首页 > 最新文献

Analytic Methods in Accident Research最新文献

英文 中文
Real-time crash risk prediction in freeway tunnels considering features interaction and unobserved heterogeneity: A two-stage deep learning modeling framework 考虑特征交互和未观察异质性的高速公路隧道实时碰撞风险预测:一个两阶段深度学习建模框架
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-11-07 DOI: 10.1016/j.amar.2023.100306
Jieling Jin , Helai Huang , Chen Yuan , Ye Li , Guoqing Zou , Hongli Xue

Real-time prediction of crash risk is an effective method for enhancing traffic safety, but it is not fully explored in freeway tunnels. A two-stage deep learning modeling framework comprising a preliminary exploration stage and a prediction and analysis stage is proposed for real-time crash risk prediction in freeway tunnels. A random parameters logit model with heterogeneity in means and variances is used in the preliminary exploration stage to investigate the unobserved heterogeneity and influence mechanism of precursors on real-time crash risk. In the prediction and analysis stage, a random deep and cross network model considering feature interactions and unobserved heterogeneities is developed to predict and analyze real-time crash risk, which is interpreted by the shapley additive explanations approach. The multi-source fusion dataset, collected from the Caltrans performance measurement system and the weather information website, is used to validate the proposed framework for exploring real-time crash risk in freeway tunnels. Results reveal that: (1) the random parameters logit model with heterogeneity in means and variances outperforms the traditional logit model in terms of the model fitting, providing a reference for deep learning modeling that may be able to improve model performance by addressing heterogeneity; (2) the important crash precursors such as the average difference in speed between detectors of tunnel entrance and exit are discovered based on the marginal effect analysis of the random parameters logit model with heterogeneity in means and variances; (3) the random deep and cross network model yields the best prediction performance compared to its counterparts (some other data-driven models), demonstrating the superior performance of deep learning models for real-time risk prediction tasks. It also indicates that considering feature interaction and heterogeneity in deep learning modeling can improve prediction performance; and (4) the important precursors found in the random deep and cross network model using the shapley additive explanations approach are close to those discovered in the statistical model, indicating that the proposed deep learning model can capture the similar effects of precursors as the statistical models, and the precursor interactions and heterogeneities also can be observed by the shapley additive explanations approach.

碰撞风险实时预测是提高交通安全的有效手段,但在高速公路隧道中尚未得到充分的研究。针对高速公路隧道碰撞风险的实时预测,提出了一种包括初步探索阶段和预测分析阶段的两阶段深度学习建模框架。在初步探索阶段,采用均值和方差均具有异质性的随机参数logit模型,研究了前驱体对实时崩溃风险的未观测异质性及其影响机制。在预测分析阶段,采用shapley加性解释方法,建立了考虑特征相互作用和不可观测异质性的随机深度交叉网络模型,对实时碰撞风险进行预测分析。从Caltrans性能测量系统和天气信息网站收集的多源融合数据集用于验证所提出的框架,以探索高速公路隧道的实时碰撞风险。结果表明:(1)均值和方差均存在异质性的随机参数logit模型在模型拟合方面优于传统的logit模型,为深度学习建模提供了参考,可以通过解决异质性来提高模型的性能;(2)基于均值和方差均非均匀的随机参数logit模型的边际效应分析,发现了隧道出入口探测器速度平均差等重要的碰撞前兆;(3)与其他数据驱动模型相比,随机深度和跨网络模型的预测性能最好,表明深度学习模型在实时风险预测任务中的优越性能。研究表明,在深度学习建模中考虑特征交互和异质性可以提高预测性能;(4)使用shapley加性解释方法在随机深度和交叉网络模型中发现的重要前体与统计模型中发现的重要前体接近,表明所提出的深度学习模型可以捕捉到与统计模型相似的前体效果,并且shapley加性解释方法也可以观察到前体的相互作用和异质性。
{"title":"Real-time crash risk prediction in freeway tunnels considering features interaction and unobserved heterogeneity: A two-stage deep learning modeling framework","authors":"Jieling Jin ,&nbsp;Helai Huang ,&nbsp;Chen Yuan ,&nbsp;Ye Li ,&nbsp;Guoqing Zou ,&nbsp;Hongli Xue","doi":"10.1016/j.amar.2023.100306","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100306","url":null,"abstract":"<div><p>Real-time prediction of crash risk is an effective method for enhancing traffic safety, but it is not fully explored in freeway tunnels. A two-stage deep learning modeling framework comprising a preliminary exploration stage and a prediction and analysis stage is proposed for real-time crash risk prediction in freeway tunnels. A random parameters logit model with heterogeneity in means and variances is used in the preliminary exploration stage to investigate the unobserved heterogeneity and influence mechanism of precursors on real-time crash risk. In the prediction and analysis stage, a random deep and cross network model considering feature interactions and unobserved heterogeneities is developed to predict and analyze real-time crash risk, which is interpreted by the shapley additive explanations approach. The multi-source fusion dataset, collected from the Caltrans performance measurement system and the weather information website, is used to validate the proposed framework for exploring real-time crash risk in freeway tunnels. Results reveal that: (1) the random parameters logit model with heterogeneity in means and variances outperforms the traditional logit model in terms of the model fitting, providing a reference for deep learning modeling that may be able to improve model performance by addressing heterogeneity; (2) the important crash precursors such as the average difference in speed between detectors of tunnel entrance and exit are discovered based on the marginal effect analysis of the random parameters logit model with heterogeneity in means and variances; (3) the random deep and cross network model yields the best prediction performance compared to its counterparts (some other data-driven models), demonstrating the superior performance of deep learning models for real-time risk prediction tasks. It also indicates that considering feature interaction and heterogeneity in deep learning modeling can improve prediction performance; and (4) the important precursors found in the random deep and cross network model using the shapley additive explanations approach are close to those discovered in the statistical model, indicating that the proposed deep learning model can capture the similar effects of precursors as the statistical models, and the precursor interactions and heterogeneities also can be observed by the shapley additive explanations approach.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100306"},"PeriodicalIF":12.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91593666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Bayesian hierarchical peak over threshold modeling for real-time crash-risk estimation from conflict extremes 基于冲突极值的实时碰撞风险估计的动态贝叶斯分层峰值超过阈值模型
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-11-02 DOI: 10.1016/j.amar.2023.100304
Chuanyun Fu , Tarek Sayed

