.31025/2611-4135/2023.17275","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17275","url":null,"abstract":"Many plastic additives are mineral or organo-mineral substances having functions as pigments, heat stabilizers, flame retardants, process adjuvants and the like. Are additivated plastics hazardous when they become waste? Data from the Plastic Additives Initiative, a joint industry and EU effort, was used, along with substance hazard statements from the ECHA website and hazard properties from the waste classification. 20 elements of 91 substances, namely Al, B, Ba, Bi, Cd, Co, Cr, Cu, F, I, Li, Mn, Ni, Pb, Pr, Sb, Sn, Ti, V and Zn were selected, and their additives used in 11 polymers, considered. Of the 91 substances selected, 57 are non-hazardous or are hazardous but used at too low concentration to render the plastic hazardous when it becomes waste. 34 substances (= 37% of 91) are hazardous and make plastics hazardous as waste. These are mainly heat stabilizers (for PVC), or pigments and flame retardants (for all polymers). The sorting of these plastics by the mineral concentration of their additives with online XRF is theoretically achievable. With data from previous papers, 63 additives (= 27% of 233) make plastic hazardous. The brominated flame retardants are the less documented. Only essential use should be encouraged for pigments. Waste management today should focus on turning waste into non-waste, not waste leakage. With occupational safety and health regulations during processing, and with product regulations during its second life, the material should be managed as another hazardous or non-hazardous (virgin) raw material, and given end-of-waste status when it enters the loop.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43051210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-15DOI: 10.31025/2611-4135/2023.17278
Maja Arsic, C. O’Sullivan, A. Wasson, D. Antille, W. Clarke
The race to meet net zero targets by 2050, while rapidly transitioning to a circular economy (CE) within the next decade, is shaping strategic Australian sustainability policy. While the success of integrating CE concepts relies on coordinating system-wide change, policies and strategies are still evolving under the traditional silos of waste and energy management. This presents multiple barriers to critical sectors, such as agriculture, which aims to become an $AUD100 billion industry by 2030. Agri-food systems face the challenge to meet growing global food demand, expected to increase by 70% by 2050, while decreasing emissions, resource use and waste production. Agriculture plays essential push and pull roles in meeting net zero targets and in developing a truly CE. Bioenergy, a critical part of the renewable circular bioeconomy, sits at the intersection of net zero and CE by producing renewable energy and recovering bioresources from waste biomass. By integrating agricultural end-users as key stakeholders, bioenergy can shift from a waste-to-energy process to a multi-resource generating process. These policy areas could be integrated via a similar approach to the Australian National Agricultural Innovation Policy Statement, with the goal of supporting agricultural production, while reducing emissions and maximising renewable resource use efficiency.
{"title":"Beyond waste-to-energy: Bioenergy can drive sustainable Australian agriculture by integrating circular economy with net zero ambitions","authors":"Maja Arsic, C. O’Sullivan, A. Wasson, D. Antille, W. Clarke","doi":"10.31025/2611-4135/2023.17278","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17278","url":null,"abstract":"The race to meet net zero targets by 2050, while rapidly transitioning to a circular economy (CE) within the next decade, is shaping strategic Australian sustainability policy. While the success of integrating CE concepts relies on coordinating system-wide change, policies and strategies are still evolving under the traditional silos of waste and energy management. This presents multiple barriers to critical sectors, such as agriculture, which aims to become an $AUD100 billion industry by 2030. Agri-food systems face the challenge to meet growing global food demand, expected to increase by 70% by 2050, while decreasing emissions, resource use and waste production. Agriculture plays essential push and pull roles in meeting net zero targets and in developing a truly CE. Bioenergy, a critical part of the renewable circular bioeconomy, sits at the intersection of net zero and CE by producing renewable energy and recovering bioresources from waste biomass. By integrating agricultural end-users as key stakeholders, bioenergy can shift from a waste-to-energy process to a multi-resource generating process. These policy areas could be integrated via a similar approach to the Australian National Agricultural Innovation Policy Statement, with the goal of supporting agricultural production, while reducing emissions and maximising renewable resource use efficiency.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47958685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.31025/2611-4135/2023.17261
R. Stegmann
{"title":"New priorities in Waste Management: Energy Production, Climate Protection and Environmental Sustainability","authors":"R. Stegmann","doi":"10.31025/2611-4135/2023.17261","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17261","url":null,"abstract":"","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43350137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.31025/2611-4135/2023.17262
Therese SchwarzbaCk, M. Hahn, S. Spacek, J. Fellner
Differenciating between material fractions in refuse-derived fuels (RDF) is relevant to determining the climate relevance of RDF (fractions of biomass and fossil matter). This differentiation is associated with analytical challenges. A method was applied using balance equations, which contain the elemental composition (C, H, N, S, O) of the RDF and the sought for material fractions. For the first time this so-called adapted Balance Method (aBM) was applied to oil-contaminated RDF with the aim of not only distinguishing between biomass and fossil matter but between fossil matter from plastics and from oil-contamination as well. Thus, the balance equations and the following data reconciliation was adapted. It is shown that the balance method is based on mathematics that provides valuable insight far beyond the basic types of calculation since the calculation takes place in higher dimensions. It is also shown that the operation of the algorithm can be represented graphically in the lower third dimension. The mass of oil contamination as well as the mass of biogenic and fossil matter could be determined for the RDF considered. Problems concerning relatively high uncertainties still need to be solved due to the similar elemental composition of plastics and oil. However, it is shown that the aBM is capable of distinguishing between more than two material fractions in RDF, which the other available methods cannot and which can be relevant for greenhouse gas reporting but also for process control purposes.
