首页 > 最新文献

IEEE Transactions on Radiation and Plasma Medical Sciences最新文献

英文 中文
Technological Developments and Future Perspectives in Particle Therapy: A Topical Review 粒子疗法的技术发展与未来展望:专题回顾
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-11 DOI: 10.1109/TRPMS.2024.3372189
Aafke Christine Kraan;Alberto Del Guerra
In the last decades, important technological progress has been made to enhance the quality and efficiency of particle therapy treatments. Continuous improvements in dose delivery, treatment planning and verification techniques have led to higher-dose conformity and better sparing of healthy tissue. At the same time, particle therapy treatments are complex and much more expensive than conventional radiotherapy, and only highly specialized facilities can offer these treatments. Cost reduction is thus a strong drive behind technological developments in the field. The number of treatment facilities offering proton and carbon therapy has strongly grown in the last decades, and the amount of research efforts and innovations have increased continuously. From a technological perspective, advances in hardware are often accompanied by innovations in software and computation, and vice versa. In this review we will present a basic overview of technological advances in particle therapy hardware (accelerators, gantries, applications of superconductivity, treatment verification techniques), software (Monte Carlo simulations, treatment planning calculations), and studies toward clinical applications. By combining a broad selection of topics into a single review and by covering both proton and carbon therapy, we aim at providing the reader a unique overview of the evolution of various technologies developed for particle therapy.
过去几十年来,在提高粒子治疗质量和效率方面取得了重要的技术进步。剂量投放、治疗计划和验证技术的不断改进,使得剂量符合性更高,并能更好地保护健康组织。与此同时,粒子治疗比传统放疗复杂且昂贵得多,只有高度专业化的设施才能提供这种治疗。因此,降低成本是该领域技术发展的强大动力。在过去的几十年里,提供质子和碳治疗的治疗机构数量急剧增加,研究工作和创新也不断增多。从技术角度看,硬件的进步往往伴随着软件和计算的创新,反之亦然。在这篇综述中,我们将对粒子治疗硬件(加速器、龙门架、超导应用、治疗验证技术)、软件(蒙特卡罗模拟、治疗规划计算)以及临床应用研究方面的技术进步进行基本概述。通过将广泛的选题整合到一篇综述中,并同时涵盖质子治疗和碳治疗,我们旨在为读者提供有关粒子治疗各种技术发展的独特概览。
{"title":"Technological Developments and Future Perspectives in Particle Therapy: A Topical Review","authors":"Aafke Christine Kraan;Alberto Del Guerra","doi":"10.1109/TRPMS.2024.3372189","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3372189","url":null,"abstract":"In the last decades, important technological progress has been made to enhance the quality and efficiency of particle therapy treatments. Continuous improvements in dose delivery, treatment planning and verification techniques have led to higher-dose conformity and better sparing of healthy tissue. At the same time, particle therapy treatments are complex and much more expensive than conventional radiotherapy, and only highly specialized facilities can offer these treatments. Cost reduction is thus a strong drive behind technological developments in the field. The number of treatment facilities offering proton and carbon therapy has strongly grown in the last decades, and the amount of research efforts and innovations have increased continuously. From a technological perspective, advances in hardware are often accompanied by innovations in software and computation, and vice versa. In this review we will present a basic overview of technological advances in particle therapy hardware (accelerators, gantries, applications of superconductivity, treatment verification techniques), software (Monte Carlo simulations, treatment planning calculations), and studies toward clinical applications. By combining a broad selection of topics into a single review and by covering both proton and carbon therapy, we aim at providing the reader a unique overview of the evolution of various technologies developed for particle therapy.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"453-481"},"PeriodicalIF":4.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10466736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease 基于深度学习的帕金森病多巴胺转运体 SPECT 跨模态纹状体分割技术
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-08 DOI: 10.1109/TRPMS.2024.3398360
Haiyan Wang;Han Jiang;Gefei Chen;Yu Du;Zhonglin Lu;Zhanli Hu;Greta S. P. Mok
Striatum segmentation on dopamine transporter (DaT) SPECT is necessary to quantify striatal uptake for Parkinson’s disease (PD), but is challenging due to the inferior resolution. This work proposes a cross-modality automatic striatum segmentation, estimating MR-derived striatal contours from clinical SPECT images using the deep learning (DL) methods. 123I-Ioflupane DaT SPECT and T1-weighted MR images from 200 subjects with 152 PD and 48 healthy controls are analyzed from the Parkinson’s progression markers initiative database. SPECT and MR images are registered, and four striatal compartment contours are manually segmented from MR images as the label. DL methods including nnU-Net, U-Net, generative adversarial networks, and SPECT thresholding-based method are implemented for comparison. SPECT and MR label pairs are split into train, validation, and test groups (136:24:40). Dice, Hausdorff distance (HD) 95%, and relative volume difference (RVD), striatal binding ratio (SBR) and asymmetry index (ASI) are analyzed. Results show that nnU-Net achieves better Dice (~0.7), HD 95% (~1.8), and RVD (~0.1) as compared to other methods for all striatal compartments and whole striatum. For clinical PD evaluation, nnU-Net also yields strong SBR consistency (mean difference, −0.012) and ASI correlation (Pearson correlation coefficient, 0.81). The proposed DL-based cross-modality striatum segmentation method is feasible for clinical DaT SPECT in PD.