Using traffic conflict-based extreme value theory (EVT) models to quantify real-time crash-risk of road facilities is a promising direction for developing proactive traffic safety management strategies. Existing EVT real-time crash-risk analysis studies have only focused on using block maxima models. This study proposes a dynamic Bayesian hierarchical peak over threshold modeling approach to estimate real-time crash-risk based on traffic conflicts. The proposed approach combines quantile regression, dynamic updating approach, Bayesian hierarchical structure, and the peak over threshold method to generate time-varying generalized Pareto distributions to derive real-time crash-risk measures (i.e., crash probability and return level). The derived real-time crash-risk measures are applied to estimate cycle-level crash-risk at three signalized intersections in Surrey, British Columbia. Five approaches are used to dynamically update the model parameters, including time trend model, generalized autoregressive conditional heteroskedasticity process approach, as well as the first-order, second-order, and third-order dynamic linear models. For comparison, static models are also developed. All the developed models are compared in terms of statistical fit and predictive performance. Based on the best fitted dynamic model, cycle-level crash probability and return level are calculated to measure signalized intersection safety at cycle level. The results show that dynamic models considerably outperform static models in terms of statistical fit and predictive performance. Further, the third-order dynamic model has the best performance, which is probably due to that the model incorporates two linear trends to respectively describe the variation of the coefficients as well as its change to better account for the variation in the effect of time-varying covariates. However, it should be noted that the third-order dynamic model development needs more computation time than other dynamic models, which may limit the application of the model.

利用基于交通冲突的极值理论(EVT)模型来量化道路设施的实时碰撞风险,是制定主动交通安全管理策略的一个有前景的方向。现有的EVT实时碰撞风险分析研究仅侧重于使用块极大值模型。本文提出了一种基于交通冲突的动态贝叶斯分层峰值超过阈值建模方法来估计实时碰撞风险。该方法结合分位数回归、动态更新方法、贝叶斯层次结构和峰值超过阈值方法,生成时变广义帕累托分布,从而得到实时的碰撞风险度量(即碰撞概率和回报水平)。将导出的实时碰撞风险测度应用于不列颠哥伦比亚省萨里市三个信号交叉口的周期级碰撞风险估计。动态更新模型参数的方法包括时间趋势模型、广义自回归条件异方差过程方法以及一阶、二阶和三阶动态线性模型。为了进行比较,还建立了静态模型。对所建立的模型进行了统计拟合和预测性能的比较。在最优拟合动力学模型的基础上,计算了周期级碰撞概率和回归水平,以衡量周期级信号交叉口的安全性。结果表明,动态模型在统计拟合和预测性能方面明显优于静态模型。此外,三阶动态模型表现最好,这可能是因为该模型采用了两种线性趋势来分别描述系数的变化及其变化,从而更好地解释时变协变量影响的变化。但是,需要注意的是,三阶动态模型的开发比其他动态模型需要更多的计算时间,这可能会限制模型的应用。
{"title":"Dynamic Bayesian hierarchical peak over threshold modeling for real-time crash-risk estimation from conflict extremes","authors":"Chuanyun Fu ,&nbsp;Tarek Sayed","doi":"10.1016/j.amar.2023.100304","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100304","url":null,"abstract":"<div><p>Using traffic conflict-based extreme value theory (EVT) models to quantify real-time crash-risk of road facilities is a promising direction for developing proactive traffic safety management strategies. Existing EVT real-time crash-risk analysis studies have only focused on using block maxima models. This study proposes a dynamic Bayesian hierarchical peak over threshold modeling approach to estimate real-time crash-risk based on traffic conflicts. The proposed approach combines quantile regression, dynamic updating approach, Bayesian hierarchical structure, and the peak over threshold method to generate time-varying generalized Pareto distributions to derive real-time crash-risk measures (i.e., crash probability and return level). The derived real-time crash-risk measures are applied to estimate cycle-level crash-risk at three signalized intersections in Surrey, British Columbia. Five approaches are used to dynamically update the model parameters, including time trend model, generalized autoregressive conditional heteroskedasticity process approach, as well as the first-order, second-order, and third-order dynamic linear models. For comparison, static models are also developed. All the developed models are compared in terms of statistical fit and predictive performance. Based on the best fitted dynamic model, cycle-level crash probability and return level are calculated to measure signalized intersection safety at cycle level. The results show that dynamic models considerably outperform static models in terms of statistical fit and predictive performance. Further, the third-order dynamic model has the best performance, which is probably due to that the model incorporates two linear trends to respectively describe the variation of the coefficients as well as its change to better account for the variation in the effect of time-varying covariates. However, it should be noted that the third-order dynamic model development needs more computation time than other dynamic models, which may limit the application of the model.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100304"},"PeriodicalIF":12.9,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91993090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A generalized driving risk assessment on high-speed highways using field theory 基于场理论的高速公路驾驶风险广义评价
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-19 DOI: 10.1016/j.amar.2023.100303
Yang-Jun Joo , Eui-Jin Kim , Dong-Kyu Kim , Peter Y. Park

This study presents a new safety measure derived from field theory. It evaluates the risk arising from the various concurrent conflicts within a platoon that can occur on high-speed highway driving situations, such as car-following, yielding, and lane changing. We defined the risk field as a finite scalar field produced by traveling vehicles on the road, and we defined the conflict field as the overlapping risk field between any vehicles in proximity on the roadway. The study used a probabilistic trajectory prediction model to construct risk fields and an approximation method to reduce the computational time for real-time applications. To demonstrate the applicability of the proposed new measure, we applied it to real-world trajectory data (NGSIM data from US Highway 101). We compared the results with three traditional conflict-based safety measures: post-encroachment time (PET), modified time-to-collision (MTTC), and deceleration rate to avoid a crash (DRAC). The new measure produced seamless and continuous risk estimations even during time windows when the other measures could not estimate the risk between vehicles. This is a major advantage over traditional measures. The study also developed visual displays of the estimated conflict fields to provide safety analysts with an intuitive and fast understanding of the results of the safety assessments made using the conflict field measure. We conclude that the proposed new safety measure provides a robust, reliable, and improved assessment of the risk involved in expected future mixed-traffic environments that involve both human-driven vehicles and automated vehicles in the future.

