首页 > 最新文献

Atmospheric and Oceanic Science Letters最新文献

英文 中文
Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring 两种El Niño对南极半岛和南极西部春季降水的显著影响
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100387
Xueyang Chen , Shuanglin Li , Chao Zhang

Based on multiple reanalysis data, the authors investigated the distinct impacts of central Pacific (CP) and eastern Pacific (EP) El Niño events on precipitation over West Antarctica and the Antarctic Peninsula in austral spring (September–November). The results demonstrate that EP and CP events have similar impacts on precipitation over the Amundsen–Bellingshausen seas, but opposite impacts on that over the Weddell Sea, especially the Antarctic Peninsula. Mechanistically, the tropical heat sources associated with EP events drive two branches of Rossby wave trains, causing an anomalous anticyclone and cyclone over the Ross–Amundsen–Bellingshausen seas and the Weddell Sea, respectively. Anomalous southerly winds to the east (west) of the anomalous anticyclone (cyclone) advect colder and drier air into the Bellingshausen–Weddell seas and the Antarctic Peninsula, which jointly result in negative precipitation anomalies there. CP events, however, trigger only one weak and westward-shifted Rossby wave train, which induces an anomalous anticyclone and cyclone in the Ross–Amundsen seas and Bellingshausen–Weddell seas, respectively, both 20°–30° west of those generated by EP events. Consequently, anomalous northerly (southerly) winds to the east (west) of the anomalous cyclone cause an increase (a decrease) in precipitation over the Weddell Sea (Amundsen–Bellingshausen seas).

摘要

本文基于多种再分析资料, 研究了中部型 (CP) 和东部型 (EP) El Niño事件对南半球春季 (9–11月) 西南极和南极半岛降水的不同影响. 结果显示, EP和CP事件对阿蒙森-别林斯高晋海的降水具有相似影响, 而对威德尔海, 特别是南极半岛的降水影响相反. 由于EP事件激发两支罗斯贝波列, 分别引起罗斯-阿蒙森-别林斯高森海和威德尔海上空的异常反气旋和气旋, 从而导致别林斯高晋-威德尔海和南极半岛受到干冷的异常偏南风影响, 降水减少. 然而, CP事件仅激发一支相对较弱且偏西的罗斯贝波列, 分别引起罗斯-阿蒙森海和别林斯高晋-威德尔海上空的异常反气旋和气旋, 从而导致南极半岛以西 (东) 受异常偏南 (北) 风影响, 降水减少 (增加).

基于多个再分析资料,研究了中太平洋(CP)和东太平洋(EP) El Niño事件对南极南部春季(9 - 11月)西南极洲和南极半岛降水的显著影响。结果表明,EP和CP事件对阿蒙森-别令斯豪森海降水的影响相似,而对威德尔海特别是南极半岛降水的影响相反。从机制上讲,与EP事件相关的热带热源驱动了罗斯比波列的两个分支,分别在罗斯-阿蒙森-别林斯高森海和威德尔海上空造成了异常的反气旋和气旋。异常反气旋(气旋)东(西)的异常偏南风将较冷、较干的空气平流到别灵高森-威德尔海和南极半岛,共同造成该地区的负降水异常。然而,CP事件只触发了一个弱的、向西移动的罗斯比波列,分别在Ross-Amundsen海和Bellingshausen-Weddell海诱发了一个异常的反气旋和气旋,它们都是由EP事件产生的,在20°-30°以西。因此,异常气旋东面(西面)的异常北风(南风)导致威德尔海(阿蒙森-别令斯豪森海)降水增加(减少)。摘要本文基于多种再分析资料,研究了中部型(CP)和东部型(EP)厄尔尼诺事件对南半球春季(9 - 11月)西南极和南极半岛降水的不同影响。结果显示,EP和CP事件对阿蒙森——别林斯高晋海的降水具有相似影响,而对威德尔海,特别是南极半岛的降水影响相反。由于EP事件激发两支罗斯贝波列,分别引起罗斯-阿蒙森——别林斯高森海和威德尔海上空的异常反气旋和气旋,从而导致别林斯高晋-威德尔海和南极半岛受到干冷的异常偏南风影响,降水减少。然而,CP事件仅激发一支相对较弱且偏西的罗斯贝波列,分别引起罗斯-阿蒙森海和别林斯高晋-威德尔海上空的异常反气旋和气旋,从而导致南极半岛以西(东)受异常偏南(北)风影响,降水减少(增加)。
{"title":"Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring","authors":"Xueyang Chen ,&nbsp;Shuanglin Li ,&nbsp;Chao Zhang","doi":"10.1016/j.aosl.2023.100387","DOIUrl":"10.1016/j.aosl.2023.100387","url":null,"abstract":"<div><p>Based on multiple reanalysis data, the authors investigated the distinct impacts of central Pacific (CP) and eastern Pacific (EP) El Niño events on precipitation over West Antarctica and the Antarctic Peninsula in austral spring (September–November). The results demonstrate that EP and CP events have similar impacts on precipitation over the Amundsen–Bellingshausen seas, but opposite impacts on that over the Weddell Sea, especially the Antarctic Peninsula. Mechanistically, the tropical heat sources associated with EP events drive two branches of Rossby wave trains, causing an anomalous anticyclone and cyclone over the Ross–Amundsen–Bellingshausen seas and the Weddell Sea, respectively. Anomalous southerly winds to the east (west) of the anomalous anticyclone (cyclone) advect colder and drier air into the Bellingshausen–Weddell seas and the Antarctic Peninsula, which jointly result in negative precipitation anomalies there. CP events, however, trigger only one weak and westward-shifted Rossby wave train, which induces an anomalous anticyclone and cyclone in the Ross–Amundsen seas and Bellingshausen–Weddell seas, respectively, both 20°–30° west of those generated by EP events. Consequently, anomalous northerly (southerly) winds to the east (west) of the anomalous cyclone cause an increase (a decrease) in precipitation over the Weddell Sea (Amundsen–Bellingshausen seas).</p><p>摘要</p><p>本文基于多种再分析资料, 研究了中部型 (CP) 和东部型 (EP) El Niño事件对南半球春季 (9–11月) 西南极和南极半岛降水的不同影响. 结果显示, EP和CP事件对阿蒙森-别林斯高晋海的降水具有相似影响, 而对威德尔海, 特别是南极半岛的降水影响相反. 由于EP事件激发两支罗斯贝波列, 分别引起罗斯-阿蒙森-别林斯高森海和威德尔海上空的异常反气旋和气旋, 从而导致别林斯高晋-威德尔海和南极半岛受到干冷的异常偏南风影响, 降水减少. 然而, CP事件仅激发一支相对较弱且偏西的罗斯贝波列, 分别引起罗斯-阿蒙森海和别林斯高晋-威德尔海上空的异常反气旋和气旋, 从而导致南极半岛以西 (东) 受异常偏南 (北) 风影响, 降水减少 (增加).</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100387"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44497463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multimodel ensemble projection of photovoltaic power potential in China by the 2060s 20世纪60年代中国光伏发电潜力的多模型综合预测
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100403
Xu Zhao , Xu Yue , Chenguang Tian , Hao Zhou , Bin Wang , Yuwen Chen , Yuan Zhao , Weijie Fu , Yihan Hu