多巴胺转运体(DaT)SPECT 的纹状体分割对于量化帕金森病(PD)的纹状体摄取量非常必要,但由于分辨率较低,因此具有挑战性。这项研究提出了一种跨模态纹状体自动分割方法,利用深度学习(DL)方法从临床 SPECT 图像中估计 MR 导出的纹状体轮廓。该研究分析了帕金森病进展标志物倡议数据库中的 123I-Ioflupane DaT SPECT 和 T1 加权 MR 图像,这些图像来自 200 名患有帕金森病的 152 名受试者和 48 名健康对照者。对 SPECT 和 MR 图像进行注册,并从 MR 图像中手动分割出四个纹状体区段轮廓作为标签。比较采用的 DL 方法包括 nnU-Net、U-Net、生成式对抗网络和基于 SPECT 阈值的方法。SPECT 和 MR 标签对被分成训练组、验证组和测试组 (136:24:40)。对骰子、豪斯多夫距离(HD)95%、相对体积差(RVD)、纹状体结合率(SBR)和不对称指数(ASI)进行分析。结果表明,与其他方法相比,nnU-Net 在所有纹状体区和整个纹状体的 Dice(约 0.7)、HD 95%(约 1.8)和 RVD(约 0.1)方面都有更好的表现。在临床帕金森病评估中,nnU-Net 还具有很强的 SBR 一致性(平均差为 -0.012)和 ASI 相关性(皮尔逊相关系数为 0.81)。所提出的基于DL的跨模态纹状体分割方法在临床DaT SPECT治疗帕金森病中是可行的。
{"title":"Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease","authors":"Haiyan Wang;Han Jiang;Gefei Chen;Yu Du;Zhonglin Lu;Zhanli Hu;Greta S. P. Mok","doi":"10.1109/TRPMS.2024.3398360","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3398360","url":null,"abstract":"Striatum segmentation on dopamine transporter (DaT) SPECT is necessary to quantify striatal uptake for Parkinson’s disease (PD), but is challenging due to the inferior resolution. This work proposes a cross-modality automatic striatum segmentation, estimating MR-derived striatal contours from clinical SPECT images using the deep learning (DL) methods. \u0000<sup>123</sup>\u0000I-Ioflupane DaT SPECT and T1-weighted MR images from 200 subjects with 152 PD and 48 healthy controls are analyzed from the Parkinson’s progression markers initiative database. SPECT and MR images are registered, and four striatal compartment contours are manually segmented from MR images as the label. DL methods including nnU-Net, U-Net, generative adversarial networks, and SPECT thresholding-based method are implemented for comparison. SPECT and MR label pairs are split into train, validation, and test groups (136:24:40). Dice, Hausdorff distance (HD) 95%, and relative volume difference (RVD), striatal binding ratio (SBR) and asymmetry index (ASI) are analyzed. Results show that nnU-Net achieves better Dice (~0.7), HD 95% (~1.8), and RVD (~0.1) as compared to other methods for all striatal compartments and whole striatum. For clinical PD evaluation, nnU-Net also yields strong SBR consistency (mean difference, −0.012) and ASI correlation (Pearson correlation coefficient, 0.81). The proposed DL-based cross-modality striatum segmentation method is feasible for clinical DaT SPECT in PD.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 7","pages":"752-761"},"PeriodicalIF":4.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10525203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT 基于跨示踪器和跨扫描仪转移学习的脑 SPECT 衰减校正
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-08 DOI: 10.1109/TRPMS.2024.3374207
Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok
This study aims to investigate robust attenuation correction (AC) by generating attenuation maps $(mu $ -maps) from nonattenuation-corrected (NAC) brain SPECT data using transfer learning (TL). Four sets of brain SPECT data ( $4times 30$ ) were retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1, and G-ECD. A 3-D attention-based conditional generative adversarial network was pretrained using 22 paired 3-D NAC SPECT images and corresponding CT $mu $ -maps for four patient groups. Various numbers ( $n,,=$ 4–22) of paired NAC SPECT and corresponding $mu $ -maps from S-TRODAT-1 were then used to fine-tune (FT) the other three pretrained deep learning (DL) networks, i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-1 group were tested on their own network (DL-AC), and on the pretrained models with FT (FT-AC) and without FT (NFT-AC). The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4 (FT4) paired data for FT, respectively. Our results show that FT22 and FT12 could outperform DL-AC for cross-tracer S-ECD and cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the reference. FT22 also outperforms DL-AC for cross-tracer+cross-scanner G-ECD. FT8 performs comparably to DL-AC, while FT4 is worse than DL-AC but still better than NAC and NFT-AC in each group. Attenuation map generation is feasible for brain SPECT based on cross-tracer and/or cross-scanner FT-AC using a smaller number of patient data. The FT-AC performance improves as the number of data used for FT increases.