本研究提出了一种基于场论的新的安全措施。它评估了在高速公路行驶情况下,车队内可能发生的各种并发冲突所产生的风险,如跟车、让行和变道。我们将风险场定义为道路上行驶车辆产生的有限标量场,并将冲突场定义为公路上任何邻近车辆之间的重叠风险场。该研究使用概率轨迹预测模型来构建风险场,并使用近似方法来减少实时应用的计算时间。为了证明所提出的新措施的适用性,我们将其应用于真实世界的轨迹数据(来自美国101号公路的NGSIM数据)。我们将结果与三种传统的基于冲突的安全措施进行了比较:侵占后时间(PET)、修正碰撞时间(MTTC)和避免碰撞的减速率(DRAC)。即使在其他措施无法估计车辆之间的风险的时间窗口内,新措施也能产生无缝和连续的风险估计。与传统措施相比,这是一个主要优势。该研究还开发了估计冲突场的可视化显示,使安全分析师能够直观快速地了解使用冲突场测量进行的安全评估的结果。我们得出的结论是,拟议的新安全措施对未来混合交通环境中涉及的风险提供了一个稳健、可靠和改进的评估,该环境涉及未来的人工驾驶车辆和自动驾驶车辆。
{"title":"A generalized driving risk assessment on high-speed highways using field theory","authors":"Yang-Jun Joo ,&nbsp;Eui-Jin Kim ,&nbsp;Dong-Kyu Kim ,&nbsp;Peter Y. Park","doi":"10.1016/j.amar.2023.100303","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100303","url":null,"abstract":"<div><p>This study presents a new safety measure derived from field theory. It evaluates the risk arising from the various concurrent conflicts within a platoon that can occur on high-speed highway driving situations, such as car-following, yielding, and lane changing. We defined the risk field as a finite scalar field produced by traveling vehicles on the road, and we defined the conflict field as the overlapping risk field between any vehicles in proximity on the roadway. The study used a probabilistic trajectory prediction model to construct risk fields and an approximation method to reduce the computational time for real-time applications. To demonstrate the applicability of the proposed new measure, we applied it to real-world trajectory data (NGSIM data from US Highway 101). We compared the results with three traditional conflict-based safety measures: post-encroachment time (PET), modified time-to-collision (MTTC), and deceleration rate to avoid a crash (DRAC). The new measure produced seamless and continuous risk estimations even during time windows when the other measures could not estimate the risk between vehicles. This is a major advantage over traditional measures. The study also developed visual displays of the estimated conflict fields to provide safety analysts with an intuitive and fast understanding of the results of the safety assessments made using the conflict field measure. We conclude that the proposed new safety measure provides a robust, reliable, and improved assessment of the risk involved in expected future mixed-traffic environments that involve both human-driven vehicles and automated vehicles in the future.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100303"},"PeriodicalIF":12.9,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49703693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time crash risk forecasting using Artificial-Intelligence based video analytics: A unified framework of generalised extreme value theory and autoregressive integrated moving average model 使用基于人工智能的视频分析进行实时碰撞风险预测:广义极值理论和自回归综合移动平均模型的统一框架
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-09 DOI: 10.1016/j.amar.2023.100302
Fizza Hussain , Yasir Ali , Yuefeng Li , Md Mazharul Haque

With the recent advancements in computer vision and artificial intelligence, traffic conflicts occurring at an intersection and associated traffic characteristics can be obtained at the granular level of a signal cycle in real-time. This capability enables the estimation of the real-time crash risk using sophisticated modelling techniques, e.g., extreme value theory. However, these models are inherently incapable of forecasting the crash risk of future time periods based on the temporal dependency of crash risks. This study proposes a unified framework of extreme value theory and autoregressive integrated moving average models for forecasting crash risks at signalised intersections. At the first level of this framework, a non-stationary generalised extreme value model has been developed to estimate the real-time rear-end crash risk at the signal cycle level using the video data collected from three signalised intersections in Queensland, Australia. To capture the time-varying effect of different traffic conditions on conflict extremes, traffic flow, speed, shockwave area, and platoon ratio covariates are incorporated into the generalised extreme value model. The signal cycle-level crash risks obtained from the first level form a univariate time series, which is modelled using two variants of autoregressive integrated moving average model to forecast the crash risk of future signal cycles. Results reveal that the autoregressive integrated moving average model with exogenous variables outperforms the model without exogenous variables and can forecast the crash risk for the next 30–35 min with reasonable accuracy. Similarly, results also demonstrate that different crash risk patterns within a typical day are accurately predicted. The proposed framework helps identify the spatiotemporal windows where safety gradually deteriorates over time, thus enabling proactive safety assessment.

随着计算机视觉和人工智能的最新进展,可以在信号周期的细粒度水平上实时获得十字路口发生的交通冲突和相关的交通特征。这种能力使得能够使用复杂的建模技术(例如极值理论)来估计实时碰撞风险。然而,这些模型本质上无法基于碰撞风险的时间依赖性来预测未来时间段的碰撞风险。本研究提出了一个统一的极值理论和自回归综合移动平均模型框架,用于预测信号交叉口的碰撞风险。在该框架的第一个层面上,开发了一个非平稳广义极值模型,以使用从澳大利亚昆士兰的三个信号交叉口收集的视频数据来估计信号周期层面的实时追尾事故风险。为了捕捉不同交通条件对冲突极值的时变影响,将交通流量、速度、冲击波面积和排比协变量纳入广义极值模型。从第一级获得的信号周期级碰撞风险形成一个单变量时间序列,该时间序列使用自回归综合移动平均模型的两个变量进行建模,以预测未来信号周期的碰撞风险。结果表明,具有外生变量的自回归综合移动平均模型优于没有外生变量的模型,能够以合理的精度预测未来30–35分钟的碰撞风险。同样,结果也表明,在一个典型的一天内,不同的碰撞风险模式是准确预测的。所提出的框架有助于识别安全性随时间逐渐恶化的时空窗口,从而实现主动安全评估。
{"title":"Real-time crash risk forecasting using Artificial-Intelligence based video analytics: A unified framework of generalised extreme value theory and autoregressive integrated moving average model","authors":"Fizza Hussain ,&nbsp;Yasir Ali ,&nbsp;Yuefeng Li ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2023.100302","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100302","url":null,"abstract":"<div><p>With the recent advancements in computer vision and artificial intelligence, traffic conflicts occurring at an intersection and associated traffic characteristics can be obtained at the granular level of a signal cycle in real-time. This capability enables the estimation of the real-time crash risk using sophisticated modelling techniques, e.g., extreme value theory. However, these models are inherently incapable of forecasting the crash risk of future time periods based on the temporal dependency of crash risks. This study proposes a unified framework of extreme value theory and autoregressive integrated moving average models for forecasting crash risks at signalised intersections. At the first level of this framework, a non-stationary generalised extreme value model has been developed to estimate the real-time rear-end crash risk at the signal cycle level using the video data collected from three signalised intersections in Queensland, Australia. To capture the time-varying effect of different traffic conditions on conflict extremes, traffic flow, speed, shockwave area, and platoon ratio covariates are incorporated into the generalised extreme value model. The signal cycle-level crash risks obtained from the first level form a univariate time series, which is modelled using two variants of autoregressive integrated moving average model to forecast the crash risk of future signal cycles. Results reveal that the autoregressive integrated moving average model with exogenous variables outperforms the model without exogenous variables and can forecast the crash risk for the next 30–35 min with reasonable accuracy. Similarly, results also demonstrate that different crash risk patterns within a typical day are accurately predicted. The proposed framework helps identify the spatiotemporal windows where safety gradually deteriorates over time, thus enabling proactive safety assessment.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100302"},"PeriodicalIF":12.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49729544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches 昼夜骑自行车者在车辆/自行车碰撞中受伤严重程度的分析:无约束和部分约束时间建模方法的比较
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-09 DOI: 10.1016/j.amar.2023.100301
Nawaf Alnawmasi , Fred Mannering