China's demand for solar energy has been growing rapidly to meet energy transformation targets. However, the potential of solar energy is affected by weather conditions and is expected to change under climate warming. Here, the authors project the photovoltaic (PV) power potential over China under low and high emission scenarios by the 2060s, taking advantage of meteorological variables from 24 CMIP6 models and 4 PV models with varied formats. The ensemble mean of these models yields an average PV power of 277.2 KWh m−2 yr−1 during 2004–2014, with a decreasing tendency from the west to east. By 2054–2064, the national average PV power potential is projected to increase by 2.29% under a low emission scenario but decrease by 0.43% under a high emission scenario. The emission control in the former scenario significantly enhances surface solar radiation and promotes PV power in the east. On the contrary, strong warming causes inhibitions to PV power generation under the high emission scenario. Extreme warming events on average decrease the PV power potential by 0.28% under the low emission scenario and 0.44% under the high emission scenario, doubling and tripling the present-day loss, respectively. The projections reveal large benefits of controlling emissions for the future solar energy in China due to both the clean atmosphere and the moderate warming.

为了实现能源转型目标,中国对太阳能的需求一直在快速增长。然而,太阳能的潜力受到天气条件的影响,预计在气候变暖的情况下会发生变化。本文利用24个CMIP6模型和4个不同格式的PV模型的气象变量,预测了到2060年代中国低排放和高排放情景下的光伏发电潜力。在2004-2014年期间,这些模式的综合平均值平均光伏发电功率为277.2 KWh m−2 yr−1,从西到东呈下降趋势。预计到2054-2064年,低排放情景下全国平均光伏发电潜力将增长2.29%,高排放情景下将下降0.43%。前一种情况下的排放控制显著增强了地表太阳辐射,促进了东部地区的光伏发电。相反,在高排放情景下,强变暖对光伏发电产生抑制作用。在低排放情景下,极端变暖事件使光伏发电潜力平均减少0.28%,在高排放情景下,平均减少0.44%,分别是目前损失的两倍和三倍。这些预测表明,由于清洁的大气和适度的变暖,控制中国未来太阳能排放的巨大好处。
{"title":"Multimodel ensemble projection of photovoltaic power potential in China by the 2060s","authors":"Xu Zhao ,&nbsp;Xu Yue ,&nbsp;Chenguang Tian ,&nbsp;Hao Zhou ,&nbsp;Bin Wang ,&nbsp;Yuwen Chen ,&nbsp;Yuan Zhao ,&nbsp;Weijie Fu ,&nbsp;Yihan Hu","doi":"10.1016/j.aosl.2023.100403","DOIUrl":"10.1016/j.aosl.2023.100403","url":null,"abstract":"<div><p>China's demand for solar energy has been growing rapidly to meet energy transformation targets. However, the potential of solar energy is affected by weather conditions and is expected to change under climate warming. Here, the authors project the photovoltaic (PV) power potential over China under low and high emission scenarios by the 2060s, taking advantage of meteorological variables from 24 CMIP6 models and 4 PV models with varied formats. The ensemble mean of these models yields an average PV power of 277.2 KWh m<sup>−2</sup> yr<sup>−1</sup> during 2004–2014, with a decreasing tendency from the west to east. By 2054–2064, the national average PV power potential is projected to increase by 2.29% under a low emission scenario but decrease by 0.43% under a high emission scenario. The emission control in the former scenario significantly enhances surface solar radiation and promotes PV power in the east. On the contrary, strong warming causes inhibitions to PV power generation under the high emission scenario. Extreme warming events on average decrease the PV power potential by 0.28% under the low emission scenario and 0.44% under the high emission scenario, doubling and tripling the present-day loss, respectively. The projections reveal large benefits of controlling emissions for the future solar energy in China due to both the clean atmosphere and the moderate warming.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100403"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42808797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unfavorable environmental conditions for tropical cyclone genesis over the western North Pacific during the Last Interglacial based on PMIP4 simulations 基于PMIP4模拟的末次间冰期北太平洋西部热带气旋形成的不利环境条件
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100395
Dubin Huan , Qing Yan , Ting Wei

