This paper presents a numerical study of thermoacoustic heat pumping along a stack of solid plates placed inside a compact cavity submitted to an oscillating flow. Velocity and pressure fields are controlled by two acoustic sources: a main “pressure” source monitoring the fluid compression and expansion phases, and a secondary “velocity” source generating the oscillating fluid motion. Numerical simulations are performed with an “in-house” code solving Navier–Stokes equations under a Low Mach number approximation in a two-dimensional geometry. In the linear regime, thermoacoustic heat pumping is correctly described with this model for different sets of parameters such as thermo-physical properties of the stack plates, amplitude of pressure oscillation or of the velocity source, phase shift between both sources. Numerical results on the normalized temperature difference established between the ends of stack plates are in excellent agreement with analytical estimates and experimental results published in the literature. Several configurations corresponding to different thermal conditions applied on the outside wall and an inside separation plate are then considered. If the separation plate is adiabatic, temperature varies linearly along the stack, recovering classical linear theory’s results. If the separation plate is thermally conductive, the model, providing detailed description of local heat and mass transfer, shows that the temperature field becomes fully two-dimensional and thermoacoustic heat pumping is less efficient. The model is well adapted to explore the influence of local heat transfer constraints on the heat pump efficiency and thus well suited for detailed analyses of more complex mechanisms such as buoyancy effects.
{"title":"A numerical model of thermoacoustic heat pumping inside a compact cavity","authors":"Y. Fraigneau, C. Weisman, D. Baltean-Carlès","doi":"10.1051/aacus/2023008","DOIUrl":"https://doi.org/10.1051/aacus/2023008","url":null,"abstract":"This paper presents a numerical study of thermoacoustic heat pumping along a stack of solid plates placed inside a compact cavity submitted to an oscillating flow. Velocity and pressure fields are controlled by two acoustic sources: a main “pressure” source monitoring the fluid compression and expansion phases, and a secondary “velocity” source generating the oscillating fluid motion. Numerical simulations are performed with an “in-house” code solving Navier–Stokes equations under a Low Mach number approximation in a two-dimensional geometry. In the linear regime, thermoacoustic heat pumping is correctly described with this model for different sets of parameters such as thermo-physical properties of the stack plates, amplitude of pressure oscillation or of the velocity source, phase shift between both sources. Numerical results on the normalized temperature difference established between the ends of stack plates are in excellent agreement with analytical estimates and experimental results published in the literature. Several configurations corresponding to different thermal conditions applied on the outside wall and an inside separation plate are then considered. If the separation plate is adiabatic, temperature varies linearly along the stack, recovering classical linear theory’s results. If the separation plate is thermally conductive, the model, providing detailed description of local heat and mass transfer, shows that the temperature field becomes fully two-dimensional and thermoacoustic heat pumping is less efficient. The model is well adapted to explore the influence of local heat transfer constraints on the heat pump efficiency and thus well suited for detailed analyses of more complex mechanisms such as buoyancy effects.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"6 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79578756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For augmented reality experiences, users wear head-mounted displays (HMD) while listening to real and virtual sound sources. This paper assesses the impact of wearing an HMD on localization accuracy of real sources. Eighteen blindfolded participants completed a localization task on 32 loudspeakers while wearing either no HMD, a bulky visor HMD, or a glass visor HMD. Results demonstrate that the HMDs had a significantly impact on participants’ localization performance, increasing local great circle angle error by 0.9°, and that the glass visor HMD demonstrably increased the rate of up–down confusions in the responses by 0.9–1.1%. These results suggest that wearing an HMD has a sufficiently small impact on real source localization that it can safely be considered as an HMD-free condition in most but the most demanding AR auditory localization studies.
