首页 > 最新文献

Applied Nanoscience最新文献

英文 中文
Synthesis, characterization and preparation of scattered nano sphered alumina: acetone-based nanofluid with enhanced stability and thermal properties 散射纳米球状氧化铝的合成、表征和制备:具有更高稳定性和热性能的丙酮基纳米流体
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-04-02 DOI: 10.1007/s13204-024-03041-2
T. N. Nithin, M. Narendra Kumar, Dinesh Nolakha, K. Gopalakrishna, Krishna Venkatesh

The potential cooling solutions for the next generation are represented by nanofluids, offering several advantages for various technological applications. The intriguing realm of glycine-based acetone-based ({{text{Al}}}_{2}{{text{O}}}_{3}) nanofluids was explored in the present investigation, with meticulous attention to details given to scrutinizing their stability and thermophysical properties. The stability of the nanofluids was determined through a trifecta of analytical methods, namely visual inspection, UV absorbance measurement, and zeta potential analysis, all applied with caution. The results revealed that stability was observed for a duration of 3 days without glycine, and an impressive 6 week period was achieved when supplemented with the surfactant. The incorporation of glycine enhanced the stability of the colloidal suspension without compromising its thermophysical attributes. Furthermore, the study involved an in-depth examination of the density, viscosity, specific heat, and thermal conductivity of the prepared nanofluids, yielding interesting outcomes. The data showed a marked increase in nanofluid density, viscosity, and thermal conductivity with a corresponding rise in volume concentration, while specific heat exhibited a noticeable reduction. These significant observations were meticulously compared to various existing theoretical models and proposed correlations in the literature. The heat transfer performance of the nanofluid in the context of pulsating heat pipes was evaluated and the results proved riveting. The nanofluid demonstrated superior performance compared to the base fluid, confirming its remarkable efficacy.

摘要 纳米流体代表了下一代潜在的冷却解决方案,为各种技术应用提供了多种优势。本研究探索了基于甘氨酸的丙酮基({{text{Al}}}_{2}{{text{O}}}_{3})纳米流体这一引人入胜的领域,并对其稳定性和热物理性质进行了细致入微的研究。纳米流体的稳定性是通过三重分析方法确定的,即肉眼观察、紫外线吸光度测量和 zeta 电位分析。结果表明,在不添加甘氨酸的情况下,纳米流体的稳定性可持续 3 天;而在添加表面活性剂的情况下,纳米流体的稳定性可持续 6 周。甘氨酸的加入增强了胶体悬浮液的稳定性,而不会影响其热物理属性。此外,研究还对制备的纳米流体的密度、粘度、比热和热导率进行了深入检测,并取得了有趣的结果。数据显示,随着体积浓度的相应增加,纳米流体的密度、粘度和热导率也明显增加,而比热则明显下降。我们将这些重要的观察结果与现有的各种理论模型和文献中提出的相关关系进行了细致的比较。对纳米流体在脉动热管中的传热性能进行了评估,结果令人信服。与基础流体相比,纳米流体表现出更优越的性能,证实了其显著的功效。
{"title":"Synthesis, characterization and preparation of scattered nano sphered alumina: acetone-based nanofluid with enhanced stability and thermal properties","authors":"T. N. Nithin,&nbsp;M. Narendra Kumar,&nbsp;Dinesh Nolakha,&nbsp;K. Gopalakrishna,&nbsp;Krishna Venkatesh","doi":"10.1007/s13204-024-03041-2","DOIUrl":"10.1007/s13204-024-03041-2","url":null,"abstract":"<div><p>The potential cooling solutions for the next generation are represented by nanofluids, offering several advantages for various technological applications. The intriguing realm of glycine-based acetone-based <span>({{text{Al}}}_{2}{{text{O}}}_{3})</span> nanofluids was explored in the present investigation, with meticulous attention to details given to scrutinizing their stability and thermophysical properties. The stability of the nanofluids was determined through a trifecta of analytical methods, namely visual inspection, <i>UV</i> absorbance measurement, and zeta potential analysis, all applied with caution. The results revealed that stability was observed for a duration of 3 days without glycine, and an impressive 6 week period was achieved when supplemented with the surfactant. The incorporation of glycine enhanced the stability of the colloidal suspension without compromising its thermophysical attributes. Furthermore, the study involved an in-depth examination of the density, viscosity, specific heat, and thermal conductivity of the prepared nanofluids, yielding interesting outcomes. The data showed a marked increase in nanofluid density, viscosity, and thermal conductivity with a corresponding rise in volume concentration, while specific heat exhibited a noticeable reduction. These significant observations were meticulously compared to various existing theoretical models and proposed correlations in the literature. The heat transfer performance of the nanofluid in the context of pulsating heat pipes was evaluated and the results proved riveting. The nanofluid demonstrated superior performance compared to the base fluid, confirming its remarkable efficacy.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"687 - 698"},"PeriodicalIF":3.674,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of α-Fe2O3 on transformer cooling and application α-Fe2O3 对变压器冷却和应用的影响
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-04-01 DOI: 10.1007/s13204-024-03040-3
Muzaffar Hussain, M. A. Ansari, Feroz A. Mir

