Pengfei Feng, Huiqing Jin, Linfeng Zhao, Mingyu Lu
In order to improve the intelligent vehicle lane-changing performance, an active lane-changing control algorithm is proposed considering the changes of road curvature and vehicle speed. Firstly, the vehicle dynamics model considering vehicle speed variation and lane-changing safety distance is established, and the expected lane-changing trajectory model under the curved road is designed simultaneously. Then, taking the yaw rate and longitudinal speed as the control objectives of lateral and longitudinal motions, respectively, the sliding-mode variable structure control method based on Lyapunov stability condition is adopted, and the trajectory tracking controller is designed by combining the inverted method to track the desired lane-changing trajectory. Finally, the lane-changing trajectory model and trajectory tracking controller are verified in simulation platform of CarSim/Simulink and hardware-in-the-loop (HIL) test bench. The results show that the proposed trajectory tracking control method can perform the lane-changing behavior well under different road curvatures and vehicle speeds while maintaining high trajectory tracking control accuracy.
{"title":"Active Lane-Changing Control of Intelligent Vehicle on Curved Section of Expressway","authors":"Pengfei Feng, Huiqing Jin, Linfeng Zhao, Mingyu Lu","doi":"10.1155/2022/9374118","DOIUrl":"https://doi.org/10.1155/2022/9374118","url":null,"abstract":"In order to improve the intelligent vehicle lane-changing performance, an active lane-changing control algorithm is proposed considering the changes of road curvature and vehicle speed. Firstly, the vehicle dynamics model considering vehicle speed variation and lane-changing safety distance is established, and the expected lane-changing trajectory model under the curved road is designed simultaneously. Then, taking the yaw rate and longitudinal speed as the control objectives of lateral and longitudinal motions, respectively, the sliding-mode variable structure control method based on Lyapunov stability condition is adopted, and the trajectory tracking controller is designed by combining the inverted method to track the desired lane-changing trajectory. Finally, the lane-changing trajectory model and trajectory tracking controller are verified in simulation platform of CarSim/Simulink and hardware-in-the-loop (HIL) test bench. The results show that the proposed trajectory tracking control method can perform the lane-changing behavior well under different road curvatures and vehicle speeds while maintaining high trajectory tracking control accuracy.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"11 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81969910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although hydraulic fracturing has been practiced all over the world, the research on how the fracture height develops in time and space still leaves some missing gaps. The fracture height has been considered in most cases equal to the pay zone thickness, and the influence of temperature in this process has been omitted. Therefore, the aim of this paper is to study the effect of temperature, rock mechanical properties, and fluid injection rate on the development of the fracture geometry, especially on the fracture height. A multiphysics model was implemented using cohesive elements in a finite element model generated with equations in fracture mechanics. Once the model was calibrated with experimental data, it was used to conduct sensitivity studies to reveal the influence of main contributed factors such as the properties of rocks and fluids used in hydraulic fracturing, the injection rate of fracturing liquid, and especially the influence of temperature because this last aspect was omitted in literature review from previous studies. The results indicated that the fracture height depended strongly on the rock properties, not only the rock in the pay zone but also the ones in the adjacent layers. Besides, the influence of the fluid injection rate on the fracturing height is so great that it overwhelms the influence of temperature and mechanical parameters. Moreover, the impact of the leak-off coefficient is much less remarkable than that of the fluid viscosity, which demonstrates why in reality it is important to control the viscosity to achieve desirable results. This study can be applied in real life problems to predict fracture’s geometry generated in well stimulations.
