首页 > 最新文献

Analytic Methods in Accident Research最新文献

英文 中文
Modeling the risk of single-vehicle run-off-road crashes on horizontal curves using connected vehicle data 利用联网车辆数据模拟水平弯道上单车冲出路面的碰撞风险
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-04-22 DOI: 10.1016/j.amar.2024.100333
Yuzhi Chen , Chen Wang , Yuanchang Xie

Crash risk measures (CRMs) are widely used in safety analysis to complement crash reports. However, none of the existing CRMs are specifically developed for modeling the risk of single-vehicle run-off-road (SVROR) crashes, especially those on horizontal curves. This paper proposes a novel crash risk measure for modeling SVROR crash risk using connected vehicle data. The proposed SVROR crash risk measure (SVROR-CRM) is based on the concept of tetraquark in particle physics. It utilizes the adjusted position deviation risk force (Fposirisk) and adjusted attitude deviation risk moment (Γattirisk) to quantify SVROR crash risk. The SVROR crash risk is then estimated by the joint probability of Fposirisk and Γattirisk using a peak-over threshold approach. The risk threshold is automatically determined via a mean absolute error function. The SVROR-CRM is validated using connected vehicle and crash data from sixteen curves on Interstate 80 in Wyoming. The results suggest that the estimated SVROR crash risks well match historical crash records. Also, it is found that attitude deviation poses a higher risk of SVROR crash than position deviation on horizontal curves. Therefore, it is critical for drivers to steer properly on curves to minimize SVROR crash risks. The proposed approach bridges an important gap in crash risk measure research and can be used to estimate SVROR crash risk and identify unsafe trajectories and high-crash locations and/or periods on highway horizontal curves.

碰撞风险度量(CRM)被广泛应用于安全分析中,作为碰撞报告的补充。然而,现有的碰撞风险度量都不是专门针对单车冲出道路(SVROR)碰撞风险建模而开发的,尤其是在水平弯道上的碰撞风险。本文提出了一种新型碰撞风险度量方法,用于利用联网车辆数据对 SVROR 碰撞风险进行建模。所提出的 SVROR 碰撞风险度量(SVROR-CRM)基于粒子物理学中的四夸克概念。它利用调整后的位置偏差风险力(Fposirisk)和调整后的姿态偏差风险力矩(Γattirisk)来量化 SVROR 碰撞风险。SVROR 碰撞风险由 Fposirisk 和 Γattirisk 的联合概率估算得出,采用的是峰值过阈值方法。风险阈值通过平均绝对误差函数自动确定。SVROR-CRM 利用怀俄明州 80 号州际公路上 16 个弯道的联网车辆和碰撞数据进行了验证。结果表明,估计的 SVROR 碰撞风险与历史碰撞记录非常吻合。此外,还发现在水平弯道上,姿态偏差比位置偏差造成的 SVROR 碰撞风险更高。因此,驾驶员在弯道上正确转向对降低 SVROR 碰撞风险至关重要。所提出的方法弥补了碰撞风险测量研究中的一个重要空白,可用于估算 SVROR 碰撞风险,并识别高速公路水平弯道上的不安全轨迹和碰撞高发地点和/或时段。
{"title":"Modeling the risk of single-vehicle run-off-road crashes on horizontal curves using connected vehicle data","authors":"Yuzhi Chen ,&nbsp;Chen Wang ,&nbsp;Yuanchang Xie","doi":"10.1016/j.amar.2024.100333","DOIUrl":"10.1016/j.amar.2024.100333","url":null,"abstract":"<div><p>Crash risk measures (CRMs) are widely used in safety analysis to complement crash reports. However, none of the existing CRMs are specifically developed for modeling the risk of single-vehicle run-off-road (SVROR) crashes, especially those on horizontal curves. This paper proposes a novel crash risk measure for modeling SVROR crash risk using connected vehicle data. The proposed SVROR crash risk measure (SVROR-CRM) is based on the concept of tetraquark in particle physics. It utilizes the adjusted position deviation risk force (<span><math><mrow><msubsup><mi>F</mi><mrow><mi>posi</mi></mrow><mrow><mi>risk</mi></mrow></msubsup></mrow></math></span>) and adjusted attitude deviation risk moment (<span><math><mrow><msubsup><mi>Γ</mi><mrow><mi>atti</mi></mrow><mrow><mi>risk</mi></mrow></msubsup></mrow></math></span>) to quantify SVROR crash risk. The SVROR crash risk is then estimated by the joint probability of <span><math><mrow><msubsup><mi>F</mi><mrow><mi>posi</mi></mrow><mrow><mi>risk</mi></mrow></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>Γ</mi><mrow><mi>atti</mi></mrow><mrow><mi>risk</mi></mrow></msubsup></mrow></math></span> using a peak-over threshold approach. The risk threshold is automatically determined via a mean absolute error function. The SVROR-CRM is validated using connected vehicle and crash data from sixteen curves on Interstate 80 in Wyoming. The results suggest that the estimated SVROR crash risks well match historical crash records. Also, it is found that attitude deviation poses a higher risk of SVROR crash than position deviation on horizontal curves. Therefore, it is critical for drivers to steer properly on curves to minimize SVROR crash risks. The proposed approach bridges an important gap in crash risk measure research and can be used to estimate SVROR crash risk and identify unsafe trajectories and high-crash locations and/or periods on highway horizontal curves.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"43 ","pages":"Article 100333"},"PeriodicalIF":12.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating autonomous vehicle discretionary lane-changing execution behaviour: Similarities, differences, and insights from Waymo dataset 调查自动驾驶汽车随意变更车道的执行行为:Waymo数据集的相似性、差异和启示
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-04-06 DOI: 10.1016/j.amar.2024.100332
Yasir Ali , Anshuman Sharma , Danjue Chen