{"title":"IN SEARCH OF THE MATERIAL COMPOSITION OF REFUSE-DERIVED FUELS BY MEANS OF DATA RECONCILIATION AND GRAPHICAL REPRESENTATION","authors":"Therese SchwarzbaCk, M. Hahn, S. Spacek, J. Fellner","doi":"10.31025/2611-4135/2023.17262","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17262","url":null,"abstract":"Differenciating between material fractions in refuse-derived fuels (RDF) is relevant to determining the climate relevance of RDF (fractions of biomass and fossil matter). This differentiation is associated with analytical challenges. A method was applied using balance equations, which contain the elemental composition (C, H, N, S, O) of the RDF and the sought for material fractions. For the first time this so-called adapted Balance Method (aBM) was applied to oil-contaminated RDF with the aim of not only distinguishing between biomass and fossil matter but between fossil matter from plastics and from oil-contamination as well. Thus, the balance equations and the following data reconciliation was adapted. It is shown that the balance method is based on mathematics that provides valuable insight far beyond the basic types of calculation since the calculation takes place in higher dimensions. It is also shown that the operation of the algorithm can be represented graphically in the lower third dimension. The mass of oil contamination as well as the mass of biogenic and fossil matter could be determined for the RDF considered. Problems concerning relatively high uncertainties still need to be solved due to the similar elemental composition of plastics and oil. However, it is shown that the aBM is capable of distinguishing between more than two material fractions in RDF, which the other available methods cannot and which can be relevant for greenhouse gas reporting but also for process control purposes.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45574673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-19DOI: 10.31025/2611-4135/2023.17256
M. Miccio, Michela Fragranza, A. Zainutdinova, Blandine Tauleigne, P. Brachi, M. Casa, G. Ferrari, Natalya Kostryukova
this paper reports the experimental results of an on-going project running at lab-scale and aimed at the valorization of roasted hazelnut cuticles through both chemical (i.e., solvent extraction) and thermochemical treatment (i.e., torrefaction) routes. In particular, the potential of using water as a green solvent for the extraction of bioactive compounds (i.e., substances of chemical-food-pharmaceutical interest, such as the polyphenols) contained in residues originated by industrial processing of hazelnuts has been investigated, applying the conventional laboratory Soxhlet extraction procedure. A subsequent valorization stage has been explored for the spent post-extraction residues versus the “as collected” ones; they lend themselves to become “renewable” solid fuels thanks to torrefaction, which is a “mild” thermochemical conversion process. The obtained results are first presented in terms of theoretical yields of the bioactive compounds of interest with respect to the original mass of hazelnut residue; in addition, the findings on torrefaction are discussed in terms of performance indexes with respect to the torrefied fuel and quantitatively expressed as correlations as a function of temperature.