{"title":"Application of the Finite Element Method Using Cohesive Elements to Model the Effect of Temperature, Rock Mechanical Properties, Fluid Injection Rate, and Fluid Properties on the Development of Hydraulic Fracture Height","authors":"S. Pham, Ba Ngoc Anh Nguyen","doi":"10.1155/2022/7413457","DOIUrl":"https://doi.org/10.1155/2022/7413457","url":null,"abstract":"Although hydraulic fracturing has been practiced all over the world, the research on how the fracture height develops in time and space still leaves some missing gaps. The fracture height has been considered in most cases equal to the pay zone thickness, and the influence of temperature in this process has been omitted. Therefore, the aim of this paper is to study the effect of temperature, rock mechanical properties, and fluid injection rate on the development of the fracture geometry, especially on the fracture height. A multiphysics model was implemented using cohesive elements in a finite element model generated with equations in fracture mechanics. Once the model was calibrated with experimental data, it was used to conduct sensitivity studies to reveal the influence of main contributed factors such as the properties of rocks and fluids used in hydraulic fracturing, the injection rate of fracturing liquid, and especially the influence of temperature because this last aspect was omitted in literature review from previous studies. The results indicated that the fracture height depended strongly on the rock properties, not only the rock in the pay zone but also the ones in the adjacent layers. Besides, the influence of the fluid injection rate on the fracturing height is so great that it overwhelms the influence of temperature and mechanical parameters. Moreover, the impact of the leak-off coefficient is much less remarkable than that of the fluid viscosity, which demonstrates why in reality it is important to control the viscosity to achieve desirable results. This study can be applied in real life problems to predict fracture’s geometry generated in well stimulations.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"29 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84849747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duc Ngoc Nguyen, N. Dang, Thi Thu Huong Tran, Thang Binh Hoang, T. Nguyen
The phenomenon of vehicle rollover usually occurs when the driver suddenly steers at high speed. The centrifugal force will appear and cause the vehicle’s body to tilt. To overcome this situation, the solution of using the stabilizer bar is proposed. The passive stabilizer bar has a simple structure, low cost, and long service life. As a result, it is now a standard on most vehicles. This paper has established a dynamic model to describe a vehicle’s oscillation. As a result of the study, the maximum roll angle of the vehicle was reduced from 9.0° to 8.2° when the stabilizer bar was used. Besides, the minimum value of the vertical force at the wheel reached 485(N) and 1162(N), respectively, corresponding to the two survey cases. The movement trajectory of the vehicle when using the stabilizer bar does not have a big difference compared to the case when the vehicle does not use the stabilizer bar. So, the vehicle’s stability and safety can be effectively improved. This is the basis for further developing complex stable bar patterns in the future.
{"title":"Effect of the Passive Stabilizer Bar on the Vehicle’s Stability","authors":"Duc Ngoc Nguyen, N. Dang, Thi Thu Huong Tran, Thang Binh Hoang, T. Nguyen","doi":"10.1155/2022/5523012","DOIUrl":"https://doi.org/10.1155/2022/5523012","url":null,"abstract":"The phenomenon of vehicle rollover usually occurs when the driver suddenly steers at high speed. The centrifugal force will appear and cause the vehicle’s body to tilt. To overcome this situation, the solution of using the stabilizer bar is proposed. The passive stabilizer bar has a simple structure, low cost, and long service life. As a result, it is now a standard on most vehicles. This paper has established a dynamic model to describe a vehicle’s oscillation. As a result of the study, the maximum roll angle of the vehicle was reduced from 9.0° to 8.2° when the stabilizer bar was used. Besides, the minimum value of the vertical force at the wheel reached 485(N) and 1162(N), respectively, corresponding to the two survey cases. The movement trajectory of the vehicle when using the stabilizer bar does not have a big difference compared to the case when the vehicle does not use the stabilizer bar. So, the vehicle’s stability and safety can be effectively improved. This is the basis for further developing complex stable bar patterns in the future.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"55 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89178427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper illustrates the way a proposed quantum voting scheme can be designed in combination with a steganography technique called Least Significant Bit (LSB), by modifying a small number of pixels in multiple grayscale images. It combines the voting scheme with the novel enhanced quantum representation (NEQR) of an image, where the LSBs of these pixels represent the vote for each entity that takes part in the voting process. A server is also used, not only to count but also to guarantee the integrity of the votes (which is done inherently, by its design and quantum properties). The superdense coding circuit is part of the design, allowing each voter to use one qubit in order to transmit two classical bits (the vote value). The selected platform for testing this scheme is IBM Quantum Experience, together with the open-source framework called Qiskit (written in Python). This framework allows users to create various quantum circuits, using a wide selection of quantum gates, and then to simulate them, either on a simulator or on a real quantum device. The quantum circuits and the measurement results are also presented in this paper.