Recently released autonomous vehicle datasets like Waymo can provide rich information (and unprecedented opportunities) to investigate lane-changing behaviour of autonomous vehicles, requiring data from multiple drivers and lanes with different objectives. As such, the study investigates the discretionary lane-changing execution behaviour of autonomous vehicles and compares its behaviour with human-driven vehicles from Waymo and Next Generation Simulation (NGSIM) datasets. Several behavioural factors are statistically analysed and compared, whereas the discretionary lane-changing execution time (or duration) is modelled by a random parameters hazard-based duration modelling approach, which accounts for unobserved heterogeneity. Descriptive analyses suggest that autonomous vehicles maintain larger lead and lag gaps, longer discretionary lane-changing execution time, and lower acceleration variation than human-driven vehicles. The random parameters duration model reveals heterogeneity in discretionary lane-changing execution behaviour, which is higher in human-driven vehicles but decreases significantly for autonomous vehicles. Whilst contradictory to a general hypothesis in the literature that autonomous vehicles will eliminate heterogeneity, our finding indicates that heterogeneous behaviour also exists in autonomous vehicles (although to a lesser extent than in human-driven vehicles), which can be contextual to prevailing traffic conditions. Overall, autonomous vehicles show safer discretionary lane-changing behaviour compared to human-driven vehicles.

最近发布的自动驾驶车辆数据集(如 Waymo)可以为研究自动驾驶车辆的变道行为提供丰富的信息(和前所未有的机会),这需要来自不同目标的多个驾驶员和车道的数据。因此,本研究调查了自动驾驶车辆的随意变道执行行为,并将其与来自 Waymo 和下一代仿真(NGSIM)数据集的人类驾驶车辆的行为进行了比较。对几个行为因素进行了统计分析和比较,并采用基于随机参数危险的持续时间建模方法对随意变道执行时间(或持续时间)进行建模,该方法考虑了未观察到的异质性。描述性分析表明,与人类驾驶的车辆相比,自动驾驶车辆保持更大的超前和滞后间隙、更长的随意变道执行时间和更低的加速度变化。随机参数持续时间模型揭示了随意变道执行行为的异质性,人类驾驶车辆的随意变道执行时间较长,而自动驾驶车辆的随意变道执行时间则明显减少。虽然与文献中关于自动驾驶车辆将消除异质性的一般假设相矛盾,但我们的发现表明,自动驾驶车辆中也存在异质性行为(尽管程度低于人类驾驶车辆),这可能与当时的交通状况有关。总体而言,与人类驾驶的车辆相比,自动驾驶车辆表现出更安全的随意变道行为。
{"title":"Investigating autonomous vehicle discretionary lane-changing execution behaviour: Similarities, differences, and insights from Waymo dataset","authors":"Yasir Ali ,&nbsp;Anshuman Sharma ,&nbsp;Danjue Chen","doi":"10.1016/j.amar.2024.100332","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100332","url":null,"abstract":"<div><p>Recently released autonomous vehicle datasets like Waymo can provide rich information (and unprecedented opportunities) to investigate lane-changing behaviour of autonomous vehicles, requiring data from multiple drivers and lanes with different objectives. As such, the study investigates the discretionary lane-changing execution behaviour of autonomous vehicles and compares its behaviour with human-driven vehicles from Waymo and Next Generation Simulation (NGSIM) datasets. Several behavioural factors are statistically analysed and compared, whereas the discretionary lane-changing execution time (or duration) is modelled by a random parameters hazard-based duration modelling approach, which accounts for unobserved heterogeneity. Descriptive analyses suggest that autonomous vehicles maintain larger lead and lag gaps, longer discretionary lane-changing execution time, and lower acceleration variation than human-driven vehicles. The random parameters duration model reveals heterogeneity in discretionary lane-changing execution behaviour, which is higher in human-driven vehicles but decreases significantly for autonomous vehicles. Whilst contradictory to a general hypothesis in the literature that autonomous vehicles will eliminate heterogeneity, our finding indicates that heterogeneous behaviour also exists in autonomous vehicles (although to a lesser extent than in human-driven vehicles), which can be contextual to prevailing traffic conditions. Overall, autonomous vehicles show safer discretionary lane-changing behaviour compared to human-driven vehicles.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100332"},"PeriodicalIF":12.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating crash risk and injury severity considering multiple traffic conflict and crash types: A bivariate extreme value approach 考虑多种交通冲突和碰撞类型,估算碰撞风险和伤害严重程度:双变量极值法
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-03-24 DOI: 10.1016/j.amar.2024.100331
Md Mohasin Howlader , Fred Mannering , Md Mazharul Haque

Traffic conflicts are generally considered independent events in existing extreme value theory models to estimate the risk of total or single types of crashes. However, traffic events at a road entity are not necessarily independent interactions and can lead to multiple traffic conflicts with shared common unobserved factors. A comprehensive estimation of crash risks in a road entity needs to consider the correlation of potential traffic conflicts to avoid possible bias in prediction performance and the problem of undetected deficiencies. This study proposes a Bayesian non-stationary bivariate generalised extreme value modelling framework to estimate the severe and non-severe crash risks accounting for the correlation between right-turn and rear-end conflicts at signalised intersections. A deep neural network-based computer vision technique was applied to extract the traffic conflicts from 77 h of video recordings over two right-turn approaches at two signalised intersections in Cairns, Australia. Post encroachment time and modified time to collision were used to characterise right-turn and rear-end conflicts, respectively, while an expected post-collision velocity difference was combined with post encroachment time and modified time to collision for crash risk estimation by injury severity levels. Several covariates were used to address the time-varying heterogeneity of traffic conflict extremes and to estimate the differential crash risks at signal cycles. Results showed a significant correlation between right-turn and rear-end crashes at signal cycle levels, indicating the importance of accounting for the dependency among traffic conflict types. Overall, the bivariate models considering the correlation among traffic conflict types were found to understandably perform better than their univariate counterparts. This study provides a demonstration of a correlated crash risk modelling framework that addresses issues related to the suitable traffic conflict measures, time varying risks (non-stationarity), heterogeneity, and injury severity levels of different crash types.