In the current paper, hematite (α Fe2O3) nanoparticles (NPs) were prepared by the chemical co-precipitation method. These synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Raman spectroscopy, and vibrating sample magnetometry (VSM). The XRD studies for the nanoparticles revealed rhombohedral symmetry with space group: R3c (167), and the particle size is about 33.34 nm. The morphological studies carried out by SEM indicated that these prepared samples have a spherical morphology with some porosity. The specific surface area of this sample was calculated by the Brunauer–Emmett–Teller (BET) technique. FTIR spectroscopy confirms the Fe–O and O–Fe–O vibrations corresponding to stretching at the expected positions (520 cm−1) related to the structure. From Raman data, modes corresponding to α-Fe2O3 are seen. From DC magnetisation studies, the current sample shows ferrimagnetic behavior. In addition, the value of Ms is 1.027 and value of Mr is 322.787×10–6. Further nanofluids of these nanoparticles with different concentrations of transformer oil were prepared. The performance of this nanofluid as a coolant in transformer oil was also studied. The 0.2 g/l concentration shows the maximum improvement in breakdown voltage. Hence, under optimal conditions, these ferrofluids can perform well for insulating purposes.

本文采用化学共沉淀法制备了赤铁矿(α Fe2O3)纳米颗粒(NPs)。这些合成的纳米粒子通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外 (FTIR)、拉曼光谱和振动样品磁力计 (VSM) 进行了表征。纳米粒子的 XRD 研究显示其空间群为斜方对称:R3c (167),粒径约为 33.34 纳米。通过扫描电镜进行的形态学研究表明,这些制备的样品具有球形形态,并带有一些孔隙。该样品的比表面积是通过布鲁纳-艾美特-泰勒(BET)技术计算得出的。傅立叶变换红外光谱证实,Fe-O 和 O-Fe-O 振动对应于与结构有关的预期位置(520 cm-1)的伸展。从拉曼数据中可以看到与 α-Fe2O3 相对应的模式。直流磁化研究表明,当前样品具有铁磁性。此外,Ms 值为 1.027,Mr 值为 322.787×10-6。进一步制备了这些纳米粒子与不同浓度变压器油的纳米流体。还研究了这种纳米流体作为变压器油冷却剂的性能。0.2 g/l 的浓度显示了击穿电压的最大改善。因此,在最佳条件下,这些铁流体可以很好地用于绝缘目的。
{"title":"Effect of α-Fe2O3 on transformer cooling and application","authors":"Muzaffar Hussain,&nbsp;M. A. Ansari,&nbsp;Feroz A. Mir","doi":"10.1007/s13204-024-03040-3","DOIUrl":"10.1007/s13204-024-03040-3","url":null,"abstract":"<div><p>In the current paper, hematite (α Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) were prepared by the chemical co-precipitation method. These synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Raman spectroscopy, and vibrating sample magnetometry (VSM). The XRD studies for the nanoparticles revealed rhombohedral symmetry with space group: R3c (167), and the particle size is about 33.34 nm. The morphological studies carried out by SEM indicated that these prepared samples have a spherical morphology with some porosity. The specific surface area of this sample was calculated by the Brunauer–Emmett–Teller (BET) technique. FTIR spectroscopy confirms the Fe–O and O–Fe–O vibrations corresponding to stretching at the expected positions (520 cm<sup>−1</sup>) related to the structure. From Raman data, modes corresponding to <i>α-</i>Fe<sub>2</sub>O<sub>3</sub> are seen. From DC magnetisation studies, the current sample shows ferrimagnetic behavior. In addition, the value of <i>M</i><sub>s</sub> is 1.027 and value of <i>M</i><sub>r</sub> is 322.787×10<sup>–6</sup>. Further nanofluids of these nanoparticles with different concentrations of transformer oil were prepared. The performance of this nanofluid as a coolant in transformer oil was also studied. The 0.2 g/l concentration shows the maximum improvement in breakdown voltage. Hence, under optimal conditions, these ferrofluids can perform well for insulating purposes.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"753 - 760"},"PeriodicalIF":3.674,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach 检测 Ag+ 和 Cu2+ 的纳米粒子演变的络合-还原法:一种协同方法
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-04-01 DOI: 10.1007/s13204-024-03042-1
Priyanka Sharma, Mainak Ganguly, Ankita Doi

Schiff base compounds were reported to make a complex with Cu2+ and Ag+ and subsequent reduction produced Cu0 and Ag0 nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu2+ and made Cu0 nanoparticles after 8 h aging. In that reaction mixture, addition of Ag+ resulted in Ag0 nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu2+ (linear range of detection 10–4 to 5 × 10–8 M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag+ in it produced Ag0 and Cu0 (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag+ detection (linear detection range 10–3–10–7 M, and limit of detection 7. 7 μM). Thus, Cu2+ and Ag+ were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag+-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag+ was employed for the colorimetric sensing of Ag+.