{"title":"Integration of a Quantum Voting Scheme into Grayscale Images Using the Novel Enhanced Quantum Representation and Qiskit Framework","authors":"A. Tudorache, V. Manta, S. Caraiman","doi":"10.1155/2022/8128754","DOIUrl":"https://doi.org/10.1155/2022/8128754","url":null,"abstract":"This paper illustrates the way a proposed quantum voting scheme can be designed in combination with a steganography technique called Least Significant Bit (LSB), by modifying a small number of pixels in multiple grayscale images. It combines the voting scheme with the novel enhanced quantum representation (NEQR) of an image, where the LSBs of these pixels represent the vote for each entity that takes part in the voting process. A server is also used, not only to count but also to guarantee the integrity of the votes (which is done inherently, by its design and quantum properties). The superdense coding circuit is part of the design, allowing each voter to use one qubit in order to transmit two classical bits (the vote value). The selected platform for testing this scheme is IBM Quantum Experience, together with the open-source framework called Qiskit (written in Python). This framework allows users to create various quantum circuits, using a wide selection of quantum gates, and then to simulate them, either on a simulator or on a real quantum device. The quantum circuits and the measurement results are also presented in this paper.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"9 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85156253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashutosh Sharma, Akash Saxena, S. K. Dinkar, Rajesh Kumar, A. Al‐Sumaiti
Continuous power consumption from standard fuel resources is responsible for producing large-scale environmental greenhouse gases. Production of biodiesel fuels from the vegetable oils can be considered an alternative source. Effect of greenhouse gases can also be diminished. The production of biodiesel is done by a chemical process namely transesterification and usually maximized by using the Response Surface Methodology (RSM) tool. This paper presents a new approach to optimize the production of biodiesel by introducing a new variant of recently published metaheuristic Harris Hawk Optimization (HHO). The developed variant is based on the replacement of random numbers of normal distribution at the initialization phase by the random numbers generated from the Laplacian distribution. The proposed variant is named as the Laplacian Harris Hawk Optimization (LHHO) algorithm. The contribution of this paper is in twofold: firstly the performance of the proposed algorithm is verified over a well-known set of benchmark functions, and then, we applied the LHHO to maximize biodiesel production. Comparison of LHHO is carried out with five other recent metaheuristic algorithms. An optimization routine is formulated in the form of a single-objective function with a temperature, methanol to oil ratio, and catalyst concentration as the optimization variables. These parameters are optimized to maximize the production of biodiesel. The results obtained using the proposed LHHO show significant improvement as compared to other algorithms.
{"title":"Process Optimization of Biodiesel Production Using the Laplacian Harris Hawk Optimization (LHHO) Algorithm","authors":"Ashutosh Sharma, Akash Saxena, S. K. Dinkar, Rajesh Kumar, A. Al‐Sumaiti","doi":"10.1155/2022/6766045","DOIUrl":"https://doi.org/10.1155/2022/6766045","url":null,"abstract":"Continuous power consumption from standard fuel resources is responsible for producing large-scale environmental greenhouse gases. Production of biodiesel fuels from the vegetable oils can be considered an alternative source. Effect of greenhouse gases can also be diminished. The production of biodiesel is done by a chemical process namely transesterification and usually maximized by using the Response Surface Methodology (RSM) tool. This paper presents a new approach to optimize the production of biodiesel by introducing a new variant of recently published metaheuristic Harris Hawk Optimization (HHO). The developed variant is based on the replacement of random numbers of normal distribution at the initialization phase by the random numbers generated from the Laplacian distribution. The proposed variant is named as the Laplacian Harris Hawk Optimization (LHHO) algorithm. The contribution of this paper is in twofold: firstly the performance of the proposed algorithm is verified over a well-known set of benchmark functions, and then, we applied the LHHO to maximize biodiesel production. Comparison of LHHO is carried out with five other recent metaheuristic algorithms. An optimization routine is formulated in the form of a single-objective function with a temperature, methanol to oil ratio, and catalyst concentration as the optimization variables. These parameters are optimized to maximize the production of biodiesel. The results obtained using the proposed LHHO show significant improvement as compared to other algorithms.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"12 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82963275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most of the real contaminant problems are defined domains that are geometrically complex and can have different boundary conditions in different areas. Therefore, it is usually difficult to find a solution analytically, so we use the approximate method to generate an approximate function. One answer to this problem is the finite element approach (FEM). This study presents a partial differential equation (PDE) simulation system that uses numerical techniques for the distribution of pollutant concentrations in groundwater in space and time. The movement of the liquid is described by the incompressible steady-state Navier-Strokes equation, while the transport of pollutants is described by the diffusion-convention equation. The variation formulation that forms the basis of FEM and MATLAB is discussed along with the selection of the abstract approximation space and the welfare of the weak formulation. The motivation for this study comes from a specific and considered water body with the discharge of factory effluents on the ground that ends up reducing the quality of groundwater. First, the fluid flow equation is solved to obtain velocity and pressure profiles. Steady-state concentration profiles were obtained for various values of diffusion coefficient ( D ), baseline, and input concentrations. The results showed that decreasing the diffusion coefficient D increased the number of pollutants for convective transport and decreased the number of pollutants that diffused from the entrance. Although groundwater is not completely safe, it is concluded that experimental studies are necessary decision-making basis for water resource protection, especially in water pollution emergencies.