在现有的极值理论模型中,交通冲突通常被视为独立事件,用于估算总体或单一类型的碰撞风险。然而,道路实体中的交通事件并不一定是独立的相互作用,可能会导致具有共同的未观测因素的多重交通冲突。全面估算道路实体的碰撞风险需要考虑潜在交通冲突的相关性,以避免预测结果可能出现的偏差和未发现的缺陷问题。本研究提出了一种贝叶斯非稳态双变量广义极值建模框架,用于估算严重和非严重碰撞风险,其中考虑了信号灯控制交叉口右转和追尾冲突之间的相关性。应用基于深度神经网络的计算机视觉技术,从澳大利亚凯恩斯市两个信号灯控制交叉路口两个右转方向 77 小时的视频记录中提取交通冲突。侵占后时间和修改后碰撞时间分别用于描述右转和追尾冲突,而预期碰撞后速度差则与侵占后时间和修改后碰撞时间相结合,用于按伤害严重程度估算碰撞风险。针对交通冲突极端情况的时变异质性,使用了几个协变量来估算信号周期的不同碰撞风险。结果显示,在信号灯周期水平上,右转和追尾碰撞事故之间存在明显的相关性,这表明考虑交通冲突类型之间的依赖性非常重要。总体而言,考虑到交通冲突类型之间相关性的二元模型比单元模型的表现更好,这是可以理解的。本研究展示了一种相关碰撞风险建模框架,该框架可解决与合适的交通冲突措施、时间变化风险(非平稳性)、异质性和不同碰撞类型的伤害严重程度有关的问题。
{"title":"Estimating crash risk and injury severity considering multiple traffic conflict and crash types: A bivariate extreme value approach","authors":"Md Mohasin Howlader ,&nbsp;Fred Mannering ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2024.100331","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100331","url":null,"abstract":"<div><p>Traffic conflicts are generally considered independent events in existing extreme value theory models to estimate the risk of total or single types of crashes. However, traffic events at a road entity are not necessarily independent interactions and can lead to multiple traffic conflicts with shared common unobserved factors. A comprehensive estimation of crash risks in a road entity needs to consider the correlation of potential traffic conflicts to avoid possible bias in prediction performance and the problem of undetected deficiencies. This study proposes a Bayesian non-stationary bivariate generalised extreme value modelling framework to estimate the severe and non-severe crash risks accounting for the correlation between right-turn and rear-end conflicts at signalised intersections. A deep neural network-based computer vision technique was applied to extract the traffic conflicts from 77 h of video recordings over two right-turn approaches at two signalised intersections in Cairns, Australia. Post encroachment time and modified time to collision were used to characterise right-turn and rear-end conflicts, respectively, while an expected post-collision velocity difference was combined with post encroachment time and modified time to collision for crash risk estimation by injury severity levels. Several covariates were used to address the time-varying heterogeneity of traffic conflict extremes and to estimate the differential crash risks at signal cycles. Results showed a significant correlation between right-turn and rear-end crashes at signal cycle levels, indicating the importance of accounting for the dependency among traffic conflict types. Overall, the bivariate models considering the correlation among traffic conflict types were found to understandably perform better than their univariate counterparts. This study provides a demonstration of a correlated crash risk modelling framework that addresses issues related to the suitable traffic conflict measures, time varying risks (non-stationarity), heterogeneity, and injury severity levels of different crash types.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100331"},"PeriodicalIF":12.9,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213665724000150/pdfft?md5=6bc905ca260e0b524a0447807f24d14f&pid=1-s2.0-S2213665724000150-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An error components mixed logit with heterogeneity in means and variance for fixed object occupant severity outcomes 固定物体乘员严重程度结果均值和方差异质性的误差成分混合 Logit
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-03-19 DOI: 10.1016/j.amar.2024.100330
Rohan Shrestha, Lan Ventura, Narayan Venkataraman, Venkataraman Shankar

This paper presents an error components mixed logit with heterogeneity in means and variance to capture the heterogeneous effects of contributing factors on fixed object occupant severity. One year (2021) of crash data on fixed object related crashes in Lubbock County, Texas was analyzed with fixed object details extracted from crash narratives and classified into 11 groupings. Crash data included any fixed object collision occurring at any point in the sequence of crash events (not exclusive to the first harmful event). The random parameters were identified as indicators for occupant involvement in the first harmful crash sequence event, with that event being collision with a fixed object, for possible injury and injury severity outcomes. Heterogeneity in the means of these random parameters was found with respect to six different indicator variables. Additionally, heterogeneity in the variance of the injury random parameter was found with respect to two different indicator variables. Inclusion of two error component nests improved prediction accuracy at the observation level for higher severity outcomes. The findings in this study suggest that fixed object classification types should be explored further in relation to heterogeneous effects on occupant severity outcomes. Furthermore, the findings also highlight the applicability of an error components mixed logit model for severity analysis.