据报道,希夫碱化合物能与 Cu2+ 和 Ag+ 形成络合物,随后通过紫外线照射还原分别生成 Cu0 和 Ag0 纳米粒子。在这里,我们合成了一种希夫碱,它最初与 Cu2+ 形成络合物,并在老化 8 小时后生成 Cu0 纳米粒子。在该反应混合物中,加入 Ag+ 可生成 Ag0 纳米粒子。首次采用了发射性半咔唑酮(一种由半咔唑和水杨醛合成的席夫碱),通过络合还原法形成氧化铜纳米粒子,选择性灵敏地检测 Cu2+(线性检测范围为 10-4 至 5 × 10-8 M,检测限为 13 μM)。引入 Ag+后,生成的 Ag0 和 Cu0(通过空气氧化生成 CuO)纳米粒子的荧光大大增加,从而获得选择性和灵敏的 Ag+检测(线性检测范围为 10-3-10-7 M,检测限为 7.)因此,Cu2+和Ag+的检测是基于一锅荧光的熄灭/开启。由于铜和银纳米粒子的演化是传感的根本原因,因此响应时间与原位生成铜和银纳米粒子的氧化 SC(封端剂)的稳定荧光行为相似。CuO 诱导的荧光淬灭是由于形成了困住的等离子体,而 Ag+ 诱导的荧光增强则是由于避雷针效应。本文还首次将铜和银的协同作用作为避雷针效应的驱动力进行了研究。对天然水中两种金属(铜和银)的含量都进行了估算,证明了该传感平台在实际应用中的实用性。此外,本文还利用半咔唑酮对 Ag+ 的亮红色演化来对 Ag+ 进行比色传感。
{"title":"Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach","authors":"Priyanka Sharma,&nbsp;Mainak Ganguly,&nbsp;Ankita Doi","doi":"10.1007/s13204-024-03042-1","DOIUrl":"10.1007/s13204-024-03042-1","url":null,"abstract":"<div><p>Schiff base compounds were reported to make a complex with Cu<sup>2+</sup> and Ag<sup>+</sup> and subsequent reduction produced Cu<sup>0</sup> and Ag<sup>0</sup> nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu<sup>2+</sup> and made Cu<sup>0</sup> nanoparticles after 8 h aging. In that reaction mixture, addition of Ag<sup>+</sup> resulted in Ag<sup>0</sup> nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu<sup>2+</sup> (linear range of detection 10<sup>–4</sup> to 5 × 10<sup>–8</sup> M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag<sup>+</sup> in it produced Ag<sup>0</sup> and Cu<sup>0</sup> (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag<sup>+</sup> detection (linear detection range 10<sup>–3</sup>–10<sup>–7</sup> M, and limit of detection 7. 7 μM). Thus, Cu<sup>2+</sup> and Ag<sup>+</sup> were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag<sup>+</sup>-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag<sup>+</sup> was employed for the colorimetric sensing of Ag<sup>+</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"739 - 751"},"PeriodicalIF":3.674,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions 一锅水热法绿色合成氮掺杂碳量子点用于单宁酸和 Hg2+ 离子的超灵敏双重检测
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-03-16 DOI: 10.1007/s13204-024-03036-z
K. Periyarselvam, P. Sivakumar, S. Kanimozhi, R. Elavarasi

Green-synthesized nitrogen-doped carbon quantum dots (N-CQDs), offering an excellent platform for the ultra-sensitive dual detection of tannic acid and Hg2+ ions, were explored in this work. The N-CQDs were synthesized in a straightforward, cost-effective, and environmentally friendly hydrothermal method. These N-CQDs exhibited remarkable and dynamic “on-off-on” luminescent characteristics, demonstrating an exceptional sensitivity and selectivity towards tannic acid and Hg2+ ions. The specific interactions between the N-CQDs and tannic acid, along with the reversible binding with Hg2+ ions, contribute to the distinct dual-detection capabilities. The sensing system covers a linear concentration range of 10–80 µM to tannic acid and 0.1 to 1 nm for Hg2+, showcasing its versatility for different concentration range with a lower detection limit of 25 nM and 3 nM, respectively. Furthermore, the N-CQDs displayed high stability and minimal interference from typical interfering species, making them a desirable tool for environmental monitoring and quality control. Validation through real sample analysis substantiates the accuracy and reliability of the developed sensing approach in practical scenarios. This study not only underscores the promise of green-synthesized N-CQDs as enhanced fluorescence probes but also contributes to the development of efficient and environmentally friendly materials for dual sensing applications.

