The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.
{"title":"Trends in sustainable materials for passive thermal management in 5G enabled portable electronics","authors":"Sriharini Senthilkumar, Brindha Ramasubramanian, Subramanian Sundarrajan, Seeram Ramakrishna","doi":"10.1007/s13204-024-03033-2","DOIUrl":"10.1007/s13204-024-03033-2","url":null,"abstract":"<div><p>The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"543 - 557"},"PeriodicalIF":3.674,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s13204-024-03030-5
Richard W. van Nieuwenhoven, Alexander M. Bürger, Laura L. E. Mears, Philip Kienzl, Manuel Reithofer, Adelheid Elbe-Bürger, Ille C. Gebeshuber
The antibacterial properties of cicada wings originate from hexagonally arranged pillar-like multi-functional nanostructures with species-dependent heights, which are super-hydrophobic and self-cleaning. In the present study, two cicada species with promising nanopillars were investigated in more detail. Selected methods were used to analyze the wing surfaces, including Atomic Force Microscopy, Scanning Electron Microscopy, and bacterial tests with live/dead staining. Verifying the antibacterial properties posed challenges, such as the bacteria concentration needed to confirm the antibacterial properties. These challenges will also impact the practical implementation of antibacterial nanostructures and support the findings of recent critical publications.
{"title":"Verifying antibacterial properties of nanopillars on cicada wings","authors":"Richard W. van Nieuwenhoven, Alexander M. Bürger, Laura L. E. Mears, Philip Kienzl, Manuel Reithofer, Adelheid Elbe-Bürger, Ille C. Gebeshuber","doi":"10.1007/s13204-024-03030-5","DOIUrl":"10.1007/s13204-024-03030-5","url":null,"abstract":"<div><p>The antibacterial properties of cicada wings originate from hexagonally arranged pillar-like multi-functional nanostructures with species-dependent heights, which are super-hydrophobic and self-cleaning. In the present study, two cicada species with promising nanopillars were investigated in more detail. Selected methods were used to analyze the wing surfaces, including Atomic Force Microscopy, Scanning Electron Microscopy, and bacterial tests with live/dead staining. Verifying the antibacterial properties posed challenges, such as the bacteria concentration needed to confirm the antibacterial properties. These challenges will also impact the practical implementation of antibacterial nanostructures and support the findings of recent critical publications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"531 - 541"},"PeriodicalIF":3.674,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03030-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s13204-024-03032-3
Stacy A. Lynrah, P. Chinnamuthu, Rajshree Rajkumari, Ying Ying Lim, Lanusubo Walling, L. Vigneash
The present study investigates the synthesis of vertically aligned MnO2 nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for a catalyst. The cross-sectional field emission scanning electron microscopy (FESEM) image and energy-dispersive X-ray spectroscopy (EDS) confirm the successful adornment of Ag NP and Au NP on the top surface of MnO2 NW. Elemental mapping has verified the presence of manganese (Mn), oxygen (O), silicon (Si), Ag, and Au within the sample. X-ray diffraction (XRD) patterns reveal the polycrystalline growth of the MnO2 film with the preferred orientation. AFM reveals that the surface roughness of Au NP/MnO2 NW is more than Ag NP/MnO2 NW. The measured water contact angles of Au NP/MnO2 NW, Ag NP/MnO2 NW, and MnO2 NW were 125° and 113°, respectively. Ag NP/MnO2 NW showed more hydrophilic properties under UV illumination than Au NP/MnO2 NW owing to the efficient separation of photogenerated electron–hole pairs. Ag NP/MnO2 NW’s higher photocatalytic activity than Au NP/MnO2 NW is attributed to the increased light absorption of the Ag NP in the UV region. The overall enhancement after decorating the noble metal NP on MnO2 NW could open new avenues for self-cleaning applications.