本文提出了一种具有均值和方差异质性的误差成分混合对数,以捕捉导致因素对固定物体乘员严重性的异质性影响。本文分析了德克萨斯州拉伯克县一年(2021 年)与固定物体相关的碰撞数据,从碰撞叙述中提取了固定物体的详细信息,并将其分为 11 组。碰撞数据包括在碰撞事件序列中任何一点发生的任何固定物体碰撞(不包括第一个有害事件)。随机参数被确定为乘员参与第一个有害碰撞序列事件的指标,该事件为与固定物体碰撞,可能造成伤害和伤害严重程度的结果。在六个不同的指标变量中,这些随机参数的平均值存在异质性。此外,还发现受伤随机参数的方差与两个不同的指标变量存在异质性。对于严重程度较高的结果,纳入两个误差分量嵌套提高了观测水平上的预测准确性。本研究的结果表明,应进一步探讨固定物体分类类型对乘员严重程度结果的异质性影响。此外,研究结果还强调了误差成分混合 Logit 模型在严重性分析中的适用性。
{"title":"An error components mixed logit with heterogeneity in means and variance for fixed object occupant severity outcomes","authors":"Rohan Shrestha,&nbsp;Lan Ventura,&nbsp;Narayan Venkataraman,&nbsp;Venkataraman Shankar","doi":"10.1016/j.amar.2024.100330","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100330","url":null,"abstract":"<div><p>This paper presents an error components mixed logit with heterogeneity in means and variance to capture the heterogeneous effects of contributing factors on fixed object occupant severity. One year (2021) of crash data on fixed object related crashes in Lubbock County, Texas was analyzed with fixed object details extracted from crash narratives and classified into 11 groupings. Crash data included any fixed object collision occurring at any point in the sequence of crash events (not exclusive to the first harmful event). The random parameters were identified as indicators for occupant involvement in the first harmful crash sequence event, with that event being collision with a fixed object, for possible injury and injury severity outcomes. Heterogeneity in the means of these random parameters was found with respect to six different indicator variables. Additionally, heterogeneity in the variance of the injury random parameter was found with respect to two different indicator variables. Inclusion of two error component nests improved prediction accuracy at the observation level for higher severity outcomes. The findings in this study suggest that fixed object classification types should be explored further in relation to heterogeneous effects on occupant severity outcomes. Furthermore, the findings also highlight the applicability of an error components mixed logit model for severity analysis.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100330"},"PeriodicalIF":12.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated multi-resolution framework for jointly estimating crash type and crash severity 联合估算碰撞类型和碰撞严重程度的多分辨率综合框架
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-03-15 DOI: 10.1016/j.amar.2024.100321
Shahrior Pervaz , Tanmoy Bhowmik , Naveen Eluru

The current research effort contributes to safety literature by developing an integrated framework that allows for the influence of independent variables from crash type and severity components at the disaggregate level to be incorporated within the aggregate level propensity to estimate crash frequency by crash type and severity. The empirical analysis is based on the crash data drawn from the city of Orlando, Florida for the year 2019. The disaggregate level analysis uses 15,518 crash records of three crash types including rear end, angular and sideswipe. Each crash record contains crash specific factors, driver and vehicle factors, roadway attributes, road environmental and weather information. For aggregate level model analysis, the study aggregates the crash records by crash type over 300 traffic analysis zones. An exhaustive set of independent variables including roadway and traffic characteristics, land-use attributes, built environment and sociodemographic factors are considered in this level. The empirical analysis is further augmented by employing several goodness of fit and predictive measures. A validation exercise is also conducted using a holdout sample to highlight the superiority of the proposed integrated model relative to the non-integrated model system. The proposed framework can also incorporate unobserved heterogeneity in the model system. The findings of the study indicate that the proposed framework is advantageous for capturing the variable effects simultaneously across the aggregate and disaggregate levels.

当前的研究工作为安全文献做出了贡献,它开发了一个综合框架,允许将碰撞类型和严重程度组成部分的自变量在分类层面的影响纳入总体层面的倾向性中,从而按碰撞类型和严重程度估算碰撞频率。实证分析基于佛罗里达州奥兰多市 2019 年的碰撞数据。分类分析使用了 15,518 条碰撞记录,包括追尾、角度和侧擦三种碰撞类型。每条碰撞记录都包含碰撞特定因素、驾驶员和车辆因素、道路属性、道路环境和天气信息。为了进行总体模型分析,该研究按碰撞类型汇总了 300 个交通分析区的碰撞记录。在这一层面,考虑了一套详尽的自变量,包括道路和交通特征、土地使用属性、建筑环境和社会人口因素。通过采用多种拟合度和预测性测量方法,进一步加强了实证分析。此外,还利用保留样本进行了验证,以突出所提议的综合模型相对于非综合模型系统的优越性。拟议框架还可将未观察到的异质性纳入模型系统。研究结果表明,拟议框架在同时捕捉总体和分类层面的变量效应方面具有优势。
{"title":"An integrated multi-resolution framework for jointly estimating crash type and crash severity","authors":"Shahrior Pervaz ,&nbsp;Tanmoy Bhowmik ,&nbsp;Naveen Eluru","doi":"10.1016/j.amar.2024.100321","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100321","url":null,"abstract":"<div><p>The current research effort contributes to safety literature by developing an integrated framework that allows for the influence of independent variables from crash type and severity components at the disaggregate level to be incorporated within the aggregate level propensity to estimate crash frequency by crash type and severity. The empirical analysis is based on the crash data drawn from the city of Orlando, Florida for the year 2019. The disaggregate level analysis uses 15,518 crash records of three crash types including rear end, angular and sideswipe. Each crash record contains crash specific factors, driver and vehicle factors, roadway attributes, road environmental and weather information. For aggregate level model analysis, the study aggregates the crash records by crash type over 300 traffic analysis zones. An exhaustive set of independent variables including roadway and traffic characteristics, land-use attributes, built environment and sociodemographic factors are considered in this level. The empirical analysis is further augmented by employing several goodness of fit and predictive measures. A validation exercise is also conducted using a holdout sample to highlight the superiority of the proposed integrated model relative to the non-integrated model system. The proposed framework can also incorporate unobserved heterogeneity in the model system. The findings of the study indicate that the proposed framework is advantageous for capturing the variable effects simultaneously across the aggregate and disaggregate levels.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100321"},"PeriodicalIF":12.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing non-motorist safety in motor vehicle crashes – a copula-based approach to jointly estimate crash location type and injury severity 评估机动车碰撞事故中的非机动车驾驶员安全--基于共轭的方法,共同估算碰撞地点类型和伤害严重程度
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-03-13 DOI: 10.1016/j.amar.2024.100322
Robert Marcoux, Shahrior Pervaz, Naveen Eluru