本研究探索了绿色合成的掺氮碳量子点(N-CQDs),它为单宁酸和 Hg2+ 离子的超灵敏双重检测提供了一个极佳的平台。N-CQDs 是通过一种简单、经济、环保的水热法合成的。这些 N-CQDs 具有显著的动态 "开关-开启 "发光特性,对单宁酸和 Hg2+ 离子具有极高的灵敏度和选择性。N-CQDs 与单宁酸之间的特异性相互作用,以及与 Hg2+ 离子的可逆性结合,造就了独特的双重检测能力。该传感系统对单宁酸的线性浓度范围为 10-80 µM,对 Hg2+ 的线性浓度范围为 0.1-1 nm,分别在 25 nM 和 3 nM 的检测下限下显示了其在不同浓度范围的多功能性。此外,N-CQDs 显示出很高的稳定性,受典型干扰物的干扰极小,是环境监测和质量控制的理想工具。通过实际样品分析验证了所开发的传感方法在实际应用中的准确性和可靠性。这项研究不仅强调了绿色合成的 N-CQDs 作为增强型荧光探针的前景,还有助于开发高效、环保的双重传感应用材料。
{"title":"One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions","authors":"K. Periyarselvam,&nbsp;P. Sivakumar,&nbsp;S. Kanimozhi,&nbsp;R. Elavarasi","doi":"10.1007/s13204-024-03036-z","DOIUrl":"10.1007/s13204-024-03036-z","url":null,"abstract":"<div><p>Green-synthesized nitrogen-doped carbon quantum dots (N-CQDs), offering an excellent platform for the ultra-sensitive dual detection of tannic acid and Hg<sup>2+</sup> ions, were explored in this work. The N-CQDs were synthesized in a straightforward, cost-effective, and environmentally friendly hydrothermal method. These N-CQDs exhibited remarkable and dynamic “on-off-on” luminescent characteristics, demonstrating an exceptional sensitivity and selectivity towards tannic acid and Hg<sup>2+</sup> ions. The specific interactions between the N-CQDs and tannic acid, along with the reversible binding with Hg<sup>2+</sup> ions, contribute to the distinct dual-detection capabilities. The sensing system covers a linear concentration range of 10–80 µM to tannic acid and 0.1 to 1 nm for Hg<sup>2+</sup>, showcasing its versatility for different concentration range with a lower detection limit of 25 nM and 3 nM, respectively. Furthermore, the N-CQDs displayed high stability and minimal interference from typical interfering species, making them a desirable tool for environmental monitoring and quality control. Validation through real sample analysis substantiates the accuracy and reliability of the developed sensing approach in practical scenarios. This study not only underscores the promise of green-synthesized N-CQDs as enhanced fluorescence probes but also contributes to the development of efficient and environmentally friendly materials for dual sensing applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"649 - 662"},"PeriodicalIF":3.674,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics 用于可穿戴电子设备的 MXene/纤维素纳米晶体涂层棉织物电极
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03034-1
İnal Kaan Duygun, Ayşe Bedeloğlu

Increasing mechanical properties without losing electrical properties is of great importance for the development of advanced electronic textile products and their use in different areas. In this study, a cost-effective and facile preparation of MXene/cellulose nanocrystal-coated cotton fabrics by drop-casting was carried out to investigate electrical and mechanical properties of plain woven cotton fabrics. MXene (Ti3C2Tx) and cellulose nanocrystal dispersions of MXene (5 wt.%, 10 wt.% and 15 wt.% cellulose nanocrystal content) were applied to cotton fabrics, and the coated fabrics were characterized in terms of their morphological and structural properties for their suitability for wearable electronics. The surface resistivity and mechanical properties were also determined to evaluate the effectiveness of coating. Ti3C2Tx/cellulose nanocrystal dispersions are suitable to obtain a low electrical resistivity (186.4 Ω/sq) in cotton fabrics. The results also showed that increasing cellulose nanocrystal content results in a more stable coating layer on the cotton fabric and a high tensile (63.2 MPa) and elongation at break values are obtained (30.2%) as a result of that.

在不损失电气性能的前提下提高机械性能对于先进电子纺织产品的开发及其在不同领域的应用具有重要意义。在本研究中,我们采用滴注法制备了 MXene/纤维素纳米晶体涂层棉织物,研究了平纹棉织物的电气和机械性能,该方法成本低、操作简便。将 MXene(Ti3C2Tx)和 MXene 的纤维素纳米晶分散体(纤维素纳米晶含量分别为 5 wt.%、10 wt.% 和 15 wt.%)涂覆到棉织物上,并对涂覆织物的形态和结构特性进行表征,以确定其是否适用于可穿戴电子设备。同时还测定了表面电阻率和机械性能,以评估涂层的有效性。Ti3C2Tx/纤维素纳米晶体分散体适合在棉织物中获得较低的电阻率(186.4 Ω/sq)。结果还显示,纤维素纳米晶体含量的增加会使棉织物上的涂层更加稳定,从而获得较高的拉伸值(63.2 兆帕)和断裂伸长率(30.2%)。
{"title":"MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics","authors":"İnal Kaan Duygun,&nbsp;Ayşe Bedeloğlu","doi":"10.1007/s13204-024-03034-1","DOIUrl":"10.1007/s13204-024-03034-1","url":null,"abstract":"<div><p>Increasing mechanical properties without losing electrical properties is of great importance for the development of advanced electronic textile products and their use in different areas. In this study, a cost-effective and facile preparation of MXene/cellulose nanocrystal-coated cotton fabrics by drop-casting was carried out to investigate electrical and mechanical properties of plain woven cotton fabrics. MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) and cellulose nanocrystal dispersions of MXene (5 wt.%, 10 wt.% and 15 wt.% cellulose nanocrystal content) were applied to cotton fabrics, and the coated fabrics were characterized in terms of their morphological and structural properties for their suitability for wearable electronics. The surface resistivity and mechanical properties were also determined to evaluate the effectiveness of coating. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/cellulose nanocrystal dispersions are suitable to obtain a low electrical resistivity (186.4 Ω/sq) in cotton fabrics. The results also showed that increasing cellulose nanocrystal content results in a more stable coating layer on the cotton fabric and a high tensile (63.2 MPa) and elongation at break values are obtained (30.2%) as a result of that.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"575 - 584"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation 基于蜂胶介导合成过程中 pH 值变化的氧化铜纳米颗粒:结构、光学特性、紫外线阻隔能力和孔雀石绿光降解研究
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03035-0
Mohammad N. Murshed, Mansour S. Abdul Galil, Samir Osman Mohammed, Mohamed E. El Sayed, Mohyeddine Al‑qubati, Ebkar Abdo Ahmed Saif