Investigating the variation in tropical cyclone (TC) activity over the western North Pacific (WNP) in past warm periods helps to better understand TC behaviors in a warming future. In this study, the authors analyze the changes in large-scale TC genesis factors and the associated mechanisms over the WNP during the Last Interglacial (LIG), based on multimodel outputs from the Paleoclimate Modelling Intercomparison Project Phase 4. The results show that potential intensity exhibits a general decrease over the WNP during the LIG in the storm season, dominated by a weakened thermodynamic disequilibrium. The moist entropy deficit shows an overall increase over the WNP, arising from the decreased mid-tropospheric moisture and weakened vertical temperature contrast. Vertical wind shear enhances over the central WNP but weakens over the southwestern WNP, which is induced by the changes in the meridional tropospheric temperature gradient and hence high-level zonal winds. The absolute vorticity shows a general decrease over the WNP, partially linked with the decreased SST over the western tropical Pacific. Based on a genesis potential index, the authors suggest a decrease in genesis potential over the WNP during the LIG, indicating unfavorable conditions for TC genesis. The results highlight the important role of Earth's orbit in regulating TC activity, which may shed light on TC behaviors in a warmer climate.

研究过去暖期北太平洋西部(WNP)热带气旋活动的变化有助于更好地理解未来暖期热带气旋的行为。本文基于古气候模拟比较项目第4阶段的多模式输出,分析了末次间冰期WNP大尺度TC成因因子的变化及其相关机制。结果表明:暴雨季后期,势强总体呈减弱趋势,主要表现为热力不平衡减弱。由于对流层中水汽减少和垂直温度对比减弱,湿熵亏值在西西北地区总体呈增加趋势。由于经向对流层温度梯度的变化和高空纬向风的变化,西高气压区中部的垂直风切变增强,而西南的垂直风切变减弱。绝对涡度总体呈下降趋势,这与西热带太平洋海温下降有关。根据发生势指数,作者认为在LIG期间,WNP的发生势下降,表明对TC的发生不利。这些结果强调了地球轨道在调节TC活动中的重要作用,这可能会揭示在温暖气候下TC的行为。
{"title":"Unfavorable environmental conditions for tropical cyclone genesis over the western North Pacific during the Last Interglacial based on PMIP4 simulations","authors":"Dubin Huan ,&nbsp;Qing Yan ,&nbsp;Ting Wei","doi":"10.1016/j.aosl.2023.100395","DOIUrl":"10.1016/j.aosl.2023.100395","url":null,"abstract":"<div><p>Investigating the variation in tropical cyclone (TC) activity over the western North Pacific (WNP) in past warm periods helps to better understand TC behaviors in a warming future. In this study, the authors analyze the changes in large-scale TC genesis factors and the associated mechanisms over the WNP during the Last Interglacial (LIG), based on multimodel outputs from the Paleoclimate Modelling Intercomparison Project Phase 4. The results show that potential intensity exhibits a general decrease over the WNP during the LIG in the storm season, dominated by a weakened thermodynamic disequilibrium. The moist entropy deficit shows an overall increase over the WNP, arising from the decreased mid-tropospheric moisture and weakened vertical temperature contrast. Vertical wind shear enhances over the central WNP but weakens over the southwestern WNP, which is induced by the changes in the meridional tropospheric temperature gradient and hence high-level zonal winds. The absolute vorticity shows a general decrease over the WNP, partially linked with the decreased SST over the western tropical Pacific. Based on a genesis potential index, the authors suggest a decrease in genesis potential over the WNP during the LIG, indicating unfavorable conditions for TC genesis. The results highlight the important role of Earth's orbit in regulating TC activity, which may shed light on TC behaviors in a warmer climate.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100395"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47227226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022 2016年至2022年ECMWF S2S预测中年度更新重新预测的技能改进
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100357
Yihao Peng , Xiaolei Liu , Jingzhi Su , Xinli Liu , Yixu Zhang

Hazardous weather events are often accompanied by subseasonal processes, but the forecast skills of subseasonal prediction are still limited. To assess the skill improvement of the constantly updated model version in ECMWF subseasonal-seasonal (S2S) prediction from 2016 to 2022, the performance of yearly updated reforecasts was evaluated against ERA5 reanalysis data using the temporal anomaly correlation coefficient (TCC) as a metric. The newly updated reforecasts exhibit stable superiority at the weather scale of the first two weeks, regardless of whether the 2-m temperature or precipitation forecast is being considered. At the subseasonal time scale starting from the third week, some slight improvements in prediction skills are only found in several tropical regions. Generally, the week-3 TCC values averaged over global land grids still reflect an advancement in prediction skills for updated reforecasts. For the Madden–Julian Oscillation (MJO), reforecasts can reproduce the characteristics of eastward propagation, but there are deviations in the intensity and propagation range of convection anomalies for reforecasts of all seven years. Based on an evaluation of MJO prediction skill using the bivariate anomaly correlation coefficient and bivariate root-mean-square error, some differences are apparent in the MJO prediction skills among the updated reforecasts, but the improvements do not increase monotonically year by year. Despite the inherent limitation of S2S prediction, positive progress has already been achieved via the constantly updated S2S prediction in ECMWF, which reinforces the confidence in further collaboratively improving S2S prediction in the future.

摘要

在2016年至2022年间, ECMWF次季节预测系统不断升级并逐年完成新的回报试验. 本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. MJO预测技巧并不随着模式升级而逐年单调提升. 尽管目前S2S预测技巧存在局限性, 但目前已有的进展增强了在未来深入合作以提高S2S预测技术的信心.