{"title":"Numerical Simulation of a Two-Dimensional Groundwater Pollute Transport Problem Using Incompressible Steady-State Navier-Stokes Equations and Diffusion-Convection Equations","authors":"J. Nyende, Isaac Enyogoi, J. Mango, H. Kasumba","doi":"10.1155/2022/7419502","DOIUrl":"https://doi.org/10.1155/2022/7419502","url":null,"abstract":"Most of the real contaminant problems are defined domains that are geometrically complex and can have different boundary conditions in different areas. Therefore, it is usually difficult to find a solution analytically, so we use the approximate method to generate an approximate function. One answer to this problem is the finite element approach (FEM). This study presents a partial differential equation (PDE) simulation system that uses numerical techniques for the distribution of pollutant concentrations in groundwater in space and time. The movement of the liquid is described by the incompressible steady-state Navier-Strokes equation, while the transport of pollutants is described by the diffusion-convention equation. The variation formulation that forms the basis of FEM and MATLAB is discussed along with the selection of the abstract approximation space and the welfare of the weak formulation. The motivation for this study comes from a specific and considered water body with the discharge of factory effluents on the ground that ends up reducing the quality of groundwater. First, the fluid flow equation is solved to obtain velocity and pressure profiles. Steady-state concentration profiles were obtained for various values of diffusion coefficient (\u0000 \u0000 D\u0000 \u0000 ), baseline, and input concentrations. The results showed that decreasing the diffusion coefficient \u0000 \u0000 D\u0000 \u0000 increased the number of pollutants for convective transport and decreased the number of pollutants that diffused from the entrance. Although groundwater is not completely safe, it is concluded that experimental studies are necessary decision-making basis for water resource protection, especially in water pollution emergencies.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"80 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85518883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Balakrishnan, S. Kolappapillai, S. Muthusamy, K. Abdul, C. E. S. Sreedharan, Sivaraj Murugan
It is mandatory to improve the design of the flat plate collector (FPC) used for solar thermal applications to perform well. One way to improve the performance characteristics of FPC is to retain the heat energy available inside the collector. That is, a collector should be capable to give more heat energy to working fluid for a longer duration. It has been implemented in such a way in an entertained and improved model which is known as solar cavity collector (SCC). It consists of 5 numbers of cavities equipped with inlet and outlet tubes. The same having with an enclosure has been constructed and investigated to find the optimal performance. In general, the physical dimensions of the collector influence more the functioning behaviors of SCC. The performance variables that are considered for the present study are the comparison between 5 and 7 numbers of cavities and the effect of aperture entry. Collector angle of tilt, two types of flow mode, and water mass flow rates are the other performance variables that are also considered. The data from the experimentations are trained, tested, and validated with the help of the artificial neural network (ANN). The accuracy of the model is 96%, and the end results revealed the same trend followed by both experimental and ANN simulation results. Also, the variations that occur between ANN and experimented results are ±4%.