本研究探讨了在无需催化剂的情况下,通过闪烁角沉积(GLAD)技术合成装饰有金(Au)和银(Ag)纳米粒子(NP)的垂直排列的二氧化锰纳米线(NW)。横截面场发射扫描电子显微镜(FESEM)图像和能量色散 X 射线光谱(EDS)证实,在 MnO2 NW 的顶面成功装饰了银纳米粒子和金纳米粒子。元素图谱验证了样品中锰(Mn)、氧(O)、硅(Si)、银和金的存在。X 射线衍射 (XRD) 图显示了 MnO2 薄膜的多晶生长和优选取向。原子力显微镜(AFM)显示,Au NP/MnO2 NW 的表面粗糙度大于 Ag NP/MnO2 NW。测得的 Au NP/MnO2 NW、Ag NP/MnO2 NW 和 MnO2 NW 的水接触角分别为 125°和 113°。在紫外线照射下,Ag NP/MnO2 NW 比 Au NP/MnO2 NW 表现出更强的亲水性,这是因为光生电子-空穴对的有效分离。Ag NP/MnO2 NW 的光催化活性高于 Au NP/MnO2 NW 是因为 Ag NP 在紫外区的光吸收增加。在 MnO2 NW 上装饰贵金属 NP 后,其整体性能得到增强,这为自清洁应用开辟了新的途径。
{"title":"Surface functionalization of MnO2 NW embellished with metal nanoparticles for self-cleaning applications","authors":"Stacy A. Lynrah, P. Chinnamuthu, Rajshree Rajkumari, Ying Ying Lim, Lanusubo Walling, L. Vigneash","doi":"10.1007/s13204-024-03032-3","DOIUrl":"10.1007/s13204-024-03032-3","url":null,"abstract":"<div><p>The present study investigates the synthesis of vertically aligned MnO<sub>2</sub> nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for a catalyst. The cross-sectional field emission scanning electron microscopy (FESEM) image and energy-dispersive X-ray spectroscopy (EDS) confirm the successful adornment of Ag NP and Au NP on the top surface of MnO<sub>2</sub> NW. Elemental mapping has verified the presence of manganese (Mn), oxygen (O), silicon (Si), Ag, and Au within the sample. X-ray diffraction (XRD) patterns reveal the polycrystalline growth of the MnO<sub>2</sub> film with the preferred orientation. AFM reveals that the surface roughness of Au NP/MnO<sub>2</sub> NW is more than Ag NP/MnO<sub>2</sub> NW. The measured water contact angles of Au NP/MnO<sub>2</sub> NW, Ag NP/MnO<sub>2</sub> NW, and MnO<sub>2</sub> NW were 125° and 113°, respectively. Ag NP/MnO<sub>2</sub> NW showed more hydrophilic properties under UV illumination than Au NP/MnO<sub>2</sub> NW owing to the efficient separation of photogenerated electron–hole pairs. Ag NP/MnO<sub>2</sub> NW’s higher photocatalytic activity than Au NP/MnO<sub>2</sub> NW is attributed to the increased light absorption of the Ag NP in the UV region. The overall enhancement after decorating the noble metal NP on MnO<sub>2</sub> NW could open new avenues for self-cleaning applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"519 - 529"},"PeriodicalIF":3.674,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-17DOI: 10.1007/s13204-024-03031-4
Chandra Nath Roy, Susmita Maiti, Tushar Kanti Das, Somashree Kundu, Sudip Karmakar, Aparna Datta, Abhijit Saha
Copper nanoparticles (CuNPs) have drawn considerable interest because of recent evidences on greater Surface Enhanced Raman Spectroscopic (SERS) signal enhancing capability, high antibacterial activity and strong catalytic property with regard to the long existing popular silver and gold particles. The existing chemical synthesis methods usually require extensive purification to remove unreacted inorganic reducing agents, like sodium borohydride used to convert Cu2+ ions to Cu0 and it limits direct use of as-prepared materials in biologic systems. Here, we have endeavored to synthesize starch encapsulated CuNPs through radiation chemical approach which is considered to be one of the cleanest routes and involve in-situ generated hydrated electrons to reduce metal ions directly. Presence of large number of hydroxyl groups within starch molecules facilitates complexation of Cu(II) and thereby stabilizes CuNPs. Transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED) illustrate that particles synthesized at a typical dose of 83.6 kGy are spherical with size of ca. 8 nm having polycrystalline face-centered cubic phase. The observed blue shift of the absorption maximum suggests formation of smaller sized particles with increase in applied radiation dose keeping other parameters same and this is supported by dynamic light scattering (DLS) data. Further, catalytic efficiency of as-synthesized CuNPs was tested by monitoring sodium borohydride mediated catalytic reduction of para-nitrophenol to para-aminophenol and the apparent rate constant (kapp) was estimated as 3 × 10–3 s−1. Thus, as-synthesized CuNPs appears to be better catalyst than the copper nanoparticles synthesized through conventional method for having kapp of about 1.6 × 10–3 s−1.