危险天气事件往往伴随着亚季节过程,但亚季节预报的预报能力仍然有限。为了评估持续更新模式版本在2016 - 2022年ECMWF亚季节-季节(S2S)预测中的技能提升,以时间异常相关系数(TCC)为指标,对ERA5再分析数据进行了年度更新再预测的性能评估。在前两周的天气尺度上,无论是否考虑2米的温度或降水预报,新更新的预报都表现出稳定的优势。在从第三周开始的亚季节时间尺度上,只有几个热带地区的预测技能略有提高。一般来说,第3周的全球陆地网格平均TCC值仍然反映了更新再预报的预测技能的进步。对于马登-朱利安涛动(MJO),重预报可以再现东向传播的特征,但7年重预报的对流异常强度和传播范围都存在偏差。基于二元异常相关系数和二元均方根误差对MJO预测技能的评价,MJO预测技能在更新后的重预报中存在一定的差异,但改善不是逐年单调增加的。尽管S2S预测存在固有的局限性,但ECMWF不断更新的S2S预测已经取得了积极进展,这增强了未来进一步协同改进S2S预测的信心。2016年1月1日,中国日报网2015-10-29本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. 这是我的梦想,我的梦想。尽管目前s2预测技巧存在局限性,但目前已有的进展增强了在未来深入合作以提高s2预测技术的信心。
{"title":"Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022","authors":"Yihao Peng ,&nbsp;Xiaolei Liu ,&nbsp;Jingzhi Su ,&nbsp;Xinli Liu ,&nbsp;Yixu Zhang","doi":"10.1016/j.aosl.2023.100357","DOIUrl":"10.1016/j.aosl.2023.100357","url":null,"abstract":"<div><p>Hazardous weather events are often accompanied by subseasonal processes, but the forecast skills of subseasonal prediction are still limited. To assess the skill improvement of the constantly updated model version in ECMWF subseasonal-seasonal (S2S) prediction from 2016 to 2022, the performance of yearly updated reforecasts was evaluated against ERA5 reanalysis data using the temporal anomaly correlation coefficient (TCC) as a metric. The newly updated reforecasts exhibit stable superiority at the weather scale of the first two weeks, regardless of whether the 2-m temperature or precipitation forecast is being considered. At the subseasonal time scale starting from the third week, some slight improvements in prediction skills are only found in several tropical regions. Generally, the week-3 TCC values averaged over global land grids still reflect an advancement in prediction skills for updated reforecasts. For the Madden–Julian Oscillation (MJO), reforecasts can reproduce the characteristics of eastward propagation, but there are deviations in the intensity and propagation range of convection anomalies for reforecasts of all seven years. Based on an evaluation of MJO prediction skill using the bivariate anomaly correlation coefficient and bivariate root-mean-square error, some differences are apparent in the MJO prediction skills among the updated reforecasts, but the improvements do not increase monotonically year by year. Despite the inherent limitation of S2S prediction, positive progress has already been achieved via the constantly updated S2S prediction in ECMWF, which reinforces the confidence in further collaboratively improving S2S prediction in the future.</p><p>摘要</p><p>在2016年至2022年间, ECMWF次季节预测系统不断升级并逐年完成新的回报试验. 本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. MJO预测技巧并不随着模式升级而逐年单调提升. 尽管目前S2S预测技巧存在局限性, 但目前已有的进展增强了在未来深入合作以提高S2S预测技术的信心.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100357"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46446352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linkage between the Asian-Pacific Oscillation and winter precipitation over southern China: CMIP6 simulation and projection 亚洲太平洋涛动与中国南方冬季降水的联系:CMIP6模拟与预测
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100401
Qiwei Fan , Botao Zhou

Based on the simulations of 30 CMIP6 models, this paper evaluates their performance in simulating the linkage between the winter Asian-Pacific Oscillation (APO) and precipitation over southern China (SC). Results show that 12 out of the 30 models can reproduce well the observed inverse relationship featuring a positive APO phase corresponding to a decrease in SC precipitation. Associated with the positive APO phase, an anomalous anticyclonic circulation dominates the southern part of Asia in the upper troposphere, and an anomalous cyclonic circulation prevails particularly in the lower troposphere of the South China Sea and the Malay Archipelago. Accordingly, the East Asian westerly jet (EAWJ) shifts northward, and low-level northeasterly anomalies appear over SC, which yield anomalous descending motion and water vapor flux divergence in SC, respectively, hence decreasing the in-situ precipitation. Using the ensemble of the 12 models, the future relationship between the winter APO and SC precipitation under the SSP5-8.5 scenario was further projected. The projection indicates that the APO connection with SC precipitation will still be significant, but weakened slightly, during the second half of the 21st century as compared to the present. Such a weakening may result from the weaker linkage between SC precipitation and the meridional displacement of the EAWJ.