Non-motorist injury severity can be affected by various observed and unobserved attributes related to the crash location type (segment or intersection). Recognizing the distinct non-motorist injury severity profiles by crash location type, we propose a joint modeling framework to study crash location type and non-motorist injury severity as two dimensions of the severity process. We employ a copula-based joint framework that ties the crash location type (represented as a binary logit model) and injury severity (represented as a generalized ordered logit model) through a closed form flexible dependency structure to study the injury severity process. The proposed approach also accommodates the potential heterogeneity (across non-motorists) in the dependency structure. The data for our analysis is drawn from the Central Florida region for the years of 2015 to 2021. The model system explicitly accounts for temporal heterogeneity across the two dimensions. A comprehensive set of independent variables including non-motorist user characteristics, driver and vehicle characteristics, roadway attributes, weather and environmental factors, temporal and socio-demographic factors are considered for the analysis. We also conducted an elasticity analysis to show the actual magnitude of the independent variables on non-motorist injury severity for the two locations. The results highlight the importance of examining the effect of various independent variables on non-motorist injury severity outcome by crash location type.

非机动车驾驶员受伤严重程度会受到与碰撞地点类型(路段或交叉路口)相关的各种观察到的和未观察到的属性的影响。考虑到碰撞地点类型对非机动车驾驶员伤害严重程度的不同影响,我们提出了一个联合建模框架,将碰撞地点类型和非机动车驾驶员伤害严重程度作为严重程度过程的两个维度进行研究。我们采用基于 copula 的联合框架,通过封闭式灵活依赖结构将碰撞地点类型(表示为二元 logit 模型)和伤害严重程度(表示为广义有序 logit 模型)联系起来,以研究伤害严重程度过程。所提出的方法还考虑到了依赖结构中潜在的异质性(非机动车驾驶员之间)。我们分析的数据来自佛罗里达州中部地区,时间为 2015 年至 2021 年。模型系统明确考虑了两个维度的时间异质性。分析中考虑了一整套自变量,包括非机动车用户特征、驾驶员和车辆特征、道路属性、天气和环境因素、时间和社会人口因素。我们还进行了弹性分析,以显示自变量对两地非机动车伤害严重程度的实际影响程度。结果突出表明,按碰撞地点类型研究各种自变量对非机动车驾驶员受伤严重程度结果的影响非常重要。
{"title":"Assessing non-motorist safety in motor vehicle crashes – a copula-based approach to jointly estimate crash location type and injury severity","authors":"Robert Marcoux,&nbsp;Shahrior Pervaz,&nbsp;Naveen Eluru","doi":"10.1016/j.amar.2024.100322","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100322","url":null,"abstract":"<div><p>Non-motorist injury severity can be affected by various observed and unobserved attributes related to the crash location type (segment or intersection). Recognizing the distinct non-motorist injury severity profiles by crash location type, we propose a joint modeling framework to study crash location type and non-motorist injury severity as two dimensions of the severity process. We employ a copula-based joint framework that ties the crash location type (represented as a binary logit model) and injury severity (represented as a generalized ordered logit model) through a closed form flexible dependency structure to study the injury severity process. The proposed approach also accommodates the potential heterogeneity (across non-motorists) in the dependency structure. The data for our analysis is drawn from the Central Florida region for the years of 2015 to 2021. The model system explicitly accounts for temporal heterogeneity across the two dimensions. A comprehensive set of independent variables including non-motorist user characteristics, driver and vehicle characteristics, roadway attributes, weather and environmental factors, temporal and socio-demographic factors are considered for the analysis. We also conducted an elasticity analysis to show the actual magnitude of the independent variables on non-motorist injury severity for the two locations. The results highlight the importance of examining the effect of various independent variables on non-motorist injury severity outcome by crash location type.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100322"},"PeriodicalIF":12.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of speed difference on injury severity of freeway rear-end crashes: Insights from correlated joint random parameters bivariate probit models and temporal instability 速度差对高速公路追尾事故伤害严重程度的影响:相关联合随机参数双变量概率模型和时间不稳定性的启示
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-02-27 DOI: 10.1016/j.amar.2024.100320
Chenzhu Wang, Mohamed Abdel-Aty, Lei Han

Rear-end crashes particularly on freeways are the most frequent type of collisions causing many injuries, damage and congestion. This paper investigates the impact of varying speed differences between following and leading vehicles on injury severity in two-vehicle rear-end crashes. It develops three groups of correlated joint random parameters bivariate probit models with heterogeneity in means. The rear-end crash data from 2019 to 2021 on Interstate freeways in Florida are utilized, and categorized into periods before, during, and after the COVID-19 pandemic. The study considers two potential injury severity outcomes: no injury and injury/fatality, for both drivers involved in these crashes. The findings indicate that a range of variables, including driver, vehicle, roadway, environmental, crash, and temporal attributes, significantly influence the injury severity outcomes for drivers in both following and leading vehicles. Demonstrating superior goodness-of-fit, the proposed approach sheds light on interactive unobserved heterogeneity, captured through heterogeneity in means and significant correlations among random parameters. The study observes critical influences on the injury severity outcomes of both drivers, with significant factors such as gender, age, vehicle type, weather conditions, lighting, and time of day. Furthermore, the results substantiate the heightened risk outcomes associated with greater speed differences and the period of the COVID-19 pandemic. These findings yield further insights into the risk mechanisms of two-vehicle rear-end crashes and offer guidance for the development of effective safety countermeasures.