In third-world countries, the biosynthesis of multi-purpose copper oxide nanoparticles is a crucial solution for pollution, but studies on controlling their properties through internal structure are still limited. This work generated copper oxide nanoparticles (CONPs) using bee propolis as a reducing and capping agent, employing an ecologically benign, simple, inexpensive, and economical technique. The pH of this biosynthesis was varied (6.4, 7.8, 9.2, 10.4, and 11.7). The study computed various structural and optical parameters of biosynthesized CONP samples, revealing nonlinear changes with pH, including unit cell, Cu–O bond length, crystal size, microstrain, energy band gap, Urbach energy, and more. The current research has shown promising results in blocking ultraviolet rays effectively. The blocking parameters were calculated for CONPs samples, and it was found that the pH 8 sample had the best blocking capacity at both regions A and B (90.31 and 91.31%, respectively). The study effectively investigated CONPs’ potential as a catalyst for increasing dye photodegradation. The pH 6.4 sample showed the highest degradation rate (94.15%). The UV-blocking and photodegradation properties of the CONPs samples were explained using the structural and optical parameters.

在第三世界国家,生物合成多用途纳米氧化铜颗粒是解决污染问题的关键,但通过内部结构控制其特性的研究仍然有限。这项研究利用蜂胶作为还原剂和封盖剂,采用一种无害生态、简单、廉价和经济的技术生成了纳米氧化铜颗粒(CONPs)。这种生物合成的 pH 值是变化的(6.4、7.8、9.2、10.4 和 11.7)。研究计算了生物合成的 CONP 样品的各种结构和光学参数,揭示了其随 pH 值的非线性变化,包括单胞、Cu-O 键长度、晶体尺寸、微应变、能带间隙、厄巴赫能等。目前的研究在有效阻挡紫外线方面取得了可喜的成果。通过计算 CONPs 样品的阻挡参数,发现 pH 值为 8 的样品在 A 区和 B 区的阻挡能力最好(分别为 90.31% 和 91.31%)。该研究有效考察了 CONPs 作为催化剂提高染料光降解的潜力。pH 值为 6.4 的样品降解率最高(94.15%)。利用结构和光学参数解释了 CONPs 样品的紫外线阻隔和光降解特性。
{"title":"The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation","authors":"Mohammad N. Murshed,&nbsp;Mansour S. Abdul Galil,&nbsp;Samir Osman Mohammed,&nbsp;Mohamed E. El Sayed,&nbsp;Mohyeddine Al‑qubati,&nbsp;Ebkar Abdo Ahmed Saif","doi":"10.1007/s13204-024-03035-0","DOIUrl":"10.1007/s13204-024-03035-0","url":null,"abstract":"<div><p>In third-world countries, the biosynthesis of multi-purpose copper oxide nanoparticles is a crucial solution for pollution, but studies on controlling their properties through internal structure are still limited. This work generated copper oxide nanoparticles (CONPs) using bee propolis as a reducing and capping agent, employing an ecologically benign, simple, inexpensive, and economical technique. The pH of this biosynthesis was varied (6.4, 7.8, 9.2, 10.4, and 11.7). The study computed various structural and optical parameters of biosynthesized CONP samples, revealing nonlinear changes with pH, including unit cell, Cu–O bond length, crystal size, microstrain, energy band gap, Urbach energy, and more. The current research has shown promising results in blocking ultraviolet rays effectively. The blocking parameters were calculated for CONPs samples, and it was found that the pH 8 sample had the best blocking capacity at both regions A and B (90.31 and 91.31%, respectively). The study effectively investigated CONPs’ potential as a catalyst for increasing dye photodegradation. The pH 6.4 sample showed the highest degradation rate (94.15%). The UV-blocking and photodegradation properties of the CONPs samples were explained using the structural and optical parameters.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"585 - 602"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03035-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging 成像新领域:用于多模式成像的天然矿石来源超顺磁性磁铁矿纳米粒子
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-03-08 DOI: 10.1007/s13204-023-02993-1
A. Asha, M. Chamundeeswari, R. Mary Nancy Flora, N. Padmamalini