基于30个CMIP6模式的模拟,评价了它们在模拟冬季亚太涛动(APO)与华南降水之间的联系方面的表现。结果表明,30个模式中有12个能较好地再现观测到的APO相正对应于SC降水减少的反比关系。与正APO相相关的是,对流层上层以异常反气旋环流为主,而南海和马来群岛对流层下层则以异常气旋环流为主。东亚西风急流(EAWJ)北上,在南太平洋上空出现低空东北风异常,分别导致南太平洋的异常下降运动和水汽通量辐散,从而导致原位降水减少。利用12个模式的集合,进一步预估了未来SSP5-8.5情景下冬季APO与SC降水的关系。预测结果表明,在21世纪下半叶,APO与南太平洋降水的联系仍将是显著的,但与目前相比略有减弱。这种减弱可能是由于南太平洋降水与东亚环流经向位移之间的联系减弱。
{"title":"Linkage between the Asian-Pacific Oscillation and winter precipitation over southern China: CMIP6 simulation and projection","authors":"Qiwei Fan ,&nbsp;Botao Zhou","doi":"10.1016/j.aosl.2023.100401","DOIUrl":"10.1016/j.aosl.2023.100401","url":null,"abstract":"<div><p>Based on the simulations of 30 CMIP6 models, this paper evaluates their performance in simulating the linkage between the winter Asian-Pacific Oscillation (APO) and precipitation over southern China (SC). Results show that 12 out of the 30 models can reproduce well the observed inverse relationship featuring a positive APO phase corresponding to a decrease in SC precipitation. Associated with the positive APO phase, an anomalous anticyclonic circulation dominates the southern part of Asia in the upper troposphere, and an anomalous cyclonic circulation prevails particularly in the lower troposphere of the South China Sea and the Malay Archipelago. Accordingly, the East Asian westerly jet (EAWJ) shifts northward, and low-level northeasterly anomalies appear over SC, which yield anomalous descending motion and water vapor flux divergence in SC, respectively, hence decreasing the in-situ precipitation. Using the ensemble of the 12 models, the future relationship between the winter APO and SC precipitation under the SSP5-8.5 scenario was further projected. The projection indicates that the APO connection with SC precipitation will still be significant, but weakened slightly, during the second half of the 21st century as compared to the present. Such a weakening may result from the weaker linkage between SC precipitation and the meridional displacement of the EAWJ.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100401"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49445854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced seasonality of surface air temperature over China during the mid-Holocene 全新世中期中国地表气温季节性增强
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100393
Zhiping Tian, Dabang Jiang

Using all available simulations performed by climate models participating in PMIP4 (Paleoclimate Modelling Intercomparison Project – Phase 4), the authors quantify the seasonality change of surface air temperature over China during the mid-Holocene (6000 years ago) and the associated physical mechanisms. Relative to the preindustrial period, all 16 models consistently show an enhanced temperature seasonality (i.e., summer minus winter temperature) across China during that interglacial period, with a nationally averaged enhancement of 2.44 °C or 9% for the multimodel mean. The temperature seasonality change is closely related with the seasonal contrast variation of surface energy fluxes mainly due to the mid-Holocene orbital forcing. Specifically, the summer–winter increase in surface net shortwave radiation dominates the intensified temperature seasonality at the large scale of China during the mid-Holocene; the surface net longwave radiation has a minor positive contribution in most of the Tibetan Plateau and eastern China; and both the surface latent and sensible heat fluxes show partial offset effects in most of the country. There are uncertainties in the reconstructed temperature seasonality over China during the mid-Holocene based on the proxy data that can reflect seasonal signals.

摘要

利用PMIP4多模式试验数据, 作者量化了中全新世 (距今约6000年) 中国温度季节性变化. 结果表明: 相对于工业革命前期, 所有16个模式一致模拟显示中全新世我国温度季节性 (即夏季与冬季温差) 增强, 平均增幅9%; 这与该时期轨道强迫引起的地表能量通量的季节对比变化密切相关, 其中净短波辐射起主导作用, 净长波辐射作用次之, 感热和潜热为负贡献; 与模拟不同, 重建结果存在不确定性.

利用PMIP4(古气候模拟比对项目-第4阶段)气候模式的所有模拟结果,定量分析了6000年前全新世中期中国地面气温的季节性变化及其物理机制。与工业化前相比,所有16个模式均一致显示间冰期中国各地的温度季节性(即夏季减去冬季温度)增强,多模式平均值全国平均增强2.44°C或9%。温度季节变化与地表能量通量的季节对比变化密切相关,这主要是由于中全新世轨道强迫造成的。在全新世中期,大尺度上地表净短波辐射的冬夏增加主导了温度季节性的增强;地表净长波辐射在青藏高原大部分地区和中国东部地区有较小的正贡献;在全国大部分地区,地表潜热通量和感热通量均表现出部分抵消效应。基于能反映季节信号的代用资料重建的中国中全新世气温季节性存在不确定性。摘要利用PMIP4多模式试验数据,作者量化了中全新世(距今约6000年)中国温度季节性变化。结果表明: 相对于工业革命前期, 所有16个模式一致模拟显示中全新世我国温度季节性 (即夏季与冬季温差) 增强, 平均增幅9%; 这与该时期轨道强迫引起的地表能量通量的季节对比变化密切相关, 其中净短波辐射起主导作用, 净长波辐射作用次之, 感热和潜热为负贡献; 与模拟不同, 重建结果存在不确定性.
{"title":"Enhanced seasonality of surface air temperature over China during the mid-Holocene","authors":"Zhiping Tian,&nbsp;Dabang Jiang","doi":"10.1016/j.aosl.2023.100393","DOIUrl":"10.1016/j.aosl.2023.100393","url":null,"abstract":"<div><p>Using all available simulations performed by climate models participating in PMIP4 (Paleoclimate Modelling Intercomparison Project – Phase 4), the authors quantify the seasonality change of surface air temperature over China during the mid-Holocene (6000 years ago) and the associated physical mechanisms. Relative to the preindustrial period, all 16 models consistently show an enhanced temperature seasonality (i.e., summer minus winter temperature) across China during that interglacial period, with a nationally averaged enhancement of 2.44 °C or 9% for the multimodel mean. The temperature seasonality change is closely related with the seasonal contrast variation of surface energy fluxes mainly due to the mid-Holocene orbital forcing. Specifically, the summer–winter increase in surface net shortwave radiation dominates the intensified temperature seasonality at the large scale of China during the mid-Holocene; the surface net longwave radiation has a minor positive contribution in most of the Tibetan Plateau and eastern China; and both the surface latent and sensible heat fluxes show partial offset effects in most of the country. There are uncertainties in the reconstructed temperature seasonality over China during the mid-Holocene based on the proxy data that can reflect seasonal signals.</p><p>摘要</p><p>利用PMIP4多模式试验数据, 作者量化了中全新世 (距今约6000年) 中国温度季节性变化. 结果表明: 相对于工业革命前期, 所有16个模式一致模拟显示中全新世我国温度季节性 (即夏季与冬季温差) 增强, 平均增幅9%; 这与该时期轨道强迫引起的地表能量通量的季节对比变化密切相关, 其中净短波辐射起主导作用, 净长波辐射作用次之, 感热和潜热为负贡献; 与模拟不同, 重建结果存在不确定性.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100393"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48357010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More extreme-heat occurrences related to humidity in China 中国与湿度有关的极端高温事件增多
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100391
Wenyue He , Huopo Chen