Due to visibility limitations and other factors, the injuries sustained by bicyclists in nighttime vehicle-bicycle crashes tend to be more severe than daytime crashes. This paper seeks to provide insights into this day/night injury severity phenomenon by studying how day/night bicyclist injury severities have changed in crashes that occurred before, during, and after the COVID-19 lock downs. Using data from vehicle-bicycle crashes in the state of Florida over a three-year period (from 2019 to 2021 inclusive), separate yearly models of bicyclist-injury severities (with possible outcomes of severe injury, minor injury, and no visible injury) were estimated using a random parameters logit approach with possible heterogeneity in the means and variances of random parameters. Likelihood ratio tests were conducted to examine the overall stability of model estimates across the studied years as well as day/night differences, and a comparison of partially constrained and unconstrained temporal modeling approaches was undertaken. A wide range of variables potentially affecting resulting bicyclist injury severities in vehicle/bicycle crashes was considered including bicyclist and vehicle driver information, vehicle features, roadways and environmental conditions, temporal characteristics, and roadway features. The findings show statistically significant injury-severity differences between daytime and nighttime before, during and after the COVID-19 pandemic. Out-of-sample simulation results suggest that improving the visibility of bicyclist through mandated reflectivity, improved roadway illumination, undertaking public awareness campaigns relating to nighttime bicyclist safety, and vulnerable road user detection sensors in vehicles can all contribute to substantially improving nighttime bicyclist safety.

由于能见度限制和其他因素,骑自行车的人在夜间车辆和自行车碰撞中所受的伤害往往比白天更严重。本文试图通过研究新冠肺炎封锁之前、期间和之后发生的撞车事故中,日间/夜间骑自行车者的伤害严重程度如何变化,来深入了解这种日间/夜间伤害严重程度现象。使用佛罗里达州三年期间(2019年至2021年,包括2019年)的车辆-自行车碰撞数据,使用随机参数logit方法估计了骑自行车者损伤严重程度的单独年度模型(包括严重损伤、轻微损伤和无可见损伤的可能结果),随机参数的均值和方差可能存在异质性。进行了似然比测试,以检查研究年份内模型估计的总体稳定性以及昼夜差异,并对部分约束和无约束的时间建模方法进行了比较。考虑了一系列可能影响车辆/自行车碰撞中骑车人受伤严重程度的变量,包括骑车人和车辆驾驶员信息、车辆特征、道路和环境条件、时间特征和道路特征。研究结果显示,在新冠肺炎大流行之前、期间和之后,白天和夜间的损伤严重程度存在统计学显著差异。样本外模拟结果表明,通过强制反射率、改善道路照明、开展与夜间骑自行车者安全相关的公众宣传活动以及车辆中易受伤害的道路使用者检测传感器来提高骑自行车者的能见度,都有助于大幅提高夜间骑自行车的安全性。
{"title":"An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches","authors":"Nawaf Alnawmasi ,&nbsp;Fred Mannering","doi":"10.1016/j.amar.2023.100301","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100301","url":null,"abstract":"<div><p>Due to visibility limitations and other factors, the injuries sustained by bicyclists in nighttime vehicle-bicycle crashes tend to be more severe than daytime crashes. This paper seeks to provide insights into this day/night injury severity phenomenon by studying how day/night bicyclist injury severities have changed in crashes that occurred before, during, and after the COVID-19 lock downs. Using data from vehicle-bicycle crashes in the state of Florida over a three-year period (from 2019 to 2021 inclusive), separate yearly models of bicyclist-injury severities (with possible outcomes of severe injury, minor injury, and no visible injury) were estimated using a random parameters logit approach with possible heterogeneity in the means and variances of random parameters. Likelihood ratio tests were conducted to examine the overall stability of model estimates across the studied years as well as day/night differences, and a comparison of partially constrained and unconstrained temporal modeling approaches was undertaken. A wide range of variables potentially affecting resulting bicyclist injury severities in vehicle/bicycle crashes was considered including bicyclist and vehicle driver information, vehicle features, roadways and environmental conditions, temporal characteristics, and roadway features. The findings show statistically significant injury-severity differences between daytime and nighttime before, during and after the COVID-19 pandemic. Out-of-sample simulation results suggest that improving the visibility of bicyclist through mandated reflectivity, improved roadway illumination, undertaking public awareness campaigns relating to nighttime bicyclist safety, and vulnerable road user detection sensors in vehicles can all contribute to substantially improving nighttime bicyclist safety.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100301"},"PeriodicalIF":12.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49729326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of design consistency measures and roadside hazard types on run-off-road crash severity: Application of random parameters hierarchical ordered probit model 设计一致性措施和路边危险类型对失控道路碰撞严重程度的影响:随机参数层次有序Probit模型的应用
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-06 DOI: 10.1016/j.amar.2023.100300
Shinthia Azmeri Khan , Shamsunnahar Yasmin , Md Mazharul Haque