本研究旨在利用迁移学习(TL)从非衰减校正(NAC)脑SPECT数据生成衰减图(mu $ -maps),从而研究稳健衰减校正(AC)。我们回顾性地收集了四组脑SPECT数据(4times 30$):S-TRODAT-1、S-ECD、G-TRODAT-1 和 G-ECD。使用四组患者的22个成对三维NAC SPECT图像和相应的CT $mu $ -地图,对基于三维注意力的条件生成对抗网络进行了预训练。然后使用S-TRODAT-1中不同数量($n,=$ 4-22)的配对NAC SPECT和相应的$mu $ -maps来微调(FT)其他三个预训练的深度学习(DL)网络,即S-ECD、G-TRODAT-1和G-ECD。S-TRODAT-1组的所有患者都在自己的网络(DL-AC)上进行了测试,并在有FT(FT-AC)和无FT(NFT-AC)的预训练模型上进行了测试。FT-AC 方法分别使用了 22(FT22)、12(FT12)、8(FT8)和 4(FT4)个配对数据进行 FT。结果表明,在交叉示踪 S-ECD 和交叉扫描仪 G-TRODAT-1 中,以基于 CT 的交流(CT-AC)为参考,FT22 和 FT12 的效果优于 DL-AC。在交叉示踪+交叉扫描 G-ECD 方面,FT22 也优于 DL-AC。FT8 的表现与 DL-AC 相当,而 FT4 则不如 DL-AC,但在每组中仍优于 NAC 和 NFT-AC。基于跨示踪剂和/或跨扫描仪 FT-AC 的脑 SPECT 可使用较少的患者数据生成衰减图。随着用于 FT 的数据数量增加,FT-AC 性能也会提高。
{"title":"Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT","authors":"Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok","doi":"10.1109/TRPMS.2024.3374207","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3374207","url":null,"abstract":"This study aims to investigate robust attenuation correction (AC) by generating attenuation maps \u0000<inline-formula> <tex-math>$(mu $ </tex-math></inline-formula>\u0000-maps) from nonattenuation-corrected (NAC) brain SPECT data using transfer learning (TL). Four sets of brain SPECT data (\u0000<inline-formula> <tex-math>$4times 30$ </tex-math></inline-formula>\u0000) were retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1, and G-ECD. A 3-D attention-based conditional generative adversarial network was pretrained using 22 paired 3-D NAC SPECT images and corresponding CT \u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000-maps for four patient groups. Various numbers (\u0000<inline-formula> <tex-math>$n,,=$ </tex-math></inline-formula>\u0000 4–22) of paired NAC SPECT and corresponding \u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000-maps from S-TRODAT-1 were then used to fine-tune (FT) the other three pretrained deep learning (DL) networks, i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-1 group were tested on their own network (DL-AC), and on the pretrained models with FT (FT-AC) and without FT (NFT-AC). The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4 (FT4) paired data for FT, respectively. Our results show that FT22 and FT12 could outperform DL-AC for cross-tracer S-ECD and cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the reference. FT22 also outperforms DL-AC for cross-tracer+cross-scanner G-ECD. FT8 performs comparably to DL-AC, while FT4 is worse than DL-AC but still better than NAC and NFT-AC in each group. Attenuation map generation is feasible for brain SPECT based on cross-tracer and/or cross-scanner FT-AC using a smaller number of patient data. The FT-AC performance improves as the number of data used for FT increases.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"664-676"},"PeriodicalIF":4.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10461117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-Aware Transformer GAN for Direct Generation of Attenuation and Scatter Corrected PET Data 用于直接生成衰减和散射校正 PET 数据的情境感知变换器 GAN
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-06 DOI: 10.1109/TRPMS.2024.3397318
Mojtaba Jafaritadi;Emily Anaya;Garry Chinn;Jarrett Rosenberg;Tie Liang;Craig S. Levin
We present a context-aware generative deep learning framework to produce photon attenuation and scatter corrected (ASC) positron emission tomography (PET) images directly from nonattenuation and nonscatter corrected (NASC) images. We trained conditional generative adversarial networks (cGANs) on either single-modality (NASC) or multimodality (NASC+MRI) input data to map NASC images to pixel-wise continuously valued ASC PET images. We designed and evaluated four cGAN models including Pix2Pix, attention-guided cGAN (AG-Pix2Pix), vision transformer cGAN (ViT-GAN), and shifted window transformer cGAN (Swin-GAN). Retrospective 