{"title":"VALORIZATION OF ROASTED HAZELNUT CUTICLES SUPPORTED BY LABORATORY TECHNIQUES","authors":"M. Miccio, Michela Fragranza, A. Zainutdinova, Blandine Tauleigne, P. Brachi, M. Casa, G. Ferrari, Natalya Kostryukova","doi":"10.31025/2611-4135/2023.17256","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17256","url":null,"abstract":"this paper reports the experimental results of an on-going project running at lab-scale and aimed at the valorization of roasted hazelnut cuticles through both chemical (i.e., solvent extraction) and thermochemical treatment (i.e., torrefaction) routes. In particular, the potential of using water as a green solvent for the extraction of bioactive compounds (i.e., substances of chemical-food-pharmaceutical interest, such as the polyphenols) contained in residues originated by industrial processing of hazelnuts has been investigated, applying the conventional laboratory Soxhlet extraction procedure. A subsequent valorization stage has been explored for the spent post-extraction residues versus the “as collected” ones; they lend themselves to become “renewable” solid fuels thanks to torrefaction, which is a “mild” thermochemical conversion process. The obtained results are first presented in terms of theoretical yields of the bioactive compounds of interest with respect to the original mass of hazelnut residue; in addition, the findings on torrefaction are discussed in terms of performance indexes with respect to the torrefied fuel and quantitatively expressed as correlations as a function of temperature.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43151628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-19DOI: 10.31025/2611-4135/2023.17257
Valentina Poli, M. Lavagnolo, A. Barausse, Elena Benetello, L. Palmeri
Concern about plastic pollution in coastal wetlands, seas and oceans has risen dramatically in recent years. Most of the waste found in the environment has a land-based origin and it is transported toward coastal-marine ecosystems through rivers and canals. Thus, waste collection in watercourses flowing through urban areas has a great potential to mitigate plastic pollution in local and coastal water bodies. In this paper, authors describe the results of three waste collection campaigns performed during 2021 (early summer, late summer and autumn) in three representative points of the channel network of the historical center of the city of Padova, Italy, where restoration efforts of the urban stream ecosystems are ongoing. The collected waste was analyzed both in terms of size and material type. A total of 418 kg of waste was collected: the prevailing fraction was the coarse one (59% of the material intercepted by a 100 mm side mesh sieve), and plastic represented the most abundant waste category (47% by weight). The total amount of litter produced in one year from the channel network of the city of Padova was estimated, with litter amounts on the canal banks found to be much higher than or at least comparable to those in water, a result which highlights the importance of planning waste collection together with riparian vegetation management to reduce plastic pollution. These findings provide a baseline for assessing the possibility to valorize the waste collected from the waterways of the city with processes other than landfilling and incineration
{"title":"WASTE CHARACTERIZATION IN THE URBAN CANAL NETWORK OF PADOVA (ITALY) TO MITIGATE DOWNSTREAM MARINE PLASTIC POLLUTION","authors":"Valentina Poli, M. Lavagnolo, A. Barausse, Elena Benetello, L. Palmeri","doi":"10.31025/2611-4135/2023.17257","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17257","url":null,"abstract":"Concern about plastic pollution in coastal wetlands, seas and oceans has risen dramatically in recent years. Most of the waste found in the environment has a land-based origin and it is transported toward coastal-marine ecosystems through rivers and canals. Thus, waste collection in watercourses flowing through urban areas has a great potential to mitigate plastic pollution in local and coastal water bodies. In this paper, authors describe the results of three waste collection campaigns performed during 2021 (early summer, late summer and autumn) in three representative points of the channel network of the historical center of the city of Padova, Italy, where restoration efforts of the urban stream ecosystems are ongoing. The collected waste was analyzed both in terms of size and material type. A total of 418 kg of waste was collected: the prevailing fraction was the coarse one (59% of the material intercepted by a 100 mm side mesh sieve), and plastic represented the most abundant waste category (47% by weight). The total amount of litter produced in one year from the channel network of the city of Padova was estimated, with litter amounts on the canal banks found to be much higher than or at least comparable to those in water, a result which highlights the importance of planning waste collection together with riparian vegetation management to reduce plastic pollution. These findings provide a baseline for assessing the possibility to valorize the waste collected from the waterways of the city with processes other than landfilling and incineration","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43905560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-08DOI: 10.31025/2611-4135/2023.17255
Kaitlen Drafts, Suzie Boxman, Scott Ribes, Mike Terry, B. Staley, N. Berge
Three Rivers Solid Waste Authority (TRSWA) operates a MSW landfill outside Jackson, South Carolina at which leachate is stored in a collection pond then trucked to a local wastewater treatment plant (WWTP) for treatment. This landfill operates a droplet spraying/misting system (referred to as the Lilypad system) to enhance leachate evaporation and ultimately reduce the quantity of leachate in the pond that requires subsequent treatment. Little work investigating the efficacy in using such a system to enhance leachate evaporation has been reported. The overall goal associated with this study was to quantify the amount of evaporation enhanced by the droplet spraying system and evaluate how the economics of the enhanced leachate evaporation compare to hauling leachate to a WWTP. This was accomplished by performing a water balance on the pond, developing a simple model to link leachate evaporation to the droplet spraying system, and performing an economic evaluation of the system. Overall, results from this work indicate the use of a droplet spraying/misting system to enhance leachate evaporation at on-site storage/collection ponds is effective, resulting in between 2.1 to 2.6 times more evaporation than what would occur naturally. In addition, the economic evaluation of this system indicates that operating the Lilypad system at maximum speed/flow for the greatest number of hours results in saving up to 7% of the total cost when compared to no operation of the Lilypad system.