Run-off-road crashes are one of the most significant causes of road deaths worldwide. Given such significant safety concerns, a number of earlier studies examined the critical factors contributing towards run-off-road crash severity outcomes, mostly by using the information compiled in the official crash database. However, the official crash databases are less likely to have detailed information on driver behavior (errors/expectations) and roadway environment (roadway geometry and roadside attributes). This study aims to investigate the effects of design consistency measures on run-off-road crash severity mechanisms by applying a random parameters hierarchical ordered Probit model. This study contributes towards existing safety literature by demonstrating a complementary approach to capturing the effects of driver behavior and heterogeneity in roadway environment on run-off-road crash severity outcome through the composite measures of design consistency indices and cosmopolite measures of roadside hazard type variables. Specifically, 17 different functional forms of design consistency indices are developed to capture the behavioral factors from the road-geometric changes in developing run-off-road crash severity models. Further, in examining the effect of different types of the roadside environment on run-off-road crash severity outcomes, seven roadside hazard type variables are generated as a composite function of roadside object type and clear zone (lateral distance to roadside object). The empirical analysis of this study involves a two-step modelling approach - in the first step, the decision tree algorithm is applied to identify the higher-order interaction among independent variables, and in the second step, crash severity models are developed by employing several econometric approaches. The hybrid models are estimated by employing four econometric frameworks, which include Ordered Probit, Hierarchical Ordered Probit, Random Parameters Ordered Probit, and Random parameters Hierarchical Ordered Probit models. The run-off-road crash severity models are estimated by using crash data collected from the State of Queensland, Australia, for the years 2015 through 2019. Overall, this study reveals the importance of considering the interaction of drivers' behavior, road geometry, and roadside attributes along with other independent variables in developing run-off-road crash severity models.

越野车碰撞是全世界道路死亡的最重要原因之一。考虑到这些重大的安全问题,一些早期的研究主要是通过使用官方碰撞数据库中汇编的信息来检查导致越野跑碰撞严重后果的关键因素。然而,官方碰撞数据库不太可能包含驾驶员行为(错误/期望)和道路环境(道路几何形状和路边属性)的详细信息。本研究采用随机参数分层有序Probit模型,探讨设计一致性措施对越野车碰撞严重程度机制的影响。本研究通过展示一种互补的方法,通过设计一致性指数和路边危险类型变量的世界尺度的复合措施,捕捉驾驶员行为和道路环境异质性对越野车碰撞严重程度结果的影响,从而对现有的安全文献做出了贡献。具体而言,本文提出了17种不同的设计一致性指标的功能形式,以便在开发越野跑碰撞严重程度模型时从道路几何变化中捕捉行为因素。此外,为了研究不同类型的路边环境对越野车碰撞严重程度结果的影响,我们生成了7个路边危险类型变量,作为路边物体类型和清晰区(到路边物体的横向距离)的复合函数。本研究的实证分析涉及两步建模方法——第一步,采用决策树算法识别自变量之间的高阶相互作用,第二步,采用几种计量经济学方法建立碰撞严重性模型。采用有序Probit模型、分层有序Probit模型、随机参数有序Probit模型和随机参数分层有序Probit模型四种计量经济学框架对混合模型进行了估计。越野跑碰撞严重程度模型是通过使用从澳大利亚昆士兰州收集的2015年至2019年的碰撞数据来估计的。总体而言,本研究揭示了在开发越野车碰撞严重程度模型时,考虑驾驶员行为、道路几何形状、道路属性以及其他自变量的相互作用的重要性。
{"title":"Effects of design consistency measures and roadside hazard types on run-off-road crash severity: Application of random parameters hierarchical ordered probit model","authors":"Shinthia Azmeri Khan ,&nbsp;Shamsunnahar Yasmin ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2023.100300","DOIUrl":"10.1016/j.amar.2023.100300","url":null,"abstract":"<div><p>Run-off-road crashes are one of the most significant causes of road deaths worldwide. Given such significant safety concerns, a number of earlier studies examined the critical factors contributing towards run-off-road crash severity outcomes, mostly by using the information compiled in the official crash database. However, the official crash databases are less likely to have detailed information on driver behavior (errors/expectations) and roadway environment (roadway geometry and roadside attributes). This study aims to investigate the effects of design consistency measures on run-off-road crash severity mechanisms by applying a random parameters hierarchical ordered Probit model. This study contributes towards existing safety literature by demonstrating a complementary approach to capturing the effects of driver behavior and heterogeneity in roadway environment on run-off-road crash severity outcome through the composite measures of design consistency indices and cosmopolite measures of roadside hazard type variables. Specifically, 17 different functional forms of design consistency indices are developed to capture the behavioral factors from the road-geometric changes in developing run-off-road crash severity models. Further, in examining the effect of different types of the roadside environment on run-off-road crash severity outcomes, seven roadside hazard type variables are generated as a composite function of roadside object type and clear zone (lateral distance to roadside object). The empirical analysis of this study involves a two-step modelling approach - in the first step, the decision tree algorithm is applied to identify the higher-order interaction among independent variables, and in the second step, crash severity models are developed by employing several econometric approaches. The hybrid models are estimated by employing four econometric frameworks, which include Ordered Probit, Hierarchical Ordered Probit, Random Parameters Ordered Probit, and Random parameters Hierarchical Ordered Probit models. The run-off-road crash severity models are estimated by using crash data collected from the State of Queensland, Australia, for the years 2015 through 2019. Overall, this study reveals the importance of considering the interaction of drivers' behavior, road geometry, and roadside attributes along with other independent variables in developing run-off-road crash severity models.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100300"},"PeriodicalIF":12.9,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47266949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traffic conflict prediction using connected vehicle data 基于互联车辆数据的交通冲突预测
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100275
Zubayer Islam, Mohamed Abdel-Aty

Transportation safety studies have been mostly focused on using crash data that are rare events. Alternatively, conflict estimation can be used to assess safety. This has been proven as a proactive design methodology that does not rely on crashes and requires shorter observation. Traditionally, the safety studies involving both these reactive and proactive methods were based on aggregated data that does not take individual vehicle dynamics into consideration. This paper addresses this research gap by proposing a novel real-time conflict prediction methodology that uses previous instance trajectory data of individual vehicles to understand whether there can be potential conflict in the near future. A long-short term memory (LSTM) model is developed that can apprehend a conflict situation 9 s in the future. Data from connected vehicles have been used. The proposed model returned a recall of 81% with a false alarm rate of 28%. The predictive model has the potential to be implemented on vehicle dashboards to warn drivers of a conflict. The authors have also used SHAP (SHapley Additive exPlanation) to interpret the results from the LSTM model. It was deduced that acceleration above 0.3 m/s2, deceleration within −1.5 m/s2 to −0.25 m/s2, and speed of more than 40kph were responsible for inducing a conflict.