In the ever-evolving field of medical diagnostics and imaging, the development of efficient and versatile contrast agents remains pivotal. This study presents a pioneering approach to synthesize superparamagnetic magnetite nanoparticles (SM-NPs) derived from natural ore using an environmentally friendly, green chemistry approach. These SM-NPs exhibit exceptional magnetic properties, surpassing all other forms of iron oxide, making them a novel and promising multi-imaging agent for various biomedical applications. The SM-NPs were synthesized with high purity from naturally occurring magnetite, sourced from the Earth's crust. Characterization via X-ray diffraction (XRD) confirmed the cubic spinel ferrites structure of the sample, with an average particle size of 21.24 nm. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed the presence of elemental functional groups, further supporting the material's suitability for biomedical use. Morphological analysis using field emission scanning electron microscopy with energy-dispersive X-ray analysis (FESEM-EDX) unveiled agglomerated spherical particles ranging in size from 60 to 80 nm. The elemental composition analysis via EDX demonstrated predominant iron (Fe) and oxygen (O) elements at concentrations of 75.55% and 20.76%, respectively. The magnetic properties of the SMNPs were assessed using a vibrating sample magnetometer (VSM), revealing a superparamagnetic behavior, as evidenced by the M-H plot. Furthermore, X-ray imaging exhibited a significant signal, even with just 40 mg of the substance, suggesting its potential as a robust contrast agent. Complementary findings from computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated substantial absorption capabilities, even at relatively low concentrations of SM-NPs. These remarkable attributes position the green-synthesized SM-NPs as a highly versatile and efficient multi-imaging agent for various biomedical applications. This single nanomaterial can revolutionize disease diagnosis, treatment monitoring, and drug delivery within the biomedical field, offering a greener and more effective approach to medical imaging and diagnostics.

在不断发展的医疗诊断和成像领域,开发高效、多功能的造影剂仍然至关重要。本研究提出了一种开创性的方法,即利用环境友好型绿色化学方法合成从天然矿石中提取的超顺磁性磁铁矿纳米粒子(SM-NPs)。这些 SM-NPs 显示出超越所有其他形式氧化铁的特殊磁性,使其成为一种新型、有前景的多成像剂,可用于各种生物医学应用。SM-NPs 是利用地壳中天然存在的磁铁矿合成的,纯度很高。通过 X 射线衍射 (XRD) 表征证实了样品的立方尖晶铁氧体结构,平均粒径为 21.24 纳米。傅立叶变换红外光谱(FT-IR)显示了元素官能团的存在,进一步证明了该材料适合生物医学用途。利用场发射扫描电子显微镜和能量色散 X 射线分析法(FESEM-EDX)进行的形态分析显示,该材料呈团聚球形颗粒,大小在 60 纳米到 80 纳米之间。通过 EDX 进行的元素组成分析表明,铁(Fe)和氧(O)元素占主导地位,浓度分别为 75.55% 和 20.76%。使用振动样品磁力计(VSM)评估了 SMNPs 的磁性能,结果显示其具有超顺磁性,M-H 图也证明了这一点。此外,X 射线成像显示,即使只有 40 毫克的这种物质也能产生显著的信号,这表明它具有作为一种强力造影剂的潜力。计算机断层扫描(CT)和磁共振成像(MRI)扫描的补充结果表明,即使 SM-NPs 的浓度相对较低,也具有很强的吸收能力。这些卓越的特性使绿色合成的 SM-NPs 成为一种用途广泛、高效的多成像剂,可用于各种生物医学应用。这种单一的纳米材料可以彻底改变生物医学领域的疾病诊断、治疗监测和药物输送,为医学成像和诊断提供更环保、更有效的方法。
{"title":"A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging","authors":"A. Asha,&nbsp;M. Chamundeeswari,&nbsp;R. Mary Nancy Flora,&nbsp;N. Padmamalini","doi":"10.1007/s13204-023-02993-1","DOIUrl":"10.1007/s13204-023-02993-1","url":null,"abstract":"<div><p>In the ever-evolving field of medical diagnostics and imaging, the development of efficient and versatile contrast agents remains pivotal. This study presents a pioneering approach to synthesize superparamagnetic magnetite nanoparticles (SM-NPs) derived from natural ore using an environmentally friendly, green chemistry approach. These SM-NPs exhibit exceptional magnetic properties, surpassing all other forms of iron oxide, making them a novel and promising multi-imaging agent for various biomedical applications. The SM-NPs were synthesized with high purity from naturally occurring magnetite, sourced from the Earth's crust. Characterization via X-ray diffraction (XRD) confirmed the cubic spinel ferrites structure of the sample, with an average particle size of 21.24 nm. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed the presence of elemental functional groups, further supporting the material's suitability for biomedical use. Morphological analysis using field emission scanning electron microscopy with energy-dispersive X-ray analysis (FESEM-EDX) unveiled agglomerated spherical particles ranging in size from 60 to 80 nm. The elemental composition analysis via EDX demonstrated predominant iron (Fe) and oxygen (O) elements at concentrations of 75.55% and 20.76%, respectively. The magnetic properties of the SMNPs were assessed using a vibrating sample magnetometer (VSM), revealing a superparamagnetic behavior, as evidenced by the M-H plot. Furthermore, X-ray imaging exhibited a significant signal, even with just 40 mg of the substance, suggesting its potential as a robust contrast agent. Complementary findings from computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated substantial absorption capabilities, even at relatively low concentrations of SM-NPs. These remarkable attributes position the green-synthesized SM-NPs as a highly versatile and efficient multi-imaging agent for various biomedical applications. This single nanomaterial can revolutionize disease diagnosis, treatment monitoring, and drug delivery within the biomedical field, offering a greener and more effective approach to medical imaging and diagnostics.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"559 - 573"},"PeriodicalIF":3.674,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140073672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in sustainable materials for passive thermal management in 5G enabled portable electronics 用于 5G 便携式电子设备无源热管理的可持续材料发展趋势
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-03-06 DOI: 10.1007/s13204-024-03033-2
Sriharini Senthilkumar, Brindha Ramasubramanian, Subramanian Sundarrajan, Seeram Ramakrishna