{"title":"Radiation-assisted synthesis of water soluble starch encapsulated copper nanoparticles and its applicability toward photocatalytic reduction of p-nitrophenol","authors":"Chandra Nath Roy, Susmita Maiti, Tushar Kanti Das, Somashree Kundu, Sudip Karmakar, Aparna Datta, Abhijit Saha","doi":"10.1007/s13204-024-03031-4","DOIUrl":"10.1007/s13204-024-03031-4","url":null,"abstract":"<div><p>Copper nanoparticles (CuNPs) have drawn considerable interest because of recent evidences on greater Surface Enhanced Raman Spectroscopic (SERS) signal enhancing capability, high antibacterial activity and strong catalytic property with regard to the long existing popular silver and gold particles. The existing chemical synthesis methods usually require extensive purification to remove unreacted inorganic reducing agents, like sodium borohydride used to convert Cu<sup>2+</sup> ions to Cu<sup>0</sup> and it limits direct use of as-prepared materials in biologic systems. Here, we have endeavored to synthesize starch encapsulated CuNPs through radiation chemical approach which is considered to be one of the cleanest routes and involve <i>in-situ</i> generated hydrated electrons to reduce metal ions directly. Presence of large number of hydroxyl groups within starch molecules facilitates complexation of Cu(II) and thereby stabilizes CuNPs. Transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED) illustrate that particles synthesized at a typical dose of 83.6 kGy are spherical with size of ca. 8 nm having polycrystalline face-centered cubic phase. The observed blue shift of the absorption maximum suggests formation of smaller sized particles with increase in applied radiation dose keeping other parameters same and this is supported by dynamic light scattering (DLS) data. Further, catalytic efficiency of as-synthesized CuNPs was tested by monitoring sodium borohydride mediated catalytic reduction of <i>para</i>-nitrophenol to <i>para</i>-aminophenol and the apparent rate constant (<i>k</i><sub>app</sub>) was estimated as 3 × 10<sup>–3</sup> s<sup>−1</sup>. Thus, as-synthesized CuNPs appears to be better catalyst than the copper nanoparticles synthesized through conventional method for having <i>k</i><sub>app</sub> of about 1.6 × 10<sup>–3</sup> s<sup>−1</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"507 - 518"},"PeriodicalIF":3.674,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanozymes, possessing enzyme-like traits, have gained tremendous attention for their functionality, ease of production, economical synthesis, and stability. Majority of reported nanozymes in literature, for analyte detection are metal-based compounds, transition metal dichalcogenides or single-atom nanozymes. In this study, we report for the first time, a novel peroxidase-mimic, colloidal dendritic nanozyme from lignin-rich agro-industrial residue (coconut husk) by ozonolysis. Synthesized nanozyme exhibited peroxidase-mimic activity in sensing H2O2, with a wide range of substrates and detection techniques. When 3,3′,5,5′-tetramethylbenzidine (TMB) and 2′,7′–dichlorofluorescin diacetate (DCFDA) were used, the nanozyme demonstrated ultrafast kinetic behaviour with LOD of 43.60 ± 2.41 µM and 1.25 ± 0.31 µM H2O2, by colorimetric and fluorimetric assays, respectively. The nanozyme-based H2O2 sensing platform, was further utilized for detection of pathogenic bacteria namely Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Pseudomonas aeruginosa, and for total bacterial load in water. Notably, it demonstrated high sensitivity in the detection of P. aeruginosa with LOD as low as 7 CFU/mL with both fluorimetric and electrochemical methods. Ultrasensitive detection of total bacterial load could also be achieved with 5.5 × 102 CFU/mL, 5.5 × 101 CFU/mL, and 4.1 × 101 CFU/mL by colorimetric, fluorometric, and electrochemical techniques, respectively. Results of the study thus indicate, that the developed nanozyme-based sensing platform had high sensitivity for detection of bacteria as well as versatility with diverse analytical approaches enabling potential practical application for “onsite” monitoring of water quality, especially in rural settings. This biological mimic can also be used in sensor platforms where H2O2 is measured and applied for output signaling.