{"title":"Impact of wearing a head-mounted display on localization accuracy of real sound sources","authors":"David Poirier-Quinot, Martin S. Lawless","doi":"10.1051/aacus/2022055","DOIUrl":"https://doi.org/10.1051/aacus/2022055","url":null,"abstract":"For augmented reality experiences, users wear head-mounted displays (HMD) while listening to real and virtual sound sources. This paper assesses the impact of wearing an HMD on localization accuracy of real sources. Eighteen blindfolded participants completed a localization task on 32 loudspeakers while wearing either no HMD, a bulky visor HMD, or a glass visor HMD. Results demonstrate that the HMDs had a significantly impact on participants’ localization performance, increasing local great circle angle error by 0.9°, and that the glass visor HMD demonstrably increased the rate of up–down confusions in the responses by 0.9–1.1%. These results suggest that wearing an HMD has a sufficiently small impact on real source localization that it can safely be considered as an HMD-free condition in most but the most demanding AR auditory localization studies.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"117 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73305858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to gain a better understanding of wideband acoustic immitance (WAI) measurements, in this second part of a two-part paper, the parametric electro-acoustic model of the ear canal and the middle ear of young infants proposed in the first part is extended. The extension allows predictions of the influence of the pathological middle ear conditions middle ear effusion and negative static air pressure difference between the middle ear and the ear canal. Comparisons of the acoustic input impedance of the ear predicted by the model with real ear measurements in young infants’ ears with middle ear effusion show that the effects due to the pathology can be predicted well. For the negative static air pressure, a modeling approach was proposed but could not be confirmed yet, due to a lack of available measurement data. Furthermore, comparisons between different middle ear states (healthy, middle ear effusion and static air pressure difference) predicted by the model showed characteristic differences in all relevant WAI measures. However, it is also shown that WAI measures requiring an estimate of the cross-sectional area at the measurement position, i.e., absorbance and reflectance, are highly sensitive to this estimate.
{"title":"Parametric model of young infants’ eardrum and ear canal impedances supporting immittance measurement results. Part II: Prediction of eardrum and ear canal impedances for frequent pathological middle ear conditions","authors":"T. Sankowsky-Rothe, S. van de Par, Matthias Blau","doi":"10.1051/aacus/2023017","DOIUrl":"https://doi.org/10.1051/aacus/2023017","url":null,"abstract":"In order to gain a better understanding of wideband acoustic immitance (WAI) measurements, in this second part of a two-part paper, the parametric electro-acoustic model of the ear canal and the middle ear of young infants proposed in the first part is extended. The extension allows predictions of the influence of the pathological middle ear conditions middle ear effusion and negative static air pressure difference between the middle ear and the ear canal. Comparisons of the acoustic input impedance of the ear predicted by the model with real ear measurements in young infants’ ears with middle ear effusion show that the effects due to the pathology can be predicted well. For the negative static air pressure, a modeling approach was proposed but could not be confirmed yet, due to a lack of available measurement data. Furthermore, comparisons between different middle ear states (healthy, middle ear effusion and static air pressure difference) predicted by the model showed characteristic differences in all relevant WAI measures. However, it is also shown that WAI measures requiring an estimate of the cross-sectional area at the measurement position, i.e., absorbance and reflectance, are highly sensitive to this estimate.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"46 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81386041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marvin Rust, Christoph Kling, Christian Koch, Richard Barham
With the growing prevalence of infrasound and potential for annoyance comes the need for noise assessment. Performance validation of measuring instruments is an established necessity for reliable measurement data at conventional frequencies. However, infrasound measurements are critically dependent on the integrity of the microphone. A case study is presented showing that errors in excess of 20 dB result if the microphone diaphragm is perforated, and that such a defect cannot be detected by visual examination or with a typical sound calibrator. A further laboratory study validates the findings, and a scheme is proposed for identifying when such an issue exists.
{"title":"Calibration and testing of measurement devices at infrasound frequencies: proof from malfunctioning devices at site","authors":"Marvin Rust, Christoph Kling, Christian Koch, Richard Barham","doi":"10.1051/aacus/2023048","DOIUrl":"https://doi.org/10.1051/aacus/2023048","url":null,"abstract":"With the growing prevalence of infrasound and potential for annoyance comes the need for noise assessment. Performance validation of measuring instruments is an established necessity for reliable measurement data at conventional frequencies. However, infrasound measurements are critically dependent on the integrity of the microphone. A case study is presented showing that errors in excess of 20 dB result if the microphone diaphragm is perforated, and that such a defect cannot be detected by visual examination or with a typical sound calibrator. A further laboratory study validates the findings, and a scheme is proposed for identifying when such an issue exists.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135103844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In times of increasing importance of renewable energies, airborne wind energy (AWE) systems represent an emerging extension to conventional wind turbines. Many AWE systems use powerful kites to provide tether traction to mechanically unwind the tether, generating electricity on the ground. In addition to the traction tether, a large number of kite lines spanning the kite are moved through the air at high speed. This can produce a loud unpleasant whistling noise on the ground, which is due to a superposition of the aeolian tones of the many different lines. In the present work, differently structured kite lines were investigated in the aeroacoustic wind tunnel with respect to their sound radiation when they were exposed to a flow at up to 34 ms−1 resulting in Re ≦ 7300 and angles of attack (AOA) in the range of 90° ≧ AOA ≧ 45°. It was found that greater surface roughness increases sound radiation while line tension has negligible influence. By weaving a single-helix-shaped protrusion into the sheath of the kite line, the total radiated sound pressure level can be reduced by up to 9 dB. If the line itself has a helical contour, even a reduction of up to 11.5 dB is reachable. For decreasing AOA the noise suppression effect of helical surface protrusions and helical line shape is significantly reduced. The results provide initial guidelines on how to effectively reduce sound radiation from aircraft kites. Further investigations should consider the individual contributions of fluid and structural sounds to the total radiated sound of a flying kite.