交通安全研究主要集中在使用罕见事件的碰撞数据上。另外,冲突估计可以用来评估安全性。这已经被证明是一种主动的设计方法,不依赖于崩溃,需要更短的观察时间。传统上,涉及这些被动和主动方法的安全性研究都是基于汇总数据,而没有考虑到单个车辆的动态。本文通过提出一种新的实时冲突预测方法来解决这一研究空白,该方法使用单个车辆的先前实例轨迹数据来了解近期是否存在潜在的冲突。建立了一个长短期记忆(LSTM)模型,该模型可以理解未来的冲突情况 s。已经使用了联网车辆的数据。该模型的召回率为81%,误报率为28%。该预测模型有可能在汽车仪表板上实现,以警告司机发生冲突。作者还使用SHapley加性解释(SHapley Additive exPlanation)来解释LSTM模型的结果。结果表明,加速度大于0.3 m/s2,减速小于- 1.5 m/s2 ~ - 0.25 m/s2,车速大于40kph是导致碰撞的主要原因。
{"title":"Traffic conflict prediction using connected vehicle data","authors":"Zubayer Islam,&nbsp;Mohamed Abdel-Aty","doi":"10.1016/j.amar.2023.100275","DOIUrl":"10.1016/j.amar.2023.100275","url":null,"abstract":"<div><p><span>Transportation safety studies have been mostly focused on using crash data that are rare events. Alternatively, conflict estimation can be used to assess safety. This has been proven as a proactive design methodology that does not rely on crashes and requires shorter observation. Traditionally, the safety studies involving both these reactive and proactive methods were based on aggregated data that does not take individual vehicle dynamics into consideration. This paper addresses this research gap by proposing a novel real-time conflict prediction methodology that uses previous instance trajectory data of individual vehicles to understand whether there can be potential conflict in the near future. A long-short term memory (LSTM) model is developed that can apprehend a conflict situation 9 s in the future. Data from connected vehicles have been used. The proposed model returned a recall of 81% with a false alarm rate of 28%. The predictive model has the potential to be implemented on vehicle dashboards to warn drivers of a conflict. The authors have also used SHAP (SHapley Additive exPlanation) to interpret the results from the LSTM model. It was deduced that acceleration above 0.3 m/s</span><sup>2</sup>, deceleration within −1.5 m/s<sup>2</sup> to −0.25 m/s<sup>2</sup>, and speed of more than 40kph were responsible for inducing a conflict.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100275"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43029864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Identification of adequate sample size for conflict-based crash risk evaluation: An investigation using Bayesian hierarchical extreme value theory models 为基于冲突的碰撞风险评估确定足够的样本量:使用贝叶斯层次极值理论模型的调查
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100281
Chuanyun Fu , Tarek Sayed

The use of traffic conflict-based models to estimate crash risk and evaluate the safety of road locations is a popular direction for road safety analysis. However, a challenging issue of traffic conflict-based crash risk modeling is the selection of an appropriate sample size. Reliable conflict-based crash risk models typically require a large sample size which is always very difficult to collect. Further, when choosing a sample size, the bias-variance trade-off of model estimation is a constant concern. This study proposes an approach for identifying an adequate sample size for conflict-based crash risk estimation models. The appropriate sample size is determined by checking the model convergence and its goodness-of-fit. A quantitative approach for objectively testing the model goodness-of-fit is developed. Both the trace plots and the variation tendencies of Brooks-Gelman-Rubin statistics of parameter simulation chains are examined to inspect the model convergence. A graphical method is also used to check the model goodness of fit. If the model has not converged or fits poorly, then additional samples are required. The proposed method was applied to identify the adequate sample size for a Bayesian hierarchical extreme value theory (EVT) block maxima (BM) model using traffic conflict data from four signalized intersections in the city of Surrey, British Columbia. The indicator, modified time to collision (MTTC), was used to delineate traffic conflicts. A series of stationary and non-stationary Bayesian hierarchical BM models were developed using the cycle-level maximums of negated MTTC. The adequate sample sizes of stationary and non-stationary Bayesian hierarchical BM models were determined separately. Further, two methods of increasing the sample size (i.e., extending the observation period and combining data from different sites) were compared in terms of goodness-of-fit as well as crash estimate accuracy and precision. The results show that for both stationary and non-stationary models, the sample size used is adequate for model convergence and goodness-of-fit. Moreover, adding covariates to the stationary Bayesian hierarchical BM model does not affect the size of the required sample. Extending the observation period outperforms combining data from different sites in terms of goodness-of-fit as well as crash estimation accuracy and precision of non-stationary models. This is likely related to the existence of unmeasured factors that could impair model estimation and inference when merging data from several sites to augment the number of samples. Overall, the findings of this study can be applied to examine whether available data is adequate and the amount of additional data required for producing reliable statistical inference.