{"title":"Performance Characterization of a Solar Cavity Collector Using Artificial Neural Network","authors":"L. Balakrishnan, S. Kolappapillai, S. Muthusamy, K. Abdul, C. E. S. Sreedharan, Sivaraj Murugan","doi":"10.1155/2022/7129833","DOIUrl":"https://doi.org/10.1155/2022/7129833","url":null,"abstract":"It is mandatory to improve the design of the flat plate collector (FPC) used for solar thermal applications to perform well. One way to improve the performance characteristics of FPC is to retain the heat energy available inside the collector. That is, a collector should be capable to give more heat energy to working fluid for a longer duration. It has been implemented in such a way in an entertained and improved model which is known as solar cavity collector (SCC). It consists of 5 numbers of cavities equipped with inlet and outlet tubes. The same having with an enclosure has been constructed and investigated to find the optimal performance. In general, the physical dimensions of the collector influence more the functioning behaviors of SCC. The performance variables that are considered for the present study are the comparison between 5 and 7 numbers of cavities and the effect of aperture entry. Collector angle of tilt, two types of flow mode, and water mass flow rates are the other performance variables that are also considered. The data from the experimentations are trained, tested, and validated with the help of the artificial neural network (ANN). The accuracy of the model is 96%, and the end results revealed the same trend followed by both experimental and ANN simulation results. Also, the variations that occur between ANN and experimented results are ±4%.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"3 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78500531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field method is one of the main aims. This potential field will lean on the use of Laplace’s equation to restrain the formation of a potential function across regions within the mobile robot configuration area. The present paper proposed a Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) approach to improve the pathfinding of mobile robots in a given environment. The experiment shows that, by using a finite difference method, it is capable of producing an optimal path and creating a smooth path between the starting and target point. The results of the simulation also show that this numerical approach works more rapidly and provides a smoother/clearer direction than the previous study.
{"title":"Pathfinding for Mobile Robot Navigation by Exerting the Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) Iterative Approach via the Laplacian Operator","authors":"A. A. Dahalan, A. Saudi, J. Sulaiman","doi":"10.1155/2022/9388146","DOIUrl":"https://doi.org/10.1155/2022/9388146","url":null,"abstract":"Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field method is one of the main aims. This potential field will lean on the use of Laplace’s equation to restrain the formation of a potential function across regions within the mobile robot configuration area. The present paper proposed a Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) approach to improve the pathfinding of mobile robots in a given environment. The experiment shows that, by using a finite difference method, it is capable of producing an optimal path and creating a smooth path between the starting and target point. The results of the simulation also show that this numerical approach works more rapidly and provides a smoother/clearer direction than the previous study.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"52 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86864804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Mulyanti, C. Wulandari, L. Hasanah, R. Pawinanto, I. Hamidah
In the third generation of the solar cell era, significant trends in the development of perovskite solar cells (PSC) were observed. Exploring suitable materials for its wafer structure, such as perovskite and electron transport layers (ETL), were a major emphasis of high-performance PSC development. Because of its matching band structure to MaPbI3, TiO2 is the most often utilized material for ETL. However, in the application of TiO2 to PSC, electron trapping and a wide energy gap become a drawback. The goal of this research is to improve the absorption performance of PSC employing ETL with Fe and Ta-doped TiO2 as well as the thickness of the material. The interaction between the electromagnetic waves of light and the solar cell structure was calculated using Finite-Difference Time-Domain (FDTD) simulations, which resulted in the absorption spectra. In comparison to pure TiO2, which absorbs only 79.5% of the incident light, Fe-TiO2 and Ta-TiO2 as ETL in solar cells have increased absorption spectra to 81.7% and 81.2%, respectively. Finally, we may conclude that the optimum ETL layer parameters are 0.32% Fe doping and a thickness of 100 nm.