{"title":"EVALULATION OF A DROPLET SPRAYING/MISTING SYSTEM TO ENHANCE LEACHATE EVAPORATION AND REDUCE LEACHATE TREATMENT COSTS: A CASE STUDY AT THE THREE RIVERS SOLID WASTE AUTHORITY LANDFILL","authors":"Kaitlen Drafts, Suzie Boxman, Scott Ribes, Mike Terry, B. Staley, N. Berge","doi":"10.31025/2611-4135/2023.17255","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17255","url":null,"abstract":"Three Rivers Solid Waste Authority (TRSWA) operates a MSW landfill outside Jackson, South Carolina at which leachate is stored in a collection pond then trucked to a local wastewater treatment plant (WWTP) for treatment. This landfill operates a droplet spraying/misting system (referred to as the Lilypad system) to enhance leachate evaporation and ultimately reduce the quantity of leachate in the pond that requires subsequent treatment. Little work investigating the efficacy in using such a system to enhance leachate evaporation has been reported. The overall goal associated with this study was to quantify the amount of evaporation enhanced by the droplet spraying system and evaluate how the economics of the enhanced leachate evaporation compare to hauling leachate to a WWTP. This was accomplished by performing a water balance on the pond, developing a simple model to link leachate evaporation to the droplet spraying system, and performing an economic evaluation of the system. Overall, results from this work indicate the use of a droplet spraying/misting system to enhance leachate evaporation at on-site storage/collection ponds is effective, resulting in between 2.1 to 2.6 times more evaporation than what would occur naturally. In addition, the economic evaluation of this system indicates that operating the Lilypad system at maximum speed/flow for the greatest number of hours results in saving up to 7% of the total cost when compared to no operation of the Lilypad system.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-08DOI: 10.31025/2611-4135/2023.17254
Mayankkumar Parmar, Bhavin Soni, Arth Jayesh Shah, S. Karmee
During biodiesel production process crude glycerol (a polyol) is obtained as a by-product. In this paper, an effort has been made for using it for pellet production from groundnut shell. Three types of pellets containing 20 wt%, 40 wt% and 60 wt% crude glycerol were prepared. Palletisation led to easy handling of biomass and also increases energy density. Furthermore, characterisation of prepared pellets was performed and subsequently, pyrolized. An increase of volatile matter from 72.45 wt% to 85.18 wt% in pellets was noted with addition of glycerol. Pyrolysis of glycerol containing pellets was carried out in batch (0.5kg) scale along with in-situ circulation of generated pyro-gas. Bio-oil yield increased from 30 wt% to 41 wt% in batch scale as glycerol content increased from 0 wt% to 60 wt%. Pyrolysis products were thoroughly characterised to understand the effects of crude glycerol addition. Calorific value of bio-char was increased from 20.89 MJ/kg to 23.67 MJ/kg as glycerol content increased. Calorific value of bio-oil was 32.66 MJ/kg. The pyro-gas produced was utilized to heat the pyrolysis reactor. Pyro-gas yield increased from 28 wt% to 32 wt% in batch scale as glycerol content increased. In-situ utilization of pyro-gas led to ~ 17% electricity saving.
{"title":"Pyrolysis of pellets prepared from groundnut shell and crude glycerol: in-situ utilization of pyro-gas and characterization of products","authors":"Mayankkumar Parmar, Bhavin Soni, Arth Jayesh Shah, S. Karmee","doi":"10.31025/2611-4135/2023.17254","DOIUrl":"https://doi.org/10.31025/2611-4135/2023.17254","url":null,"abstract":"During biodiesel production process crude glycerol (a polyol) is obtained as a by-product. In this paper, an effort has been made for using it for pellet production from groundnut shell. Three types of pellets containing 20 wt%, 40 wt% and 60 wt% crude glycerol were prepared. Palletisation led to easy handling of biomass and also increases energy density. Furthermore, characterisation of prepared pellets was performed and subsequently, pyrolized. An increase of volatile matter from 72.45 wt% to 85.18 wt% in pellets was noted with addition of glycerol. Pyrolysis of glycerol containing pellets was carried out in batch (0.5kg) scale along with in-situ circulation of generated pyro-gas. Bio-oil yield increased from 30 wt% to 41 wt% in batch scale as glycerol content increased from 0 wt% to 60 wt%. Pyrolysis products were thoroughly characterised to understand the effects of crude glycerol addition. Calorific value of bio-char was increased from 20.89 MJ/kg to 23.67 MJ/kg as glycerol content increased. Calorific value of bio-oil was 32.66 MJ/kg. The pyro-gas produced was utilized to heat the pyrolysis reactor. Pyro-gas yield increased from 28 wt% to 32 wt% in batch scale as glycerol content increased. In-situ utilization of pyro-gas led to ~ 17% electricity saving.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69398222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}