使用基于交通冲突的模型来估计碰撞风险和评估道路位置的安全性是道路安全分析的一个流行方向。然而,基于交通冲突的碰撞风险建模的一个具有挑战性的问题是选择合适的样本量。可靠的基于冲突的崩溃风险模型通常需要很大的样本量,这总是很难收集。此外,在选择样本量时,模型估计的偏差-方差权衡是一个经常关注的问题。本研究提出了一种为基于冲突的碰撞风险估计模型确定适当样本量的方法。通过检查模型收敛性及其拟合优度来确定适当的样本大小。提出了一种客观检验模型拟合优度的定量方法。检验了参数模拟链的Brooks-Gelman-Rubin统计量的迹图和变化趋势,以检验模型的收敛性。还使用图形方法来检查模型的拟合优度。如果模型没有收敛或拟合不好,则需要额外的样本。利用不列颠哥伦比亚省萨里市四个信号交叉口的交通冲突数据,将所提出的方法应用于确定贝叶斯分层极值理论(EVT)块最大值(BM)模型的适当样本量。该指标称为修正碰撞时间(MTTC),用于描述交通冲突。利用否定MTTC的周期级最大值,建立了一系列平稳和非平稳的贝叶斯层次BM模型。分别确定了平稳和非平稳贝叶斯层次BM模型的适当样本量。此外,在拟合优度以及碰撞估计的准确性和精度方面,对两种增加样本量的方法(即延长观测期和合并不同地点的数据)进行了比较。结果表明,对于平稳和非平稳模型,所使用的样本大小足以保证模型的收敛性和拟合优度。此外,向平稳贝叶斯分层BM模型添加协变量不会影响所需样本的大小。在拟合优度以及非平稳模型的碰撞估计精度和精度方面,延长观测周期优于组合来自不同地点的数据。这可能与在合并来自多个站点的数据以增加样本数量时,存在可能损害模型估计和推断的未测量因素有关。总的来说,这项研究的结果可以用于检查可用数据是否足够,以及产生可靠统计推断所需的额外数据量。
{"title":"Identification of adequate sample size for conflict-based crash risk evaluation: An investigation using Bayesian hierarchical extreme value theory models","authors":"Chuanyun Fu ,&nbsp;Tarek Sayed","doi":"10.1016/j.amar.2023.100281","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100281","url":null,"abstract":"<div><p>The use of traffic conflict-based models to estimate crash risk and evaluate the safety of road locations is a popular direction for road safety analysis. However, a challenging issue of traffic conflict-based crash risk modeling is the selection of an appropriate sample size. Reliable conflict-based crash risk models typically require a large sample size which is always very difficult to collect. Further, when choosing a sample size, the bias-variance trade-off of model estimation is a constant concern. This study proposes an approach for identifying an adequate sample size for conflict-based crash risk estimation models. The appropriate sample size is determined by checking the model convergence and its goodness-of-fit. A quantitative approach for objectively testing the model goodness-of-fit is developed. Both the trace plots and the variation tendencies of Brooks-Gelman-Rubin statistics of parameter simulation chains are examined to inspect the model convergence. A graphical method is also used to check the model goodness of fit. If the model has not converged or fits poorly, then additional samples are required. The proposed method was applied to identify the adequate sample size for a Bayesian hierarchical extreme value theory (EVT) block maxima (BM) model using traffic conflict data from four signalized intersections in the city of Surrey, British Columbia. The indicator, modified time to collision (MTTC), was used to delineate traffic conflicts. A series of stationary and non-stationary Bayesian hierarchical BM models were developed using the cycle-level maximums of negated MTTC. The adequate sample sizes of stationary and non-stationary Bayesian hierarchical BM models were determined separately. Further, two methods of increasing the sample size (i.e., extending the observation period and combining data from different sites) were compared in terms of goodness-of-fit as well as crash estimate accuracy and precision. The results show that for both stationary and non-stationary models, the sample size used is adequate for model convergence and goodness-of-fit. Moreover, adding covariates to the stationary Bayesian hierarchical BM model does not affect the size of the required sample. Extending the observation period outperforms combining data from different sites in terms of goodness-of-fit as well as crash estimation accuracy and precision of non-stationary models. This is likely related to the existence of unmeasured factors that could impair model estimation and inference when merging data from several sites to augment the number of samples. Overall, the findings of this study can be applied to examine whether available data is adequate and the amount of additional data required for producing reliable statistical inference.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100281"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time safest route identification: Examining the trade-off between safest and fastest routes 实时最安全路线识别:检查最安全路线和最快路线之间的权衡
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100277
Tarek Ghoul , Tarek Sayed , Chuanyun Fu

Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.