{"title":"Peroxidase-mimetic colloidal nanozyme from ozone-oxidized lignocellulosic biomass for biosensing of H2O2 and bacterial contamination in water","authors":"Pravin Savata Gade, Rutuja Murlidhar Sonkar, Dipita Roy, Praveena Bhatt","doi":"10.1007/s13204-024-02995-7","DOIUrl":"10.1007/s13204-024-02995-7","url":null,"abstract":"<div><p>Nanozymes, possessing enzyme-like traits, have gained tremendous attention for their functionality, ease of production, economical synthesis, and stability. Majority of reported nanozymes in literature, for analyte detection are metal-based compounds, transition metal dichalcogenides or single-atom nanozymes. In this study, we report for the first time, a novel peroxidase-mimic, colloidal dendritic nanozyme from lignin-rich agro-industrial residue (coconut husk) by ozonolysis. Synthesized nanozyme exhibited peroxidase-mimic activity in sensing H<sub>2</sub>O<sub>2</sub>, with a wide range of substrates and detection techniques. When 3,3′,5,5′-tetramethylbenzidine (TMB) and 2′,7′–dichlorofluorescin diacetate (DCFDA) were used, the nanozyme demonstrated ultrafast kinetic behaviour with LOD of 43.60 ± 2.41 µM and 1.25 ± 0.31 µM H<sub>2</sub>O<sub>2</sub>, by colorimetric and fluorimetric assays, respectively. The nanozyme-based H<sub>2</sub>O<sub>2</sub> sensing platform, was further utilized for detection of pathogenic bacteria namely <i>Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Pseudomonas aeruginosa</i>, and for total bacterial load in water. Notably, it demonstrated high sensitivity in the detection of <i>P. aeruginosa</i> with LOD as low as 7 CFU/mL with both fluorimetric and electrochemical methods. Ultrasensitive detection of total bacterial load could also be achieved with 5.5 × 10<sup>2</sup> CFU/mL, 5.5 × 10<sup>1</sup> CFU/mL, and 4.1 × 10<sup>1</sup> CFU/mL by colorimetric, fluorometric, and electrochemical techniques, respectively. Results of the study thus indicate, that the developed nanozyme-based sensing platform had high sensitivity for detection of bacteria as well as versatility with diverse analytical approaches enabling potential practical application for “onsite” monitoring of water quality, especially in rural settings. This biological mimic can also be used in sensor platforms where H<sub>2</sub>O<sub>2</sub> is measured and applied for output signaling.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"491 - 505"},"PeriodicalIF":3.674,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-08DOI: 10.1007/s13204-023-02994-0
Munirah D. Albaqami, Sumaira Mnazoor, Mohamed Sheikh, Muhammad Imran Anwar, Abdul Ghafoor Abid
To properly exploit undepleted sources of energy through energy conversion devices using water splitting reactions, there is a need for cost-effective, easily accessible, and long-lasting materials that are capable of performing bifunctional activity like hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this study, oxygen incorporation into SnS@Cu2S (O-SnS@Cu2S) heteronanosheets was architecture on Nickel foam utilizing polyoxometalate as bimetal precursors, and then this material exhibited superior activity, requiring only a small overpotential to generate high current densities compared to individual O-SnS and O-Cu2S arrays for the electrocatalytic HER activity. The Tafel slopes (26 mV dec−1) and electrochemical impedance spectroscopy (EIS) (Rct = 1.2 Ω), further confirmed the favorable kinetics and conductivity of the O-SnS@Cu2S array. When compared to the O-Cu2S and O-SnS nanosheet arrays, the bimetal sulphides O-SnS@Cu2S array had much lower overpotentials, requiring only 170 mV and 232 mV, respectively, to achieve a current density of 10 mA cm−2 in an alkaline solution for HER and OER. The O-SnS@Cu2S nanosheet array outperformed SnS and Cu2S, requiring lower overpotentials to achieve high current densities. The smaller value of Tafel slopes (23 mV dec−1 for O-SnS@Cu2S) indicated improved kinetics, and EIS demonstrated a lower polarization resistance (Rct = 0.2 Ω) for the O-SnS@Cu2S array. Importantly, the O-SnS@Cu2S array exhibited remarkable stability in alkaline electrolyte cycling experiments, making it an outstanding material for practical applications in energy conversion devices. This research proposes a feasible technique for the development of efficient and stable bifunctional bimetal-sulfide electrocatalysts with enormous potential for use in renewable energy.
