Pub Date : 2024-06-21DOI: 10.1109/TSTE.2024.3417249
Ahmed S. Alahmed;Lang Tong;Qing Zhao
The co-optimization of behind-the-meter distributed energy resources is considered for prosumers under the net energy metering tariff. The distributed energy resources considered include renewable generations, flexible demands, and battery energy storage systems. An energy management system co-optimizes the consumptions and battery storage based on locally available stochastic renewables by solving a stochastic dynamic program that maximizes the expected operation surplus. To circumvent the exponential complexity of the dynamic program solution, we propose a closed-form and linear computation complexity co-optimization algorithm based on a relaxation-projection approach to a constrained stochastic dynamic program. Sufficient conditions for optimality for the proposed solution are obtained. Numerical studies demonstrate orders of magnitude reduction of computation costs and significantly reduced optimality gap.
{"title":"Co-Optimizing Distributed Energy Resources in Linear Complexity Under Net Energy Metering","authors":"Ahmed S. Alahmed;Lang Tong;Qing Zhao","doi":"10.1109/TSTE.2024.3417249","DOIUrl":"10.1109/TSTE.2024.3417249","url":null,"abstract":"The co-optimization of behind-the-meter distributed energy resources is considered for prosumers under the net energy metering tariff. The distributed energy resources considered include renewable generations, flexible demands, and battery energy storage systems. An energy management system co-optimizes the consumptions and battery storage based on locally available stochastic renewables by solving a stochastic dynamic program that maximizes the expected operation surplus. To circumvent the exponential complexity of the dynamic program solution, we propose a closed-form and linear computation complexity co-optimization algorithm based on a relaxation-projection approach to a constrained stochastic dynamic program. Sufficient conditions for optimality for the proposed solution are obtained. Numerical studies demonstrate orders of magnitude reduction of computation costs and significantly reduced optimality gap.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2336-2348"},"PeriodicalIF":8.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved ω-ϕ Droop Control for Cascaded PV-ES System in Islanded Mode","authors":"Junlan Ou, Hua Han, Guangze Shi, Yajuan Guan, Abderezak Lashab, Josep M. Guerrero","doi":"10.1109/tste.2024.3415733","DOIUrl":"https://doi.org/10.1109/tste.2024.3415733","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"33 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1109/TSTE.2024.3410720
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TSTE.2024.3410720","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3410720","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"2138-2138"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1109/TSTE.2024.3410716
{"title":"IEEE Transactions on Sustainable Energy Publication Information","authors":"","doi":"10.1109/TSTE.2024.3410716","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3410716","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"C2-C2"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1109/TSTE.2024.3410726
{"title":"IEEE Transactions on Sustainable Energy Information for Authors","authors":"","doi":"10.1109/TSTE.2024.3410726","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3410726","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"C4-C4"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1109/TSTE.2024.3410724
{"title":"IEEE Industry Applications Society Information","authors":"","doi":"10.1109/TSTE.2024.3410724","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3410724","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"C3-C3"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1109/TSTE.2024.3410718
{"title":"Get Published in the New IEEE Open Access Journal of Power and Energy","authors":"","doi":"10.1109/TSTE.2024.3410718","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3410718","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"2140-2140"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1109/TSTE.2024.3416210
Xiaosheng Zhang;Tao Ding;Yang Xiao;Hongji Zhang;Jinbo Liu;Yishen Wang
The multistage solution is very important to achieve optimal hydrothermal economic dispatch considering the uncertainty of renewable energy sources. In data-driven settings, only some historical trajectories are available and the probability distribution is unknown. A data-driven scheme for multistage stochastic hydrothermal economic dispatch with Markovian uncertainties is proposed in this paper. Then a data-driven distributionally robust stochastic dual dynamic programming (DDR-SDDP) is proposed to tackle the corresponding computational intractability, where the conditional probability distributions are estimated by using kernel regression. The out-of-sample performances are improved by distributionally robust optimization on a Wasserstein distance-based ambiguity set. Furthermore, a scenario aggregation method is designed to reduce the computational burden. Numerical results for a practical regional power system in China are presented and analyzed to verify the effectiveness of the proposed method.