{"title":"Experimental investigation of flow-induced sound of kite lines","authors":"Lukas Saur, J. Riedel, S. Dunker, S. Becker","doi":"10.1051/aacus/2023027","DOIUrl":"https://doi.org/10.1051/aacus/2023027","url":null,"abstract":"In times of increasing importance of renewable energies, airborne wind energy (AWE) systems represent an emerging extension to conventional wind turbines. Many AWE systems use powerful kites to provide tether traction to mechanically unwind the tether, generating electricity on the ground. In addition to the traction tether, a large number of kite lines spanning the kite are moved through the air at high speed. This can produce a loud unpleasant whistling noise on the ground, which is due to a superposition of the aeolian tones of the many different lines. In the present work, differently structured kite lines were investigated in the aeroacoustic wind tunnel with respect to their sound radiation when they were exposed to a flow at up to 34 ms−1 resulting in Re ≦ 7300 and angles of attack (AOA) in the range of 90° ≧ AOA ≧ 45°. It was found that greater surface roughness increases sound radiation while line tension has negligible influence. By weaving a single-helix-shaped protrusion into the sheath of the kite line, the total radiated sound pressure level can be reduced by up to 9 dB. If the line itself has a helical contour, even a reduction of up to 11.5 dB is reachable. For decreasing AOA the noise suppression effect of helical surface protrusions and helical line shape is significantly reduced. The results provide initial guidelines on how to effectively reduce sound radiation from aircraft kites. Further investigations should consider the individual contributions of fluid and structural sounds to the total radiated sound of a flying kite.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"2 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86154375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Valentin, P. Grandjean, Clément Girin, Philippe-Aubert Gauthier, A. Berry, É. Parizet
This paper investigates the ability of binaural recording and reproduction to be used for measuring the detectability of reversing alarms in laboratory experiments. A complex and repeatible scenario was created using a wave-field synthesis system (WFS), and in-situ recordings in a lime mine. The reproduced sound field was further recorded with a dummy-head. Participants were asked to achieve a visual task (target tracking) while detecting two types of reversing alarms (tonal and broadband), mimicking an approaching vehicle. The experiment was conducted twice : at the center of a WFS array and in a sound-proof booth, using binaural recordings presented with headphones. Results showed that the detection times measured using binaural listening were significantly different from those measured in a fully immersive sound field reproduction. These differences were also greater with tonal sounds compared to broadband sounds. This study shows the limitations of the binaural technique to be used for such applications.
{"title":"Influence of sound spatial reproduction method on the detectability of reversing alarms in laboratory conditions","authors":"O. Valentin, P. Grandjean, Clément Girin, Philippe-Aubert Gauthier, A. Berry, É. Parizet","doi":"10.1051/aacus/2023002","DOIUrl":"https://doi.org/10.1051/aacus/2023002","url":null,"abstract":"This paper investigates the ability of binaural recording and reproduction to be used for measuring the detectability of reversing alarms in laboratory experiments. A complex and repeatible scenario was created using a wave-field synthesis system (WFS), and in-situ recordings in a lime mine. The reproduced sound field was further recorded with a dummy-head. Participants were asked to achieve a visual task (target tracking) while detecting two types of reversing alarms (tonal and broadband), mimicking an approaching vehicle. The experiment was conducted twice : at the center of a WFS array and in a sound-proof booth, using binaural recordings presented with headphones. Results showed that the detection times measured using binaural listening were significantly different from those measured in a fully immersive sound field reproduction. These differences were also greater with tonal sounds compared to broadband sounds. This study shows the limitations of the binaural technique to be used for such applications.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"18 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82491074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sound field radiated by a wind turbine changes significantly with propagation distance, depending on the meteorological conditions and on the type of ground. In this article, we present a wind turbine noise synthesis model which is based on theoretical source and propagation models. The source model is based on Amietâ’s theory for the prediction of the trailing edge noise and the turbulent inflow noise. The trailing edge noise uses the wall pressure spectrum calculated with Leeâ’s model for the suction side and Goodyâ’s model for the pressure side. The Kolmogorov spectrum is used for the prediction of the turbulent inflow noise. To account for the propagation effects associated with atmospheric refraction and ground reflection, a wide angle parabolic equation in inhomogeneous moving medium is considered. The scattering due to the turbulence in the atmosphere is accounted for using the Harmonoise model. The synthesis method is based on the moving monopole model to accurately predict the amplitude modulations at the receiver, and uses cross-fading between overlapping grains to obtain the time signals from the frequency-domain prediction model. Finally, audio signals are provided for a few test cases to emphasize various propagation phenomena associated with wind turbine noise.