The co-occurrence of day and night compound heat extremes has attracted much attention because of the amplified socioeconomic and human health impacts. Based on ERA5 hourly reanalysis data, this study characterized and compared extreme day–night compound humid-heat/high-temperature events (CHHEs/CHTEs) in China as well as the associated impacts. Results indicated that the spatial patterns of summer mean extreme CHHEs are consistent with those of extreme CHTEs, except in northwestern China. A greater magnitude of these two types of events dominates over southern China, but the high-frequency centers are mainly observed over northern China. Significant increasing trends in frequency are captured nationwide, but with much stronger trends detected in northern and western China. Further analysis shows that the anomalies of humidity play a more important role than those of temperature in the occurrence of extreme CHHEs in most parts of China, but particularly in eastern regions. Since 1961, the human population and land areas of China have experienced strongly increasing compound heat extremes, with a faster rate of exposure to extreme CHHEs than to extreme CHTEs. This study highlights the importance of understanding regional changes in humidity when considering heat stress in the future.

由于对社会经济和人类健康影响的放大,昼夜复合极端高温的共同发生引起了人们的广泛关注。基于ERA5逐时再分析数据,本研究对中国极端昼夜复合湿热高温事件(CHHEs/CHTEs)及其影响进行了表征和比较。结果表明,除西北地区外,夏季平均极端chhs与极端CHTEs的空间格局基本一致。这两类事件的震级较大的地区主要在中国南方,但高频中心主要在中国北方。在全国范围内发现了频率显著增加的趋势,但在中国北部和西部发现了更强的趋势。进一步分析表明,湿度异常在中国大部分地区,特别是东部地区的极端chhs发生中起着比温度异常更重要的作用。自1961年以来,中国人口和土地面积经历了强烈增加的复合极端高温,极端chhs暴露率高于极端CHTEs暴露率。这项研究强调了在考虑未来热应激时了解湿度区域变化的重要性。
{"title":"More extreme-heat occurrences related to humidity in China","authors":"Wenyue He ,&nbsp;Huopo Chen","doi":"10.1016/j.aosl.2023.100391","DOIUrl":"10.1016/j.aosl.2023.100391","url":null,"abstract":"<div><p>The co-occurrence of day and night compound heat extremes has attracted much attention because of the amplified socioeconomic and human health impacts. Based on ERA5 hourly reanalysis data, this study characterized and compared extreme day–night compound humid-heat/high-temperature events (CHHEs/CHTEs) in China as well as the associated impacts. Results indicated that the spatial patterns of summer mean extreme CHHEs are consistent with those of extreme CHTEs, except in northwestern China. A greater magnitude of these two types of events dominates over southern China, but the high-frequency centers are mainly observed over northern China. Significant increasing trends in frequency are captured nationwide, but with much stronger trends detected in northern and western China. Further analysis shows that the anomalies of humidity play a more important role than those of temperature in the occurrence of extreme CHHEs in most parts of China, but particularly in eastern regions. Since 1961, the human population and land areas of China have experienced strongly increasing compound heat extremes, with a faster rate of exposure to extreme CHHEs than to extreme CHTEs. This study highlights the importance of understanding regional changes in humidity when considering heat stress in the future.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100391"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47344271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Subseasonal transition of Barents–Kara sea-ice anomalies in winter related to the reversed warm Arctic–cold Eurasia pattern 冬季巴伦支-喀拉海冰异常的亚季节转变与北极暖-欧亚冷格局的逆转有关
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100392
Yijia Zhang , Zhicong Yin , Huijun Wang

Subseasonal reversal of the warm Arctic–cold Eurasia pattern (WACE) could trigger an extreme cold/warm transition in winter and sandstorms in spring over eastern China. An associated subseasonal transition of the sea-ice anomaly also occurs in the Barents–Kara seas (BKS) driven by such remarkable high-latitude atmospheric pattern reversals. Under a warm Arctic and enhanced Ural high, abnormal downward turbulent heat flux and increased downward infrared radiation in the BKS are conducive to sea ice melting. The surface southerly wind drives the sea ice to drift from the thin to perennial ice area and further enlarges the open ocean surface. The opposite mechanism occurs in the opposite phase of WACE, causing positive BKS sea-ice anomalies. When WACE reverses on the subseasonal scale, the above mechanisms occur in early and late winter, respectively, resulting in a significant subseasonal transition of BKS sea-ice anomalies. More importantly, in the last decade, with a more frequent reversal of WACE, the subseasonal transition between early winter and late winter in BKS sea ice has enhanced. The findings of this study establish a comprehensive schematic of the subseasonal reversal of WACE and contribute to better understanding and predicting extreme climate in eastern China.