几项研究表明,坠机风险是一个动态量,它经常随着相当大的空间和时间变化而变化。安全评估技术的最新进展,如使用极值理论(EVT)模型,提供了利用从道路使用者轨迹获得的交通冲突数据来估计实时安全指标的机会。这些指标可以根据暴露在不安全道路条件下的持续时间,汇总特定路线上的碰撞风险。本文将贝叶斯层次极值理论模型应用于从希腊雅典的无人机数据集获得的轨迹,以开发一种能够实时通知用户城市网络中最安全路线的最安全路线算法。选定的研究区域由102个有信号和无信号交叉口组成的矩形网格组成。获取网络中每条链路的动态崩溃风险,并利用该风险来确定任何始末对之间的最安全路由和相应的最快路由。然后将最安全的路线与最快的路线进行比较,发现平均安全22%,导致旅行时间增加11%。此外,在分析的23%的出发地对中,最安全的路线与最快的路线相同,在链接方面平均相似度为54%。考虑到安全性和机动性之间的权衡,提出了一种多目标路由方法,该方法使用安全加权偏好来平衡旅行时间和碰撞风险。这项工作在提高所有道路使用者的安全方面具有相当大的潜力,也可用于车队路由应用,作为多目标路由系统的一部分。
{"title":"Real-time safest route identification: Examining the trade-off between safest and fastest routes","authors":"Tarek Ghoul ,&nbsp;Tarek Sayed ,&nbsp;Chuanyun Fu","doi":"10.1016/j.amar.2023.100277","DOIUrl":"10.1016/j.amar.2023.100277","url":null,"abstract":"<div><p>Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100277"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Temporal stability of the impact of factors determining drivers’ injury severities across traffic barrier crashes in mountainous regions 山区跨栏交通事故驾驶员伤害严重程度影响因素的时间稳定性
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100282
Dongdong Song , Xiaobao Yang , Panagiotis Ch. Anastasopoulos , Xingshui Zu , Xianfei Yue , Yitao Yang
<div><p>Traffic barrier crashes have been a major concern in many prior studies in traffic safety literature, especially in the crash-prone sections of mountainous regions. However, the effect of factors affecting the injury-severities resulting from crashes involving different types of traffic barriers may be different. This paper provides an empirical assessment of the performance of ordered and unordered discrete outcome models for examining the impact of exogenous factors determining the driver injury-severity of crashes involving two types of traffic barriers in mountainous regions: w-beam barriers and cable barriers. For the ordered framework, the alternative modeling approaches include: the generalized ordered logit (GOL) and the random thresholds random parameters generalized ordered logit model (RTRPGOL). Whereas, for the unordered framework, the alternative modeling approaches include: the multinomial logit (MNL), the random parameters multinormal logit (RPL), and the random parameters multinormal logit model with heterogeneity in the means and variances (RPLHMV). Using injury-severity data from 2016 to 2019 for mountainous regions in Guiyang City, China, three injury-severity categories are determined as outcome variables: severe injury (SI), minor injury (MI), and no injury (NI), while the potential influencing factors including drivers-, vehicles-, road-, and environment-specific characteristics are statistically analyzed. The model estimation results show: (a) that the MNL model statistically outperforms the GOL model in terms of goodness-of-fit measures; (b) the RTRPGOL model is statistically superior to the MNL and RPL models; and (c) the RPLHMV model is statistically superior to the RTRPGOL model, and therefore the preferred option among the model alternatives. To that end, the RPLHMV model is leveraged to quantitatively describe the impact of explanatory variables on the driver injury-severity and explore how these factors change over the years (between 2016–2017 and 2018–2019). The results further show that the factors affecting driver injury severities and the effects of significant factors on injury severity probabilities change across traffic barrier crash models and across years. In addition, the results of the temporal effects analysis show that some variables present relative temporal stability, which is important for formulating long-term strategies to enhance traffic safety on mountainous roads. Most importantly, the effects of the explanatory factors that exhibit relative temporal stability are found to vary across traffic barrier crashes. For example, trucks, daylight, curved section segments, and high-speed limit (greater than 55 mph) are some of the factors that have opposite effects between traffic barrier crash models. The findings from this paper are expected to help policy makers to take necessary measures in reducing traffic barrier crashes in mountainous regions by forming appropriate strategies, and by alloca
交通障碍碰撞一直是交通安全文献中许多先前研究的主要问题,特别是在山区易发生碰撞的路段。然而,不同类型的交通障碍对碰撞造成的伤害严重程度的影响因素可能是不同的。本文对有序和无序离散结果模型的性能进行了实证评估,以检验外生因素对涉及山区两种交通障碍(w梁障碍和电缆障碍)的碰撞驾驶员伤害严重程度的影响。对于有序框架,可选择的建模方法包括:广义有序logit模型(GOL)和随机阈值随机参数广义有序logit模型(RTRPGOL)。而对于无序框架,可选择的建模方法包括:多项logit (MNL)、随机参数多正态logit (RPL)和均值和方差异质性随机参数多正态logit模型(RPLHMV)。利用2016 - 2019年贵阳市山区伤害严重程度数据,确定了重伤(SI)、轻伤(MI)和无伤(NI)三种伤害严重程度类别作为结果变量,并对驾驶员、车辆、道路和环境特征等潜在影响因素进行了统计分析。模型估计结果表明:(a) MNL模型在拟合优度指标上优于GOL模型;(b) RTRPGOL模型在统计上优于MNL和RPL模型;(c) RPLHMV模型在统计上优于RTRPGOL模型,因此是模型备选方案中的首选。为此,利用RPLHMV模型定量描述解释变量对驾驶员伤害严重程度的影响,并探讨这些因素在2016-2017年至2018-2019年期间的变化情况。结果进一步表明,影响驾驶员伤害严重程度的因素及显著性因素对伤害严重概率的影响在不同交通障碍碰撞模型和年份之间存在差异。此外,时间效应分析结果表明,一些变量具有相对的时间稳定性,这对制定提高山区道路交通安全的长期策略具有重要意义。最重要的是,显示相对时间稳定性的解释因素的影响被发现在不同的交通障碍碰撞中有所不同。例如,卡车、日光、弯曲路段和高速限制(超过55英里/小时)是在交通障碍碰撞模型之间产生相反影响的一些因素。本文的研究结果有望帮助决策者采取必要的措施,通过制定适当的策略,并在前期规划阶段合理分配其可用资源,以减少山区交通障碍事故。
{"title":"Temporal stability of the impact of factors determining drivers’ injury severities across traffic barrier crashes in mountainous regions","authors":"Dongdong Song ,&nbsp;Xiaobao Yang ,&nbsp;Panagiotis Ch. Anastasopoulos ,&nbsp;Xingshui Zu ,&nbsp;Xianfei Yue ,&nbsp;Yitao Yang","doi":"10.1016/j.amar.2023.100282","DOIUrl":"10.1016/j.amar.2023.100282","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Traffic barrier crashes have been a major concern in many prior studies in traffic safety literature, especially in the crash-prone sections of mountainous regions. However, the effect of factors affecting the injury-severities resulting from crashes involving different types of traffic barriers may be different. This paper provides an empirical assessment of the performance of ordered and unordered discrete outcome models for examining the impact of exogenous factors determining the driver injury-severity of crashes involving two types of traffic barriers in mountainous regions: w-beam barriers and cable barriers. For the ordered framework, the alternative modeling approaches include: the generalized ordered logit (GOL) and the random thresholds random parameters generalized ordered logit model (RTRPGOL). Whereas, for the unordered framework, the alternative modeling approaches include: the multinomial logit (MNL), the random parameters multinormal logit (RPL), and the random parameters multinormal logit model with heterogeneity in the means and variances (RPLHMV). Using injury-severity data from 2016 to 2019 for mountainous regions in Guiyang City, China, three injury-severity categories are determined as outcome variables: severe injury (SI), minor injury (MI), and no injury (NI), while the potential influencing factors including drivers-, vehicles-, road-, and environment-specific characteristics are statistically analyzed. The model estimation results show: (a) that the MNL model statistically outperforms the GOL model in terms of goodness-of-fit measures; (b) the RTRPGOL model is statistically superior to the MNL and RPL models; and (c) the RPLHMV model is statistically superior to the RTRPGOL model, and therefore the preferred option among the model alternatives. To that end, the RPLHMV model is leveraged to quantitatively describe the impact of explanatory variables on the driver injury-severity and explore how these factors change over the years (between 2016–2017 and 2018–2019). The results further show that the factors affecting driver injury severities and the effects of significant factors on injury severity probabilities change across traffic barrier crash models and across years. In addition, the results of the temporal effects analysis show that some variables present relative temporal stability, which is important for formulating long-term strategies to enhance traffic safety on mountainous roads. Most importantly, the effects of the explanatory factors that exhibit relative temporal stability are found to vary across traffic barrier crashes. For example, trucks, daylight, curved section segments, and high-speed limit (greater than 55 mph) are some of the factors that have opposite effects between traffic barrier crash models. The findings from this paper are expected to help policy makers to take necessary measures in reducing traffic barrier crashes in mountainous regions by forming appropriate strategies, and by alloca","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100282"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47517258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Analytic Methods in Accident Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1