追尾碰撞事故,尤其是高速公路上的追尾碰撞事故,是最常见的碰撞类型,会造成大量人员伤亡、财产损失和交通拥堵。本文研究了在两车追尾碰撞中,跟车和前车之间不同的速度差异对伤害严重程度的影响。本文建立了三组具有均值异质性的相关联合随机参数双变量 probit 模型。研究利用了 2019 年至 2021 年佛罗里达州州际高速公路上的追尾碰撞数据,并将其分为 COVID-19 大流行之前、期间和之后三个时期。研究考虑了两种潜在的伤害严重性结果:无伤害和伤害/死亡,涉及这些碰撞的两名驾驶员。研究结果表明,包括驾驶员、车辆、道路、环境、碰撞和时间属性在内的一系列变量对跟车和领车驾驶员的受伤严重程度结果都有显著影响。所提出的方法显示出卓越的拟合优度,通过均值的异质性和随机参数之间的显著相关性,揭示了未观察到的交互异质性。研究发现,性别、年龄、车辆类型、天气条件、照明和时间等重要因素对双方驾驶员的受伤严重程度结果都有关键影响。此外,研究结果还证实了与更大的速度差异和 COVID-19 大流行时期相关的更高风险结果。这些发现进一步揭示了两车追尾碰撞的风险机制,并为制定有效的安全对策提供了指导。
{"title":"Effects of speed difference on injury severity of freeway rear-end crashes: Insights from correlated joint random parameters bivariate probit models and temporal instability","authors":"Chenzhu Wang,&nbsp;Mohamed Abdel-Aty,&nbsp;Lei Han","doi":"10.1016/j.amar.2024.100320","DOIUrl":"https://doi.org/10.1016/j.amar.2024.100320","url":null,"abstract":"<div><p>Rear-end crashes particularly on freeways are the most frequent type of collisions causing many injuries, damage and congestion. This paper investigates the impact of varying speed differences between following and leading vehicles on injury severity in two-vehicle rear-end crashes. It develops three groups of correlated joint random parameters bivariate probit models with heterogeneity in means. The rear-end crash data from 2019 to 2021 on Interstate freeways in Florida are utilized, and categorized into periods before, during, and after the COVID-19 pandemic. The study considers two potential injury severity outcomes: no injury and injury/fatality, for both drivers involved in these crashes. The findings indicate that a range of variables, including driver, vehicle, roadway, environmental, crash, and temporal attributes, significantly influence the injury severity outcomes for drivers in both following and leading vehicles. Demonstrating superior goodness-of-fit, the proposed approach sheds light on interactive unobserved heterogeneity, captured through heterogeneity in means and significant correlations among random parameters. The study observes critical influences on the injury severity outcomes of both drivers, with significant factors such as gender, age, vehicle type, weather conditions, lighting, and time of day. Furthermore, the results substantiate the heightened risk outcomes associated with greater speed differences and the period of the COVID-19 pandemic. These findings yield further insights into the risk mechanisms of two-vehicle rear-end crashes and offer guidance for the development of effective safety countermeasures.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100320"},"PeriodicalIF":12.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel integrated approach to modeling and predicting crash frequency by crash event state 按碰撞事件状态模拟和预测碰撞频率的新型综合方法
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-02-13 DOI: 10.1016/j.amar.2024.100319
Angela Haddad , Aupal Mondal , Naveen Eluru , Chandra R. Bhat

In this study, we propose a novel integrated parametric framework for analyzing multivariate crash count data based on linking a univariate count model for the total count of motor vehicle crashes across all possible crash states with a discrete choice model for crash event state given a crash. In doing so, we are able to use information at the disaggregate crash-level from an unordered model structure in analyzing the aggregate level crash count. To our knowledge, this is the first such model proposed in the econometric literature. We apply this approach in a demonstration exercise to examine the number of motor vehicle crashes in Census Block Groups (CBGs) in Austin, Texas, considering four injury severity levels. At the disaggregate level, we incorporate several explanatory variables such as the characteristics of the most severely injured individual and at-fault vehicle’s parties, crash time variables (time of day, weather), crash location variables, and CBG level variables. At the aggregate level, we consider CBG level variables, including road design factors, land-use variables, crash exposure factors, aggregate sociodemographic attributes, and crime and traffic violations related measures. Importantly, our results indicate a significant and positive linkage between the disaggregate crash event state dimensions and the total crash count. Through the use of elasticity measures, our results also clearly highlight the improved policy sensitivity of the integrated model framework.