暖北极-冷欧亚格局(WACE)的亚季节逆转可能引发中国东部冬季极端冷/暖转变和春季沙尘暴。在这种显著的高纬度大气模式逆转的驱动下,巴伦支-喀拉海(BKS)也出现了海冰异常的相关亚季节转变。在温暖的北极和增强的乌拉尔高压下,BKS向下湍流热通量异常和向下红外辐射增加有利于海冰融化。海面的南风使海冰从薄冰区向常年冰区漂移,进一步扩大了开阔的海面。相反的机制发生在WACE的相反阶段,导致BKS海冰正异常。当WACE在亚季节尺度上反转时,上述机制分别发生在冬初和冬末,导致BKS海冰异常出现明显的亚季节转变。更重要的是,近10年来,随着WACE逆转频率的增加,BKS海冰初冬和冬末的亚季节转换增强。本研究结果建立了WACE亚季节逆转的综合模式,有助于更好地理解和预测中国东部极端气候。
{"title":"Subseasonal transition of Barents–Kara sea-ice anomalies in winter related to the reversed warm Arctic–cold Eurasia pattern","authors":"Yijia Zhang ,&nbsp;Zhicong Yin ,&nbsp;Huijun Wang","doi":"10.1016/j.aosl.2023.100392","DOIUrl":"10.1016/j.aosl.2023.100392","url":null,"abstract":"<div><p>Subseasonal reversal of the warm Arctic–cold Eurasia pattern (WACE) could trigger an extreme cold/warm transition in winter and sandstorms in spring over eastern China. An associated subseasonal transition of the sea-ice anomaly also occurs in the Barents–Kara seas (BKS) driven by such remarkable high-latitude atmospheric pattern reversals. Under a warm Arctic and enhanced Ural high, abnormal downward turbulent heat flux and increased downward infrared radiation in the BKS are conducive to sea ice melting. The surface southerly wind drives the sea ice to drift from the thin to perennial ice area and further enlarges the open ocean surface. The opposite mechanism occurs in the opposite phase of WACE, causing positive BKS sea-ice anomalies. When WACE reverses on the subseasonal scale, the above mechanisms occur in early and late winter, respectively, resulting in a significant subseasonal transition of BKS sea-ice anomalies. More importantly, in the last decade, with a more frequent reversal of WACE, the subseasonal transition between early winter and late winter in BKS sea ice has enhanced. The findings of this study establish a comprehensive schematic of the subseasonal reversal of WACE and contribute to better understanding and predicting extreme climate in eastern China.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100392"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46278742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the Asian–Pacific Oscillation on early autumn precipitation over Southeast China: CMIP6 evaluation and projection 亚太涛动对中国东南早秋降水的影响:CMIP6的评估和预测
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-09-01 DOI: 10.1016/j.aosl.2023.100389
Changji Xia , Wei Hua , Yu Zhang , Guangzhou Fan

This study evaluated the capability of 32 models of phase 6 of the Coupled Model Intercomparison Project in modeling the influence of the preceding August Asian–Pacific Oscillation (APO) on subsequent early autumn (September) precipitation over Southeast China and associated atmospheric anomalies, as well as its future projection during 2021–2040 (near-term), 2041–2060 (mid-term), and 2081–2100 (long-term) under different Shared Socioeconomic Pathways (SSPs: SSP2-4.5 and SSP5-8.5). Results indicated that two-thirds of the individual models yielded positive correlations between the APO and Southeast China precipitation that conformed to the observations. On the basis of the capability to reproduce the significantly positive relationship between the APO and Southeast China precipitation, three models were chosen as the “best” model ensemble (BMME). The BMME effectively simulated both the APO-associated precipitation and the atmospheric anomalies, and outperformed the ensemble of the remaining 29 models in terms of the positive correlation between the APO and Southeast China precipitation, and the negative correlations between the meridional displacement of the East Asian jet (EAJ) and the APO and Southeast China precipitation. In general, during three future time periods under both SSPs, the BMME projected persistent negative correlations between the APO and EAJ, and the APO–Southeast China precipitation and EAJ–Southeast China precipitation relationships were projected to weaken. However, considerable discrepancies were evident among the changes projected by the individual models; only the projected changes in the APO–EAJ relationship showed good model agreement.

摘要

本文对32个CMIP6模式对8月亚洲–太平洋涛动 (APO) 与我国东南初秋 (9月) 降水及大气环流联系的模拟能力进行了评估, 并就SSP2-4.5和SSP5-8.5情景下, 未来2021–2040年 (近期) , 2041–2060 (中期) 和2081–2100 (长期) 期间二者联系的变化进行了预估. 基于模式对APO与我国东南初秋降水之间显著正相关关系的再现能力, 选取3个模式作为“最优”模式集合 (BMME) . 研究表明, BMME较好地模拟了与APO相关的我国东南初秋降水和大气环流异常, 且在再现APO与我国东南部降水的正相关关系, 以及东亚高空急流 (EAJ) 经向位移与APO和我国东南部初秋降水之间的负相关关系方面均优于单个模式. 总体而言, 未来不同SSP情景下尽管APO与EAJ之间仍呈负相关关系, 但APO与我国东南初秋降水以及EAJ与我国东南降水的关系将呈减弱确实. 此外, 不同模式预估结果之间存在明显差异, 仅对未来APO-EAJ关系的预估表现出较好的一致性.