{"title":"Polyoxometalate-mediated growth of O-SnS@Cu2S heteronanosheets for high-performance oxygen and hydrogen evolution reactions","authors":"Munirah D. Albaqami, Sumaira Mnazoor, Mohamed Sheikh, Muhammad Imran Anwar, Abdul Ghafoor Abid","doi":"10.1007/s13204-023-02994-0","DOIUrl":"10.1007/s13204-023-02994-0","url":null,"abstract":"<div><p>To properly exploit undepleted sources of energy through energy conversion devices using water splitting reactions, there is a need for cost-effective, easily accessible, and long-lasting materials that are capable of performing bifunctional activity like hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this study, oxygen incorporation into SnS@Cu<sub>2</sub>S (O-SnS@Cu<sub>2</sub>S) heteronanosheets was architecture on Nickel foam utilizing polyoxometalate as bimetal precursors, and then this material exhibited superior activity, requiring only a small overpotential to generate high current densities compared to individual O-SnS and O-Cu<sub>2</sub>S arrays for the electrocatalytic HER activity. The Tafel slopes (26 mV dec<sup>−1</sup>) and electrochemical impedance spectroscopy (EIS) (<i>R</i><sub>ct</sub> = 1.2 Ω), further confirmed the favorable kinetics and conductivity of the O-SnS@Cu<sub>2</sub>S array. When compared to the O-Cu<sub>2</sub>S and O-SnS nanosheet arrays, the bimetal sulphides O-SnS@Cu<sub>2</sub>S array had much lower overpotentials, requiring only 170 mV and 232 mV, respectively, to achieve a current density of 10 mA cm<sup>−2</sup> in an alkaline solution for HER and OER. The O-SnS@Cu<sub>2</sub>S nanosheet array outperformed SnS and Cu<sub>2</sub>S, requiring lower overpotentials to achieve high current densities. The smaller value of Tafel slopes (23 mV dec<sup>−1</sup> for O-SnS@Cu<sub>2</sub>S) indicated improved kinetics, and EIS demonstrated a lower polarization resistance (<i>R</i><sub>ct</sub> = 0.2 Ω) for the O-SnS@Cu<sub>2</sub>S array. Importantly, the O-SnS@Cu<sub>2</sub>S array exhibited remarkable stability in alkaline electrolyte cycling experiments, making it an outstanding material for practical applications in energy conversion devices. This research proposes a feasible technique for the development of efficient and stable bifunctional bimetal-sulfide electrocatalysts with enormous potential for use in renewable energy.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"477 - 489"},"PeriodicalIF":3.674,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study explains the potential role of non-functionalized graphene produced using flash joule heating technology on Drosophila melanogaster. Several characterizations of the produced graphene were conducted via field emission-scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and X-ray diffraction studies. After being characterized, the graphene powder was orally administered to flies at doses ranging from 0.02 to 0.5%, establishing its non-toxic properties as a prerequisite for potential therapeutic applications. Experiments such as Trypan blue and 4’,6-diamidino-2-phenylindole (DAPI) revealed that graphene causes no harm to the larval gut’s plasma membrane and nucleus. Behavioral assays such as crawling and climbing assays on larvae and adults demonstrated the non-neurotoxic nature of graphene. The high sucrose diet-induced diabetic Drosophila melanogaster model was used to study antidiabetic properties. In contrast, Gram + ve bacteria B. subtilis and Gram − ve P. aeruginosa were used to study the antibacterial properties of graphene. A better metabolic profile was evidenced after graphene treatment, including a 36% decrease in hemolymph-free glucose levels and significantly reduced lipid droplets at the highest concentration. In addition, the highest concentration of graphene treatment resulted in a 57% reduced fluorescent intensity of reactive oxygen species (ROS) produced by diabetic flies. Considering all these evidence, this study concludes that graphene’s non-toxic and antidiabetic properties can be used to mitigate the symptoms associated with Type II diabetes and obesity.