在本研究中,我们提出了一种用于分析多变量碰撞计数数据的新型综合参数框架,该框架将所有可能碰撞状态下机动车碰撞总计数的单变量计数模型与给定碰撞的碰撞事件状态离散选择模型联系起来。这样,我们就能利用无序模型结构中的分类碰撞级别信息来分析总体级别的碰撞次数。据我们所知,这是计量经济学文献中首次提出的此类模型。我们将这种方法应用于德克萨斯州奥斯汀市人口普查区块组(CBGs)的机动车碰撞事故数量的示范研究中,并考虑了四种伤害严重程度。在分类水平上,我们纳入了几个解释变量,如受伤最严重的个人和肇事车辆各方的特征、撞车时间变量(一天中的时间、天气)、撞车地点变量和 CBG 水平变量。在总体水平上,我们考虑了 CBG 水平变量,包括道路设计因素、土地使用变量、碰撞风险因素、总体社会人口属性以及与犯罪和交通违章相关的措施。重要的是,我们的研究结果表明,分类碰撞事件状态维度与碰撞总数之间存在显著的正向联系。通过使用弹性指标,我们的结果还清楚地凸显了综合模型框架对政策敏感性的提高。
{"title":"A novel integrated approach to modeling and predicting crash frequency by crash event state","authors":"Angela Haddad ,&nbsp;Aupal Mondal ,&nbsp;Naveen Eluru ,&nbsp;Chandra R. Bhat","doi":"10.1016/j.amar.2024.100319","DOIUrl":"10.1016/j.amar.2024.100319","url":null,"abstract":"<div><p>In this study, we propose a novel integrated parametric framework for analyzing multivariate crash count data based on linking a univariate count model for the total count of motor vehicle crashes across all possible crash states with a discrete choice model for crash event state given a crash. In doing so, we are able to use information at the disaggregate crash-level from an unordered model structure in analyzing the aggregate level crash count. To our knowledge, this is the first such model proposed in the econometric literature. We apply this approach in a demonstration exercise to examine the number of motor vehicle crashes in Census Block Groups (CBGs) in Austin, Texas, considering four injury severity levels. At the disaggregate level, we incorporate several explanatory variables such as the characteristics of the most severely injured individual and at-fault vehicle’s parties, crash time variables (time of day, weather), crash location variables, and CBG level variables. At the aggregate level, we consider CBG level variables, including road design factors, land-use variables, crash exposure factors, aggregate sociodemographic attributes, and crime and traffic violations related measures. Importantly, our results indicate a significant and positive linkage between the disaggregate crash event state dimensions and the total crash count. Through the use of elasticity measures, our results also clearly highlight the improved policy sensitivity of the integrated model framework.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"41 ","pages":"Article 100319"},"PeriodicalIF":12.9,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213665724000034/pdfft?md5=3dc98bb8dced6fd4dab9a0b82b2486e1&pid=1-s2.0-S2213665724000034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the effect of proximity to school on cyclist safety using a simultaneous-equations model with heterogeneity in covariance to address potential endogeneity 利用具有协方差异质性的同期方程模型估算学校距离对骑车人安全的影响,以解决潜在的内生性问题
IF 12.9 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-02-01 DOI: 10.1016/j.amar.2024.100318
Shahram Heydari, Michael Forrest

Traffic safety around schools is a major concern for policy makers and as such safety interventions are often targeted near schools. This paper shows the importance of accounting for the potential endogeneity of proximity to school when attempting to estimate its impact on traffic safety. In this research, we use a Bayesian simultaneous econometric approach with heterogeneity in covariance to disentangle the true effect of proximity to school on cyclist injury frequencies at signalised intersections in an urban setting. We assess the robustness of the bivariate normal assumption, using a scale mixing approach. Notably, we found that proximity to school was associated with an increase in cyclist injuries and this association was stronger when endogeneity was accounted for in the model, confirming the importance of considering endogeneity in studies of traffic safety near schools. Our heterogeneity in covariance specification revealed systematic variations in the covariance structure, which would otherwise go unobserved, providing further insights into sources of heterogeneity with the same set of variables available in the data. A safety-in-numbers effect is also found for cyclists in the study area and period. This research offers policy implications based on the findings of the analysis including the need for safety interventions at intersections with high vehicle turning counts and those in proximity to public transport stops, and better informing decision-makers regarding the magnitude of the impact of proximity to school on cyclist safety at intersections.

学校周边的交通安全是政策制定者关注的主要问题,因此安全干预措施通常针对学校附近。本文表明,在试图估计学校附近对交通安全的影响时,考虑学校附近的潜在内生性非常重要。在这项研究中,我们采用贝叶斯同步计量经济学方法,利用协方差中的异质性,在城市环境中的信号灯控制交叉路口分离出学校距离对骑车人受伤频率的真实影响。我们使用规模混合法评估了双变量正态假设的稳健性。值得注意的是,我们发现靠近学校与骑车人受伤的增加有关,如果在模型中考虑内生性因素,这种关联性会更强,这证实了在学校附近的交通安全研究中考虑内生性因素的重要性。我们的异质性协方差规范揭示了协方差结构中的系统性变化,否则这些变化就会被忽略,从而进一步揭示了数据中相同变量的异质性来源。在研究地区和研究时期,还发现了骑自行车者的数字安全效应。本研究根据分析结果提出了政策启示,包括需要在车辆转弯次数多的交叉路口和靠近公共交通站点的交叉路口采取安全干预措施,以及让决策者更好地了解靠近学校对交叉路口骑自行车者安全的影响程度。
{"title":"Estimating the effect of proximity to school on cyclist safety using a simultaneous-equations model with heterogeneity in covariance to address potential endogeneity","authors":"Shahram Heydari,&nbsp;Michael Forrest","doi":"10.1016/j.amar.2024.100318","DOIUrl":"10.1016/j.amar.2024.100318","url":null,"abstract":"<div><p>Traffic safety around schools is a major concern for policy makers and as such safety interventions are often targeted near schools. This paper shows the importance of accounting for the potential endogeneity of proximity to school when attempting to estimate its impact on traffic safety. In this research, we use a Bayesian simultaneous econometric approach with heterogeneity in covariance to disentangle the true effect of proximity to school on cyclist injury frequencies at signalised intersections in an urban setting. We assess the robustness of the bivariate normal assumption, using a scale mixing approach. Notably, we found that proximity to school was associated with an increase in cyclist injuries and this association was stronger when endogeneity was accounted for in the model, confirming the importance of considering endogeneity in studies of traffic safety near schools. Our heterogeneity in covariance specification revealed systematic variations in the covariance structure, which would otherwise go unobserved, providing further insights into sources of heterogeneity with the same set of variables available in the data. A safety-in-numbers effect is also found for cyclists in the study area and period. This research offers policy implications based on the findings of the analysis including the need for safety interventions at intersections with high vehicle turning counts and those in proximity to public transport stops, and better informing decision-makers regarding the magnitude of the impact of proximity to school on cyclist safety at intersections.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"41 ","pages":"Article 100318"},"PeriodicalIF":12.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213665724000022/pdfft?md5=b9f11e4f15aeb626452e0d2feeba9602&pid=1-s2.0-S2213665724000022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Prospective Study on the Anatomical Variations of the Frontal Recess and its Association with Computer Tomographic Signs of Sinusitis. 额部凹陷的解剖变异及其与鼻窦炎计算机断层扫描体征的关系的前瞻性研究。
IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-02-01 Epub Date: 2023-09-01 DOI: 10.1007/s12070-023-04193-3
Snigdha Girish Koliyote, Rohit Singh, Neethu Mary Mathew, Prakashini K