本研究评估了耦合模式比对项目第6阶段32个模式模拟8月前亚太涛动(APO)对随后中国东南部初秋(9月)降水和相关大气异常的影响的能力,以及在不同共享社会经济路径(ssp: SSP2-4.5和SSP5-8.5)下的2021-2040年(近期)、2041-2060年(中期)和2081-2100年(长期)的预测。结果表明,三分之二的模式对APO与中国东南部降水的正相关结果与观测值一致。基于对APO与东南降水之间显著正相关关系的再现能力,选择了3个模式作为最佳模式集合(BMME)。BMME有效模拟了APO相关降水和大气异常,在APO与中国东南部降水的正相关和东亚急流(EAJ)经向位移与APO和中国东南部降水的负相关方面优于其他29种模式。总体而言,在未来3个时段内,BMME预测APO和EAJ之间存在持续的负相关关系,APO -中国东南部降水和EAJ -中国东南部降水关系将减弱。然而,各个模型所预测的变化之间明显存在相当大的差异;只有APO-EAJ关系的预测变化显示出良好的模型一致性。摘要本文对32个CMIP6模式对8月亚洲——太平洋涛动(APO)与我国东南初秋(9月)降水及大气环流联系的模拟能力进行了评估,并就ssp2 - 4.5和8.5 ssp5情景下,未来2021 - 2040年(近期),2041 - 2060(中期)和2081 - 2100(长期)期间二者联系的变化进行了预估。基于模式对APO与我国东南初秋降水之间显著正相关关系的再现能力,选取3个模式作为“最优”模式集合(BMME)。研究表明,BMME较好地模拟了与APO相关的我国东南初秋降水和大气环流异常,且在再现APO与我国东南部降水的正相关关系,以及东亚高空急流(EAJ)经向位移与APO和我国东南部初秋降水之间的负相关关系方面均优于单个模式。总体而言,未来不同SSP情景下尽管与朊EAJ之间仍呈负相关关系,但13日与我国东南初秋降水以及EAJ与我国东南降水的关系将呈减弱确实。“”、“”、“”、“”、“”。
{"title":"Impact of the Asian–Pacific Oscillation on early autumn precipitation over Southeast China: CMIP6 evaluation and projection","authors":"Changji Xia ,&nbsp;Wei Hua ,&nbsp;Yu Zhang ,&nbsp;Guangzhou Fan","doi":"10.1016/j.aosl.2023.100389","DOIUrl":"10.1016/j.aosl.2023.100389","url":null,"abstract":"<div><p>This study evaluated the capability of 32 models of phase 6 of the Coupled Model Intercomparison Project in modeling the influence of the preceding August Asian–Pacific Oscillation (APO) on subsequent early autumn (September) precipitation over Southeast China and associated atmospheric anomalies, as well as its future projection during 2021–2040 (near-term), 2041–2060 (mid-term), and 2081–2100 (long-term) under different Shared Socioeconomic Pathways (SSPs: SSP2-4.5 and SSP5-8.5). Results indicated that two-thirds of the individual models yielded positive correlations between the APO and Southeast China precipitation that conformed to the observations. On the basis of the capability to reproduce the significantly positive relationship between the APO and Southeast China precipitation, three models were chosen as the “best” model ensemble (BMME). The BMME effectively simulated both the APO-associated precipitation and the atmospheric anomalies, and outperformed the ensemble of the remaining 29 models in terms of the positive correlation between the APO and Southeast China precipitation, and the negative correlations between the meridional displacement of the East Asian jet (EAJ) and the APO and Southeast China precipitation. In general, during three future time periods under both SSPs, the BMME projected persistent negative correlations between the APO and EAJ, and the APO–Southeast China precipitation and EAJ–Southeast China precipitation relationships were projected to weaken. However, considerable discrepancies were evident among the changes projected by the individual models; only the projected changes in the APO–EAJ relationship showed good model agreement.</p><p>摘要</p><p>本文对32个CMIP6模式对8月亚洲–太平洋涛动 (APO) 与我国东南初秋 (9月) 降水及大气环流联系的模拟能力进行了评估, 并就SSP2-4.5和SSP5-8.5情景下, 未来2021–2040年 (近期) , 2041–2060 (中期) 和2081–2100 (长期) 期间二者联系的变化进行了预估. 基于模式对APO与我国东南初秋降水之间显著正相关关系的再现能力, 选取3个模式作为“最优”模式集合 (BMME) . 研究表明, BMME较好地模拟了与APO相关的我国东南初秋降水和大气环流异常, 且在再现APO与我国东南部降水的正相关关系, 以及东亚高空急流 (EAJ) 经向位移与APO和我国东南部初秋降水之间的负相关关系方面均优于单个模式. 总体而言, 未来不同SSP情景下尽管APO与EAJ之间仍呈负相关关系, 但APO与我国东南初秋降水以及EAJ与我国东南降水的关系将呈减弱确实. 此外, 不同模式预估结果之间存在明显差异, 仅对未来APO-EAJ关系的预估表现出较好的一致性.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100389"},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44272923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A machine learning approach to quality-control Argo temperature data Argo温度数据质量控制的机器学习方法
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-07-01 DOI: 10.1016/j.aosl.2022.100292
Qi Zhang , Chenyan Qian , Changming Dong

A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.

摘要

本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.

A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.摘要本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.
{"title":"A machine learning approach to quality-control Argo temperature data","authors":"Qi Zhang ,&nbsp;Chenyan Qian ,&nbsp;Changming Dong","doi":"10.1016/j.aosl.2022.100292","DOIUrl":"10.1016/j.aosl.2022.100292","url":null,"abstract":"<div><p>A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.</p><p>摘要</p><p>本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100292"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45689706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Atmospheric and Oceanic Science Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1