18F-fluorodeoxyglucose (18F-FDG) full-body PET images from 33 subjects were collected and analyzed. Notably, as a particular strength of this work, each patient in the study underwent both a PET/CT scan and a multisequence PET/MRI scan on the same day giving us a gold standard from the former as we investigate ASC for the latter. Quantitative analysis, evaluating image quality using peak signal-to-noise ratio (PSNR), multiscale structural similarity index (MS-SSIM), normalized mean-squared error (NRMSE), and mean absolute error (MAE) metrics, showed no significant impact of input type on PSNR ( $p=0.95$ ), MS-SSIM ( $p=0.083$ ), NRMSE ( $p=0.72$ ), or MAE ( $p=0.70$ ). For multimodal input data, Swin-GAN outperformed Pix2Pix ( $p=0.023$ ) and AG-Pix2Pix ( $p lt 0.001$ ), but not ViT-GAN ( $p=0.154$ ) in PSNR. Swin-GAN achieved significantly higher MS-SSIM than ViT-GAN ( $p=0.007$ ) and AG-Pix2Pix ( $p=0.002$ ). Multimodal Swin-GAN demonstrated reduced NRMSE and MAE compared to ViT-GAN ( $p=0.023$ and 0.031, respectively) and AG-Pix2Pix (both $p lt 0.001$ ), with marginal improvement over Pix2Pix ( $p lt 0.064$ ). The cGAN models, in particular Swin-GAN, consistently generated reliable and accurate ASC PET images, whether using multimodal or single-modal input data. The findings indicate that this methodology can be used to generate ASC data from standalone PET scanners or integrated PET/MRI systems, without relying on transmission scan-based attenuation maps.
我们提出了一种上下文感知生成式深度学习框架,可直接从非衰减和非散射校正(NASC)图像生成光子衰减和散射校正(ASC)正电子发射断层扫描(PET)图像。我们在单模态(NASC)或多模态(NASC+MRI)输入数据上训练条件生成对抗网络(cGANs),将 NASC 图像映射到像素连续估值的 ASC PET 图像。我们设计并评估了四种 cGAN 模型,包括 Pix2Pix、注意力引导 cGAN(AG-Pix2Pix)、视觉转换器 cGAN(ViT-GAN)和移位窗口转换器 cGAN(Swin-GAN)。收集并分析了 33 名受试者的回顾性 18F- 氟脱氧葡萄糖(18F-FDG)全身 PET 图像。值得注意的是,作为这项工作的一个特别优势,研究中的每位患者都在同一天接受了 PET/CT 扫描和多序列 PET/MRI 扫描,这为我们提供了前者的金标准,同时我们也对后者的 ASC 进行了研究。使用峰值信噪比(PSNR)、多尺度结构相似性指数(MS-SSIM)、归一化均方误差(NRMSE)和平均绝对误差(MAE)指标评估图像质量的定量分析显示,输入类型对PSNR(p=0.95$)、MS-SSIM(p=0.083$)、NRMSE(p=0.72$)或MAE(p=0.70$)没有显著影响。对于多模态输入数据,Swin-GAN 的 PSNR 优于 Pix2Pix ( $p=0.023$ ) 和 AG-Pix2Pix ( $p lt 0.001$ ) ,但不如 ViT-GAN ( $p=0.154$ ) 。Swin-GAN的MS-SSIM明显高于ViT-GAN(p=0.007$)和AG-Pix2Pix(p=0.002$)。与 ViT-GAN (p=0.023$)和 AG-Pix2Pix(p 均为 0.001$)相比,多模态 Swin-GAN 的 NRMSE 和 MAE 均有所降低,与 Pix2Pix(p 为 0.064$)相比也略有改善。无论是使用多模态还是单模态输入数据,cGAN 模型,特别是 Swin-GAN 都能持续生成可靠、准确的 ASC PET 图像。研究结果表明,这种方法可用于生成独立 PET 扫描仪或集成 PET/MRI 系统的 ASC 数据,而无需依赖基于透射扫描的衰减图。
{"title":"Context-Aware Transformer GAN for Direct Generation of Attenuation and Scatter Corrected PET Data","authors":"Mojtaba Jafaritadi;Emily Anaya;Garry Chinn;Jarrett Rosenberg;Tie Liang;Craig S. Levin","doi":"10.1109/TRPMS.2024.3397318","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3397318","url":null,"abstract":"We present a context-aware generative deep learning framework to produce photon attenuation and scatter corrected (ASC) positron emission tomography (PET) images directly from nonattenuation and nonscatter corrected (NASC) images. We trained conditional generative adversarial networks (cGANs) on either single-modality (NASC) or multimodality (NASC+MRI) input data to map NASC images to pixel-wise continuously valued ASC PET images. We designed and evaluated four cGAN models including Pix2Pix, attention-guided cGAN (AG-Pix2Pix), vision transformer cGAN (ViT-GAN), and shifted window transformer cGAN (Swin-GAN). Retrospective 18F-fluorodeoxyglucose (18F-FDG) full-body PET images from 33 subjects were collected and analyzed. Notably, as a particular strength of this work, each patient in the study underwent both a PET/CT scan and a multisequence PET/MRI scan on the same day giving us a gold standard from the former as we investigate ASC for the latter. Quantitative analysis, evaluating image quality using peak signal-to-noise ratio (PSNR), multiscale structural similarity index (MS-SSIM), normalized