本研究解释了利用闪焦耳加热技术生产的非功能化石墨烯对黑腹果蝇的潜在作用。研究人员通过场发射扫描电子显微镜、高分辨率透射电子显微镜、拉曼光谱和 X 射线衍射研究对所制备的石墨烯进行了多项表征。经过表征后,石墨烯粉末以 0.02% 至 0.5% 的剂量口服给苍蝇服用,从而确定了其无毒特性,这是潜在治疗应用的先决条件。胰蓝和 4',6-二脒基-2-苯基吲哚(DAPI)等实验表明,石墨烯不会对幼虫肠道的质膜和细胞核造成伤害。对幼虫和成虫进行的爬行和攀爬等行为试验表明,石墨烯无神经毒性。利用高蔗糖饮食诱导的糖尿病黑腹果蝇模型研究了石墨烯的抗糖尿病特性。与此相反,研究人员使用革兰氏+Ⅴ型细菌 B. subtilis 和革兰氏-Ⅴ型细菌 P. aeruginosa 来研究石墨烯的抗菌特性。经石墨烯处理后,动物的代谢状况明显改善,包括无血红蛋白葡萄糖水平降低了 36%,最高浓度的石墨烯可显著减少脂滴。此外,最高浓度的石墨烯处理使糖尿病蝇产生的活性氧(ROS)荧光强度降低了 57%。考虑到所有这些证据,本研究得出结论:石墨烯的无毒性和抗糖尿病特性可用于减轻 II 型糖尿病和肥胖症的相关症状。
{"title":"2D material graphene as a potential antidiabetic and nontoxic compound in Drosophila melanogaster","authors":"Kalpanarani Dash, Deepak kumar Panda, Kushal Yadav, Sonali Meher, Monalisa Mishra","doi":"10.1007/s13204-023-02988-y","DOIUrl":"10.1007/s13204-023-02988-y","url":null,"abstract":"<div><p>This study explains the potential role of non-functionalized graphene produced using flash joule heating technology on <i>Drosophila melanogaster</i>. Several characterizations of the produced graphene were conducted via field emission-scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and X-ray diffraction studies. After being characterized, the graphene powder was orally administered to flies at doses ranging from 0.02 to 0.5%, establishing its non-toxic properties as a prerequisite for potential therapeutic applications. Experiments such as Trypan blue and 4’,6-diamidino-2-phenylindole (DAPI) revealed that graphene causes no harm to the larval gut’s plasma membrane and nucleus. Behavioral assays such as crawling and climbing assays on larvae and adults demonstrated the non-neurotoxic nature of graphene. The high sucrose diet-induced diabetic <i>Drosophila melanogaster</i> model was used to study antidiabetic properties. In contrast, Gram + ve bacteria <i>B. subtilis</i> and Gram − ve <i>P. aeruginosa</i> were used to study the antibacterial properties of graphene. A better metabolic profile was evidenced after graphene treatment, including a 36% decrease in hemolymph-free glucose levels and significantly reduced lipid droplets at the highest concentration. In addition, the highest concentration of graphene treatment resulted in a 57% reduced fluorescent intensity of reactive oxygen species (ROS) produced by diabetic flies. Considering all these evidence, this study concludes that graphene’s non-toxic and antidiabetic properties can be used to mitigate the symptoms associated with Type II diabetes and obesity.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 2","pages":"423 - 439"},"PeriodicalIF":3.674,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139552293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.1007/s13204-023-02992-2
Sangita Tripathy, S. R. Dhakate, Bhanu Pratap Singh
The extraordinary physical properties of multiwalled carbon nanotubes (MWCNTs) are yet to be fully realised in polyamide-6 (PA6) nanocomposites, due to difficulty in dispersion of MWCNTs within PA6 matrix, owing to high toughness of PA6 and agglomerating properties of MWCNTs. In this study, MWCNTs of high aspect ratio prepared by chemical vapour deposition (CVD) method are melt-mixed with 0.1–0.5 parts-per-hundred ratios (phr) into PA6 matrix by twin-screw extrusion. The high shearing force of co-rotating twin-screws and intermixing of the components along the back-flow channel of extruder assured uniformly dispersed MWCNTs within PA6 system. A 30.2% rise in yield strength and an 82.6% rise in Young’s modulus were noticed for 0.1 phr MWCNTs/PA6 tensile specimens over neat PA6 specimens during tensile testing. A strain hardening behaviour was shown by neat PA6, which was persistent in all its composites containing MWCNTs. A distinct trend in storage and loss behaviour, as well as 14 °C and 11 °C rise in glass transition temperatures (Tg) in loss modulus and loss factor curves, respectively, were observed for 0.5 phr MWCNTs’ reinforcement in dynamic mechanical analysis (DMA), which indicated an effective PA6–MWCNTs interaction. The improvements in crystallization and melting temperatures, as well as crystallinity values in differential scanning calorimetry (DSC) indicated nucleating effects of MWCNTs towards stable crystallization of PA6 molecules. The shifting and rise in intensity peaks in XRD and Raman spectroscopy curves supported the reinforcing effect of MWCNTs within PA6 matrix. These nanocomposites are beneficial for fabricating high mechanical and thermal stability-required components in automobiles, aerospace, and biomedicals.