{"title":"Propagation effects in the synthesis of wind turbine aerodynamic noise","authors":"David Mascarenhas, B. Cotté, O. Doaré","doi":"10.1051/aacus/2023018","DOIUrl":"https://doi.org/10.1051/aacus/2023018","url":null,"abstract":"The sound field radiated by a wind turbine changes significantly with propagation distance, depending on the meteorological conditions and on the type of ground. In this article, we present a wind turbine noise synthesis model which is based on theoretical source and propagation models. The source model is based on Amietâ’s theory for the prediction of the trailing edge noise and the turbulent inflow noise. The trailing edge noise uses the wall pressure spectrum calculated with Leeâ’s model for the suction side and Goodyâ’s model for the pressure side. The Kolmogorov spectrum is used for the prediction of the turbulent inflow noise. To account for the propagation effects associated with atmospheric refraction and ground reflection, a wide angle parabolic equation in inhomogeneous moving medium is considered. The scattering due to the turbulence in the atmosphere is accounted for using the Harmonoise model. The synthesis method is based on the moving monopole model to accurately predict the amplitude modulations at the receiver, and uses cross-fading between overlapping grains to obtain the time signals from the frequency-domain prediction model. Finally, audio signals are provided for a few test cases to emphasize various propagation phenomena associated with wind turbine noise.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"24 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82536453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper explains and provides code to synthesize and control, in real-time, the audio signals produced by a dynamical system. The code uses only the Matlab programming language. It can be controlled with an external MIDI (Musical Instrument Data Interface) device, such as a MIDI keyboard or wind controller, or with mouse-operated sliders. In addition to the audio output, the demonstrator computes and displays the amplitude and fundamental frequency of the signal, which is useful to quantify the dynamics of the model. For the sake of this example, it is a type of Van der Pol oscillator, but more complex systems can be handled. The demonstrator holds potential for pedagogical and preliminary research applications, for various topics related to dynamical systems: direct and inverse bifurcations, transient effects such as dynamical bifurcations, artifacts introduced by integration schemes, and above all, the dynamics of self-sustained musical instruments.
{"title":"How to build a MATLAB demonstrator solving dynamical systems in real-time, with audio output and MIDI control","authors":"Tom Colinot, Christophe Vergez","doi":"10.1051/aacus/2023055","DOIUrl":"https://doi.org/10.1051/aacus/2023055","url":null,"abstract":"This paper explains and provides code to synthesize and control, in real-time, the audio signals produced by a dynamical system. The code uses only the Matlab programming language. It can be controlled with an external MIDI (Musical Instrument Data Interface) device, such as a MIDI keyboard or wind controller, or with mouse-operated sliders. In addition to the audio output, the demonstrator computes and displays the amplitude and fundamental frequency of the signal, which is useful to quantify the dynamics of the model. For the sake of this example, it is a type of Van der Pol oscillator, but more complex systems can be handled. The demonstrator holds potential for pedagogical and preliminary research applications, for various topics related to dynamical systems: direct and inverse bifurcations, transient effects such as dynamical bifurcations, artifacts introduced by integration schemes, and above all, the dynamics of self-sustained musical instruments.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135703771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hendrik Husstedt, Wiebke Hilgerdenaar, Marlitt Frenz, Florian Denk, Jürgen Tchorz
Short, impulse-like sounds such as slamming of a door or rattle of dishes can be uncomfortable for hearing aid users. Therefore, many hearing aids provide impulse (or transient) noise reduction (INR) that should reduce loud and short sounds without impairing desired signals. In this work, we want to address the question whether hearing aid users require this type of signal processing to experience impulse sounds similarly as normal-hearing listeners. For this purpose, we evaluated INR in six commercially available hearing aids with technical measurements and with test subjects. During the technical evaluation, we presented seven different impulse signals to the hearing aids attached to a head and torso simulator (HATS) and determined the C-weighted peak sound pressure levels ( L C,peak ) at the output in different configurations. For the evaluation with test subjects, the discomfort of the same impulse sounds was rated by 24 hearing-impaired and 20 normal-hearing subjects. All subjects rated the discomfort unaided, and the hearing-impaired subjects also while successively wearing all six hearing aids with and without activated INR. As a main conclusion, hearing aid users without INR did not experience more discomfort compared to normal-hearing listeners for most of the impulse signals tested including the most uncomfortable ones, but INR further reduced experienced discomfort. Moreover, the technical measurements were correlated with the subjective ratings on discomfort.