{"title":"Absorption Performance of Doped TiO2-Based Perovskite Solar Cell using FDTD Simulation","authors":"B. Mulyanti, C. Wulandari, L. Hasanah, R. Pawinanto, I. Hamidah","doi":"10.1155/2022/9299279","DOIUrl":"https://doi.org/10.1155/2022/9299279","url":null,"abstract":"In the third generation of the solar cell era, significant trends in the development of perovskite solar cells (PSC) were observed. Exploring suitable materials for its wafer structure, such as perovskite and electron transport layers (ETL), were a major emphasis of high-performance PSC development. Because of its matching band structure to MaPbI3, TiO2 is the most often utilized material for ETL. However, in the application of TiO2 to PSC, electron trapping and a wide energy gap become a drawback. The goal of this research is to improve the absorption performance of PSC employing ETL with Fe and Ta-doped TiO2 as well as the thickness of the material. The interaction between the electromagnetic waves of light and the solar cell structure was calculated using Finite-Difference Time-Domain (FDTD) simulations, which resulted in the absorption spectra. In comparison to pure TiO2, which absorbs only 79.5% of the incident light, Fe-TiO2 and Ta-TiO2 as ETL in solar cells have increased absorption spectra to 81.7% and 81.2%, respectively. Finally, we may conclude that the optimum ETL layer parameters are 0.32% Fe doping and a thickness of 100 nm.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"414 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76624820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akinleye Sowunmi, V. Efeovbokhan, O. Orodu, O. Olabode, Alma Oputa
Polymers increase the macroscopic efficiency of the flooding process and increase crude oil recovery. The viscosity of 3 polymers xanthan, guar, and Arabic gums is measured in the lab and experimented with as EOR options. Xanthan and guar gum polymers are measured in weight percentages of 0.1, 0.2, 0.2, 0.4, 0.5, and 1, while gum Arabic is measured in 0.4, 0.5, 1, 5, 10, and 15 weight percentages. The viscosity experiments showed that gum Arabic had the lowest viscosity at 15% wt. Xanthan gum and guar gum had significantly higher viscosities than gum Arabic at corresponding weight percentages. At the same weight of 0.5%, xanthan, guar, and Arabic gums recorded a 63%, 53%, and 46% oil recovery, respectively. Due to the limitations surrounding core flooding experiments such as human error, equipment failure, and measurement of oil recoveries, it is necessary to validate the results obtained with other methods such as reservoir simulation. A reservoir model is built (using Eclipse) and incorporated with polymer and viscosity functions measured in the lab to validate results from the core flooding experiments. Peak oil recovery of 9.96%, 9.95%, and 9.90% was recorded for xanthan, guar, and Arabic gum, respectively, at a weight percentage of 0.5% weight. Also, increasing the wt% of injected polymers increases oil recovery. Results also indicate that the trend of oil recoveries during core flooding follows that observed during reservoir simulation and oil production increased as percentage weight increased for all the polymer cases considered.
{"title":"Comparative Study of Biopolymer Flooding: A Core Flooding and Numerical Reservoir Simulator Validation Analysis","authors":"Akinleye Sowunmi, V. Efeovbokhan, O. Orodu, O. Olabode, Alma Oputa","doi":"10.1155/2022/9420899","DOIUrl":"https://doi.org/10.1155/2022/9420899","url":null,"abstract":"Polymers increase the macroscopic efficiency of the flooding process and increase crude oil recovery. The viscosity of 3 polymers xanthan, guar, and Arabic gums is measured in the lab and experimented with as EOR options. Xanthan and guar gum polymers are measured in weight percentages of 0.1, 0.2, 0.2, 0.4, 0.5, and 1, while gum Arabic is measured in 0.4, 0.5, 1, 5, 10, and 15 weight percentages. The viscosity experiments showed that gum Arabic had the lowest viscosity at 15% wt. Xanthan gum and guar gum had significantly higher viscosities than gum Arabic at corresponding weight percentages. At the same weight of 0.5%, xanthan, guar, and Arabic gums recorded a 63%, 53%, and 46% oil recovery, respectively. Due to the limitations surrounding core flooding experiments such as human error, equipment failure, and measurement of oil recoveries, it is necessary to validate the results obtained with other methods such as reservoir simulation. A reservoir model is built (using Eclipse) and incorporated with polymer and viscosity functions measured in the lab to validate results from the core flooding experiments. Peak oil recovery of 9.96%, 9.95%, and 9.90% was recorded for xanthan, guar, and Arabic gum, respectively, at a weight percentage of 0.5% weight. Also, increasing the wt% of injected polymers increases oil recovery. Results also indicate that the trend of oil recoveries during core flooding follows that observed during reservoir simulation and oil production increased as percentage weight increased for all the polymer cases considered.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"101 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80842747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}