mean-squared error (NRMSE), and mean absolute error (MAE) metrics, showed no significant impact of input type on PSNR (\u0000<inline-formula> <tex-math>$p=0.95$ </tex-math></inline-formula>\u0000), MS-SSIM (\u0000<inline-formula> <tex-math>$p=0.083$ </tex-math></inline-formula>\u0000), NRMSE (\u0000<inline-formula> <tex-math>$p=0.72$ </tex-math></inline-formula>\u0000), or MAE (\u0000<inline-formula> <tex-math>$p=0.70$ </tex-math></inline-formula>\u0000). For multimodal input data, Swin-GAN outperformed Pix2Pix (\u0000<inline-formula> <tex-math>$p=0.023$ </tex-math></inline-formula>\u0000) and AG-Pix2Pix (\u0000<inline-formula> <tex-math>$p lt 0.001$ </tex-math></inline-formula>\u0000), but not ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.154$ </tex-math></inline-formula>\u0000) in PSNR. Swin-GAN achieved significantly higher MS-SSIM than ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.007$ </tex-math></inline-formula>\u0000) and AG-Pix2Pix (\u0000<inline-formula> <tex-math>$p=0.002$ </tex-math></inline-formula>\u0000). Multimodal Swin-GAN demonstrated reduced NRMSE and MAE compared to ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.023$ </tex-math></inline-formula>\u0000 and 0.031, respectively) and AG-Pix2Pix (both \u0000<inline-formula> <tex-math>$p lt 0.001$ </tex-math></inline-formula>\u0000), with marginal improvement over Pix2Pix (\u0000<inline-formula> <tex-math>$p lt 0.064$ </tex-math></inline-formula>\u0000). The cGAN models, in particular Swin-GAN, consistently generated reliable and accurate ASC PET images, whether using multimodal or single-modal input data. The findings indicate that this methodology can be used to generate ASC data from standalone PET scanners or integrated PET/MRI systems, without relying on transmission scan-based attenuation maps.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"677-689"},"PeriodicalIF":4.6,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10521624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3369272
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3369272","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3369272","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"331-331"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors 电气和电子工程师学会《辐射与等离子体医学科学杂志》作者须知
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3366371
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3366371","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3366371","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"C3-C3"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Data Port IEEE 数据端口
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3369270
{"title":"IEEE Data Port","authors":"","doi":"10.1109/TRPMS.2024.3369270","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3369270","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"332-332"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3366373
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3366373","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3366373","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"C2-C2"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-02 DOI: 10.1109/TRPMS.2024.3390829
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3390829","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390829","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"580-580"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Nuclear Science Symposium 电气和电子工程师学会核科学研讨会
IF 4.4 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-03-02 DOI: 10.1109/TRPMS.2024.3390831
{"title":"IEEE Nuclear Science Symposium","authors":"","doi":"10.1109/TRPMS.2024.3390831","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390831","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"579-579"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1