{"title":"Evaluation of impulse noise reduction in hearing aids with technical measurements and ratings of discomfort","authors":"Hendrik Husstedt, Wiebke Hilgerdenaar, Marlitt Frenz, Florian Denk, Jürgen Tchorz","doi":"10.1051/aacus/2023042","DOIUrl":"https://doi.org/10.1051/aacus/2023042","url":null,"abstract":"Short, impulse-like sounds such as slamming of a door or rattle of dishes can be uncomfortable for hearing aid users. Therefore, many hearing aids provide impulse (or transient) noise reduction (INR) that should reduce loud and short sounds without impairing desired signals. In this work, we want to address the question whether hearing aid users require this type of signal processing to experience impulse sounds similarly as normal-hearing listeners. For this purpose, we evaluated INR in six commercially available hearing aids with technical measurements and with test subjects. During the technical evaluation, we presented seven different impulse signals to the hearing aids attached to a head and torso simulator (HATS) and determined the C-weighted peak sound pressure levels ( L C,peak ) at the output in different configurations. For the evaluation with test subjects, the discomfort of the same impulse sounds was rated by 24 hearing-impaired and 20 normal-hearing subjects. All subjects rated the discomfort unaided, and the hearing-impaired subjects also while successively wearing all six hearing aids with and without activated INR. As a main conclusion, hearing aid users without INR did not experience more discomfort compared to normal-hearing listeners for most of the impulse signals tested including the most uncomfortable ones, but INR further reduced experienced discomfort. Moreover, the technical measurements were correlated with the subjective ratings on discomfort.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136304500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guosong Zhang, Alessandro Cresci, Howard I. Browman
Sources of anthropogenic noise in the ocean have temporal and directional characteristics. Characterizing the soundscape requires identifying the directionality of the sources of noise in addition to the non-directional sound pressure. An underwater acoustic vector sensor (AVS) can be used to provide the directionality of incoming noise, and the concomitant sound pressure. We present an analysis of measurements from an AVS deployed in a Norwegian fjord in which there is frequent commercial ship traffic. We assessed the directionality of various known and unknown noise sources and used it to interpret the associated sound pressure. The fjord soundscape consists of time-varying noise directionality and intensity from anthropogenic sources, especially shipping activity. This case study highlights the benefits of using information from an AVS to assess noise directionality in a soundscape.
{"title":"Determining the directionality of anthropogenic noise using an underwater acoustic vector sensor: a case study in a Norwegian fjord","authors":"Guosong Zhang, Alessandro Cresci, Howard I. Browman","doi":"10.1051/aacus/2023043","DOIUrl":"https://doi.org/10.1051/aacus/2023043","url":null,"abstract":"Sources of anthropogenic noise in the ocean have temporal and directional characteristics. Characterizing the soundscape requires identifying the directionality of the sources of noise in addition to the non-directional sound pressure. An underwater acoustic vector sensor (AVS) can be used to provide the directionality of incoming noise, and the concomitant sound pressure. We present an analysis of measurements from an AVS deployed in a Norwegian fjord in which there is frequent commercial ship traffic. We assessed the directionality of various known and unknown noise sources and used it to interpret the associated sound pressure. The fjord soundscape consists of time-varying noise directionality and intensity from anthropogenic sources, especially shipping activity. This case study highlights the benefits of using information from an AVS to assess noise directionality in a soundscape.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136305052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}