{"title":"Effect of long-length carbon nanotubes on yield, ultimate, dynamic mechanical, and thermal properties of polyamide-6 composites prepared by twin-screw extrusion","authors":"Sangita Tripathy, S. R. Dhakate, Bhanu Pratap Singh","doi":"10.1007/s13204-023-02992-2","DOIUrl":"10.1007/s13204-023-02992-2","url":null,"abstract":"<div><p>The extraordinary physical properties of multiwalled carbon nanotubes (MWCNTs) are yet to be fully realised in polyamide-6 (PA6) nanocomposites, due to difficulty in dispersion of MWCNTs within PA6 matrix, owing to high toughness of PA6 and agglomerating properties of MWCNTs. In this study, MWCNTs of high aspect ratio prepared by chemical vapour deposition (CVD) method are melt-mixed with 0.1–0.5 parts-per-hundred ratios (phr) into PA6 matrix by twin-screw extrusion. The high shearing force of co-rotating twin-screws and intermixing of the components along the back-flow channel of extruder assured uniformly dispersed MWCNTs within PA6 system. A 30.2% rise in yield strength and an 82.6% rise in Young’s modulus were noticed for 0.1 phr MWCNTs/PA6 tensile specimens over neat PA6 specimens during tensile testing. A strain hardening behaviour was shown by neat PA6, which was persistent in all its composites containing MWCNTs. A distinct trend in storage and loss behaviour, as well as 14 °C and 11 °C rise in glass transition temperatures (T<sub>g</sub>) in loss modulus and loss factor curves, respectively, were observed for 0.5 phr MWCNTs’ reinforcement in dynamic mechanical analysis (DMA), which indicated an effective PA6–MWCNTs interaction. The improvements in crystallization and melting temperatures, as well as crystallinity values in differential scanning calorimetry (DSC) indicated nucleating effects of MWCNTs towards stable crystallization of PA6 molecules. The shifting and rise in intensity peaks in XRD and Raman spectroscopy curves supported the reinforcing effect of MWCNTs within PA6 matrix. These nanocomposites are beneficial for fabricating high mechanical and thermal stability-required components in automobiles, aerospace, and biomedicals.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"465 - 475"},"PeriodicalIF":3.674,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-14DOI: 10.1007/s13204-024-03029-y
Mustafa Sabri Cheyad, Alaa Hussein J. Al-qaisi, Ahmed Ahmed
{"title":"Retraction Note: Synthesis, molecular docking and molecular dynamics simulation of 1,4-bis(4,5-diphenyl-1H-imidazol-2-yl) benzene as a potential inhibitor against LDHA","authors":"Mustafa Sabri Cheyad, Alaa Hussein J. Al-qaisi, Ahmed Ahmed","doi":"10.1007/s13204-024-03029-y","DOIUrl":"10.1007/s13204-024-03029-y","url":null,"abstract":"","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"703 - 703"},"PeriodicalIF":3.674,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-14DOI: 10.1007/s13204-024-03027-0
Nadejda Beleva
{"title":"Retraction Note: Change in hospital admissions in dental diseases before and during the COVID-19 pandemic","authors":"Nadejda Beleva","doi":"10.1007/s13204-024-03027-0","DOIUrl":"10.1007/s13204-024-03027-0","url":null,"abstract":"","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"705 - 705"},"PeriodicalIF":3.674,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}