The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.

由于设备在运行过程中会产生大量热量,导致人体温度升高和设备寿命缩短,因此 5G 支持的便携式电子设备对被动热调节的要求不断提高。本文探讨了水凝胶、金属有机框架(MOFs)和相变材料(PCMs)等利用自然对流和辐射从设备中散热的各种材料及其潜在挑战和改进方案。水凝胶由于缺乏循环稳定性和有限的水吸附能力而不是最佳材料,而 MOFs 价格昂贵,PCMs 在固-液转换过程中会出现内部泄漏。因此,我们讨论了新型混合材料的见解及其在热阻方面的潜力。研究考虑了材料的市场营销和可持续性。为提高材料性能,建议在早期阶段加入可回收、生物质衍生或对环境有益的材料。针对支持 5G 的便携式电子产品的发热问题,文章介绍了实用的无源热管理材料。
{"title":"Trends in sustainable materials for passive thermal management in 5G enabled portable electronics","authors":"Sriharini Senthilkumar,&nbsp;Brindha Ramasubramanian,&nbsp;Subramanian Sundarrajan,&nbsp;Seeram Ramakrishna","doi":"10.1007/s13204-024-03033-2","DOIUrl":"10.1007/s13204-024-03033-2","url":null,"abstract":"<div><p>The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"543 - 557"},"PeriodicalIF":3.674,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Verifying antibacterial properties of nanopillars on cicada wings 验证蝉翼上纳米柱的抗菌性能
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-02-22 DOI: 10.1007/s13204-024-03030-5
Richard W. van Nieuwenhoven, Alexander M. Bürger, Laura L. E. Mears, Philip Kienzl, Manuel Reithofer, Adelheid Elbe-Bürger, Ille C. Gebeshuber

The antibacterial properties of cicada wings originate from hexagonally arranged pillar-like multi-functional nanostructures with species-dependent heights, which are super-hydrophobic and self-cleaning. In the present study, two cicada species with promising nanopillars were investigated in more detail. Selected methods were used to analyze the wing surfaces, including Atomic Force Microscopy, Scanning Electron Microscopy, and bacterial tests with live/dead staining. Verifying the antibacterial properties posed challenges, such as the bacteria concentration needed to confirm the antibacterial properties. These challenges will also impact the practical implementation of antibacterial nanostructures and support the findings of recent critical publications.

蝉翼的抗菌特性源于六角形排列的柱状多功能纳米结构,其高度因物种而异,具有超疏水和自清洁功能。本研究对两种具有良好纳米柱的蝉进行了详细研究。研究人员采用了多种方法对蝉翼表面进行分析,包括原子力显微镜、扫描电子显微镜和活/死染色细菌测试。验证抗菌特性面临着挑战,例如确认抗菌特性所需的细菌浓度。这些挑战也将影响抗菌纳米结构的实际应用,并支持最近发表的重要研究成果。
{"title":"Verifying antibacterial properties of nanopillars on cicada wings","authors":"Richard W. van Nieuwenhoven,&nbsp;Alexander M. Bürger,&nbsp;Laura L. E. Mears,&nbsp;Philip Kienzl,&nbsp;Manuel Reithofer,&nbsp;Adelheid Elbe-Bürger,&nbsp;Ille C. Gebeshuber","doi":"10.1007/s13204-024-03030-5","DOIUrl":"10.1007/s13204-024-03030-5","url":null,"abstract":"<div><p>The antibacterial properties of cicada wings originate from hexagonally arranged pillar-like multi-functional nanostructures with species-dependent heights, which are super-hydrophobic and self-cleaning. In the present study, two cicada species with promising nanopillars were investigated in more detail. Selected methods were used to analyze the wing surfaces, including Atomic Force Microscopy, Scanning Electron Microscopy, and bacterial tests with live/dead staining. Verifying the antibacterial properties posed challenges, such as the bacteria concentration needed to confirm the antibacterial properties. These challenges will also impact the practical implementation of antibacterial nanostructures and support the findings of recent critical publications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"531 - 541"},"PeriodicalIF":3.674,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03030-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface functionalization of MnO2 NW embellished with metal nanoparticles for self-cleaning applications 缀有金属纳米颗粒的 MnO2 NW 表面功能化,用于自清洁应用
IF 3.674 4区 工程技术 Q1 Engineering Pub Date : 2024-02-21 DOI: 10.1007/s13204-024-03032-3
Stacy A. Lynrah, P. Chinnamuthu, Rajshree Rajkumari, Ying Ying Lim, Lanusubo Walling, L. Vigneash