The frontal recess region has a complex anatomy and HRCT scans of the paranasal sinuses (PNS) are the gold standard in evaluating it. Classification systems have been established to identify the frontal recess cells. The objectives of this study are to describe the incidence of anatomical variations, classify the anatomy of the frontal recess using the IFAC & Kuhn's classification systems, find the association between the anatomical variations and the incidence of CT signs of sinusitis. A prospective study of patients undergoing HRCT-PNS was carried out. The frontal recess region was evaluated and classified as per both classification systems. The prevalence of each frontal cell was identified; presence of CT signs of sinusitis was noted and the correlation between the two was evaluated. 272 sides of HRCT scans were evaluated. Prevalence of cells as per IFAC classification showed ANC - 98.2%, SAC-43.4%, SBC-33.1%, SAFC- 28.3%, FSC -25%, SBFC- 3.7% and SOEC- 2.2%. Prevalence of cells as per Kuhn's classification showed ANC - 98.2%, Type 1- 38.2%, SBC-32.7%, FSC -24.3%, Type 3- 16.9%, Type 2- 12.9%, Type 4- 4.8%, FBC- 2.6% and SOEC-2.2%. Sinusitis was seen in 27.2% cases. A significant association was noted between the presence of SOEC, FSC and sinusitis as per both classification systems. (P=0.049 and P<0.001 respectively). In conclusion the cells which lead to an anteriorly based drainage pathway are more common, but the presence of posteriorly based SOEC and medially based FSC have a higher association with sinusitis.

额凹区的解剖结构复杂,副鼻窦(PNS)的 HRCT 扫描是评估额凹区的金标准。目前已建立了识别额凹细胞的分类系统。本研究的目的是描述解剖变异的发生率,使用 IFAC 和 Kuhn 的分类系统对额凹的解剖进行分类,找出解剖变异与鼻窦炎 CT 征兆发生率之间的关联。对接受 HRCT-PNS 的患者进行了前瞻性研究。根据两种分类系统对额凹区域进行了评估和分类。确定了每个额叶细胞的患病率;注意到了鼻窦炎的 CT 征兆,并评估了两者之间的相关性。对 272 面 HRCT 扫描图像进行了评估。根据 IFAC 分类,ANC-98.2%,SAC-43.4%,SBC-33.1%,SAFC-28.3%,FSC-25%,SBFC-3.7%,SOEC-2.2%。根据库恩细胞分类法,ANC-98.2%,1-型38.2%,SBC-32.7%,FSC-24.3%,3-型16.9%,2-型12.9%,4-型4.8%,FBC-2.6%,SOEC-2.2%。27.2%的病例患有鼻窦炎。根据两种分类系统,SOEC、FSC 和鼻窦炎之间存在明显的关联。(P=0.049 和 P
{"title":"A Prospective Study on the Anatomical Variations of the Frontal Recess and its Association with Computer Tomographic Signs of Sinusitis.","authors":"Snigdha Girish Koliyote, Rohit Singh, Neethu Mary Mathew, Prakashini K","doi":"10.1007/s12070-023-04193-3","DOIUrl":"10.1007/s12070-023-04193-3","url":null,"abstract":"<p><p>The frontal recess region has a complex anatomy and HRCT scans of the paranasal sinuses (PNS) are the gold standard in evaluating it. Classification systems have been established to identify the frontal recess cells. The objectives of this study are to describe the incidence of anatomical variations, classify the anatomy of the frontal recess using the IFAC & Kuhn's classification systems, find the association between the anatomical variations and the incidence of CT signs of sinusitis. A prospective study of patients undergoing HRCT-PNS was carried out. The frontal recess region was evaluated and classified as per both classification systems. The prevalence of each frontal cell was identified; presence of CT signs of sinusitis was noted and the correlation between the two was evaluated. 272 sides of HRCT scans were evaluated. Prevalence of cells as per IFAC classification showed ANC - 98.2%, SAC-43.4%, SBC-33.1%, SAFC- 28.3%, FSC -25%, SBFC- 3.7% and SOEC- 2.2%. Prevalence of cells as per Kuhn's classification showed ANC - 98.2%, Type 1- 38.2%, SBC-32.7%, FSC -24.3%, Type 3- 16.9%, Type 2- 12.9%, Type 4- 4.8%, FBC- 2.6% and SOEC-2.2%. Sinusitis was seen in 27.2% cases. A significant association was noted between the presence of SOEC, FSC and sinusitis as per both classification systems. (P=0.049 and P<0.001 respectively). In conclusion the cells which lead to an anteriorly based drainage pathway are more common, but the presence of posteriorly based SOEC and medially based FSC have a higher association with sinusitis.</p>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"32 1","pages":"495-502"},"PeriodicalIF":12.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75295074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Analytic Methods in Accident Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1