{"title":"Data-Driven Multistage Distribuionally Robust Programming to Hydrothermal Economic Dispatch With Renewable Energy Sources","authors":"Xiaosheng Zhang;Tao Ding;Yang Xiao;Hongji Zhang;Jinbo Liu;Yishen Wang","doi":"10.1109/TSTE.2024.3416210","DOIUrl":"10.1109/TSTE.2024.3416210","url":null,"abstract":"The multistage solution is very important to achieve optimal hydrothermal economic dispatch considering the uncertainty of renewable energy sources. In data-driven settings, only some historical trajectories are available and the probability distribution is unknown. A data-driven scheme for multistage stochastic hydrothermal economic dispatch with Markovian uncertainties is proposed in this paper. Then a data-driven distributionally robust stochastic dual dynamic programming (DDR-SDDP) is proposed to tackle the corresponding computational intractability, where the conditional probability distributions are estimated by using kernel regression. The out-of-sample performances are improved by distributionally robust optimization on a Wasserstein distance-based ambiguity set. Furthermore, a scenario aggregation method is designed to reduce the computational burden. Numerical results for a practical regional power system in China are presented and analyzed to verify the effectiveness of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2322-2335"},"PeriodicalIF":8.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventionally, parallel-connected or series-connected power quality control devices cannot compensate for both the voltage fluctuation and reactive power simultaneously. To improve the equipment utilization and reliability of the existing power quality control devices, a multi-functional integrated converter (MFIC) is proposed, which can effectively integrate the functions of both dynamic voltage restoration and reactive power compensation. When the grid voltage sags or swells, the MFIC works in the series access mode to achieve voltage regulation function. When the grid voltage is normal, the MFIC works in the parallel access mode to achieve unity power factor operation at the grid side. Compared with the traditional series-connected power quality control device, the MFIC only has one more coupling capacitor, markedly improving the utilization factor of equipment. In addition, the port voltage of the converter module in MFIC is clamped to zero when a short circuit or grounding fault occurs. Meanwhile, a large equivalent impedance is formed to effectively limit the line fault current, which improves the reliability of the MFIC itself and its connected grid as well. Furthermore, the effectiveness and feasibility of the proposed topology and strategy are verified by simulation and experimental results.
{"title":"A Multi-Functional Integrated Converter for Dynamic Voltage Restoration and Reactive Power Compensation in Active Distribution Networks","authors":"Qi Guo;Yuchao Hou;Chunming Tu;Zejun Huang;Fei Jiang;Lei Wang;Fan Xiao","doi":"10.1109/TSTE.2024.3413540","DOIUrl":"10.1109/TSTE.2024.3413540","url":null,"abstract":"Conventionally, parallel-connected or series-connected power quality control devices cannot compensate for both the voltage fluctuation and reactive power simultaneously. To improve the equipment utilization and reliability of the existing power quality control devices, a multi-functional integrated converter (MFIC) is proposed, which can effectively integrate the functions of both dynamic voltage restoration and reactive power compensation. When the grid voltage sags or swells, the MFIC works in the series access mode to achieve voltage regulation function. When the grid voltage is normal, the MFIC works in the parallel access mode to achieve unity power factor operation at the grid side. Compared with the traditional series-connected power quality control device, the MFIC only has one more coupling capacitor, markedly improving the utilization factor of equipment. In addition, the port voltage of the converter module in MFIC is clamped to zero when a short circuit or grounding fault occurs. Meanwhile, a large equivalent impedance is formed to effectively limit the line fault current, which improves the reliability of the MFIC itself and its connected grid as well. Furthermore, the effectiveness and feasibility of the proposed topology and strategy are verified by simulation and experimental results.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2299-2309"},"PeriodicalIF":8.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}