The present study investigates the synthesis of vertically aligned MnO2 nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for a catalyst. The cross-sectional field emission scanning electron microscopy (FESEM) image and energy-dispersive X-ray spectroscopy (EDS) confirm the successful adornment of Ag NP and Au NP on the top surface of MnO2 NW. Elemental mapping has verified the presence of manganese (Mn), oxygen (O), silicon (Si), Ag, and Au within the sample. X-ray diffraction (XRD) patterns reveal the polycrystalline growth of the MnO2 film with the preferred orientation. AFM reveals that the surface roughness of Au NP/MnO2 NW is more than Ag NP/MnO2 NW. The measured water contact angles of Au NP/MnO2 NW, Ag NP/MnO2 NW, and MnO2 NW were 125° and 113°, respectively. Ag NP/MnO2 NW showed more hydrophilic properties under UV illumination than Au NP/MnO2 NW owing to the efficient separation of photogenerated electron–hole pairs. Ag NP/MnO2 NW’s higher photocatalytic activity than Au NP/MnO2 NW is attributed to the increased light absorption of the Ag NP in the UV region. The overall enhancement after decorating the noble metal NP on MnO2 NW could open new avenues for self-cleaning applications.

本研究探讨了在无需催化剂的情况下,通过闪烁角沉积(GLAD)技术合成装饰有金(Au)和银(Ag)纳米粒子(NP)的垂直排列的二氧化锰纳米线(NW)。横截面场发射扫描电子显微镜(FESEM)图像和能量色散 X 射线光谱(EDS)证实,在 MnO2 NW 的顶面成功装饰了银纳米粒子和金纳米粒子。元素图谱验证了样品中锰(Mn)、氧(O)、硅(Si)、银和金的存在。X 射线衍射 (XRD) 图显示了 MnO2 薄膜的多晶生长和优选取向。原子力显微镜(AFM)显示,Au NP/MnO2 NW 的表面粗糙度大于 Ag NP/MnO2 NW。测得的 Au NP/MnO2 NW、Ag NP/MnO2 NW 和 MnO2 NW 的水接触角分别为 125°和 113°。在紫外线照射下,Ag NP/MnO2 NW 比 Au NP/MnO2 NW 表现出更强的亲水性,这是因为光生电子-空穴对的有效分离。Ag NP/MnO2 NW 的光催化活性高于 Au NP/MnO2 NW 是因为 Ag NP 在紫外区的光吸收增加。在 MnO2 NW 上装饰贵金属 NP 后,其整体性能得到增强,这为自清洁应用开辟了新的途径。
{"title":"Surface functionalization of MnO2 NW embellished with metal nanoparticles for self-cleaning applications","authors":"Stacy A. Lynrah,&nbsp;P. Chinnamuthu,&nbsp;Rajshree Rajkumari,&nbsp;Ying Ying Lim,&nbsp;Lanusubo Walling,&nbsp;L. Vigneash","doi":"10.1007/s13204-024-03032-3","DOIUrl":"10.1007/s13204-024-03032-3","url":null,"abstract":"<div><p>The present study investigates the synthesis of vertically aligned MnO<sub>2</sub> nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for a catalyst. The cross-sectional field emission scanning electron microscopy (FESEM) image and energy-dispersive X-ray spectroscopy (EDS) confirm the successful adornment of Ag NP and Au NP on the top surface of MnO<sub>2</sub> NW. Elemental mapping has verified the presence of manganese (Mn), oxygen (O), silicon (Si), Ag, and Au within the sample. X-ray diffraction (XRD) patterns reveal the polycrystalline growth of the MnO<sub>2</sub> film with the preferred orientation. AFM reveals that the surface roughness of Au NP/MnO<sub>2</sub> NW is more than Ag NP/MnO<sub>2</sub> NW. The measured water contact angles of Au NP/MnO<sub>2</sub> NW, Ag NP/MnO<sub>2</sub> NW, and MnO<sub>2</sub> NW were 125° and 113°, respectively. Ag NP/MnO<sub>2</sub> NW showed more hydrophilic properties under UV illumination than Au NP/MnO<sub>2</sub> NW owing to the efficient separation of photogenerated electron–hole pairs. Ag NP/MnO<sub>2</sub> NW’s higher photocatalytic activity than Au NP/MnO<sub>2</sub> NW is attributed to the increased light absorption of the Ag NP in the UV region. The overall enhancement after decorating the noble metal NP on MnO<sub>2</sub> NW could open new avenues for self-cleaning applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"519 - 529"},"PeriodicalIF":3.674,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Nanoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1