首页 > 最新文献

Journal of Ocean Engineering and Science最新文献

英文 中文
Diving dynamics identification and motion prediction for marine crafts using field data 利用现场数据识别和预测海上船只的潜水动态
IF 13 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2024-08-01 DOI: 10.1016/j.joes.2023.12.001

Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation, optimized operational efficiency, and the advancement of marine exploration. Addressing this, this paper proposes an instrumental variable-based least squares (IVLS) algorithm. Firstly, aiming to balance complexity with accuracy, a decoupled diving model is constructed, incorporating nonlinear actuator characteristics, inertia coefficients, and damping coefficients. Secondly, a discrete parameter identification matrix is designed based on this dedicated model, and then a IVLS algorithm is innovatively derived to reject measurement noise. Furthermore, the stability of the proposed algorithm is validated from a probabilistic point of view, providing a solid theoretical foundation. Finally, performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake, with desired depths of 30 m, 40 m, 50 m, and 60 m. Based on the diving dynamics identification results, the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths, as evidenced by lower average absolute error (AVGAE), root mean square error (RMSE), and maximum absolute error values and higher determination coefficient (R2). Specifically, for desired depth of 60 m, the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m, significantly outperforming LS-SVM with AVGAE and RMSE values of 8.782 m and 11.117 m, respectively. Moreover, the IVLS algorithm demonstrates a remarkable generalization capability with R2 values consistently above 0.95, indicating its robustness in handling varied diving dynamics.

确保准确的参数识别和潜水艇运动预测对安全航行、优化运行效率和推进海洋勘探至关重要。为此,本文提出了一种基于工具变量的最小二乘法(IVLS)算法。首先,为了兼顾复杂性和准确性,本文构建了一个解耦潜水模型,其中包含非线性执行器特性、惯性系数和阻尼系数。其次,基于该专用模型设计了离散参数识别矩阵,然后创新性地推导出一种 IVLS 算法,以剔除测量噪声。此外,还从概率角度验证了所提算法的稳定性,为其提供了坚实的理论基础。最后,利用从千岛湖活塞驱动剖面浮筒上获取的四个深度控制数据集进行了性能评估,期望深度分别为 30 米、40 米、50 米和 60 米。根据潜水动力学识别结果,与递归加权最小二乘法算法和最小二乘支持向量机算法相比,IVLS 算法在所有深度上都表现出更优越的性能,具体表现为更低的平均绝对误差(AVGAE)、均方根误差(RMSE)和最大绝对误差值以及更高的判定系数(R2)。具体而言,对于 60 米的期望深度,IVLS 算法的平均绝对误差(AVGAE)为 0.553 米,均方根误差(RMSE)为 0.655 米,明显优于平均绝对误差(AVGAE)和均方根误差(RMSE)分别为 8.782 米和 11.117 米的 LS-SVM。此外,IVLS 算法还具有出色的泛化能力,R2 值始终高于 0.95,这表明该算法在处理各种潜水动态时具有很强的鲁棒性。
{"title":"Diving dynamics identification and motion prediction for marine crafts using field data","authors":"","doi":"10.1016/j.joes.2023.12.001","DOIUrl":"10.1016/j.joes.2023.12.001","url":null,"abstract":"<div><p>Ensuring accurate parameter identification and diving motion prediction of marine crafts is essential for safe navigation, optimized operational efficiency, and the advancement of marine exploration. Addressing this, this paper proposes an instrumental variable-based least squares (IVLS) algorithm. Firstly, aiming to balance complexity with accuracy, a decoupled diving model is constructed, incorporating nonlinear actuator characteristics, inertia coefficients, and damping coefficients. Secondly, a discrete parameter identification matrix is designed based on this dedicated model, and then a IVLS algorithm is innovatively derived to reject measurement noise. Furthermore, the stability of the proposed algorithm is validated from a probabilistic point of view, providing a solid theoretical foundation. Finally, performance evaluation is conducted using four depth control datasets obtained from a piston-driven profiling float in Qiandao Lake, with desired depths of 30 m, 40 m, 50 m, and 60 m. Based on the diving dynamics identification results, the IVLS algorithm consistently shows superior performance when compared to recursive weighted least squares algorithm and least squares support vector machine algorithm across all depths, as evidenced by lower average absolute error (AVGAE), root mean square error (RMSE), and maximum absolute error values and higher determination coefficient (<span><math><msup><mi>R</mi><mn>2</mn></msup></math></span>). Specifically, for desired depth of 60 m, the IVLS algorithm achieved an AVGAE of 0.553 m and RMSE of 0.655 m, significantly outperforming LS-SVM with AVGAE and RMSE values of 8.782 m and 11.117 m, respectively. Moreover, the IVLS algorithm demonstrates a remarkable generalization capability with <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> values consistently above 0.95, indicating its robustness in handling varied diving dynamics.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"9 4","pages":"Pages 391-400"},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013323000864/pdfft?md5=92f3cbcbeee8eae437f9fb59f07bb180&pid=1-s2.0-S2468013323000864-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139013887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is a direct numerical simulation (DNS) of Navier-Stokes equations with small enough grid spacing and time-step definitely reliable/correct? 用足够小的网格间距和时间步长对纳维-斯托克斯方程进行直接数值模拟(DNS)是否绝对可靠/正确?
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2024-05-14 DOI: 10.1016/j.joes.2024.04.002
Shijie Qin , Yu Yang , Yongxiang Huang , Xinyu Mei , Lipo Wang , Shijun Liao

Turbulence is strongly associated with the vast majority of fluid flows in nature and industry. Traditionally, results given by the direct numerical simulation (DNS) of Navier-Stokes (NS) equations that relate to a famous millennium problem are widely regarded as ‘reliable’ benchmark solutions of turbulence, as long as grid spacing is fine enough (i.e. less than the minimum Kolmogorov scale) and time-step is small enough, say, satisfying the Courant-Friedrichs-Lewy condition (Courant number < 1). Is this really true? In this paper a two-dimensional sustained turbulent Kolmogorov flow driven by an external body force governed by the NS equations under an initial condition with a spatial symmetry is investigated numerically by the two numerical methods with detailed comparisons: one is the traditional DNS, the other is the ‘clean numerical simulation’ (CNS). In theory, the exact solution must have a kind of spatial symmetry since its initial condition is spatially symmetric. However, it is found that numerical noises of the DNS are quickly enlarged to the same level as the ‘true’ physical solution, which finally destroy the spatial symmetry of the flow field. In other words, the DNS results of the turbulent Kolmogorov flow governed by the NS equations are badly polluted mostly. On the contrary, the numerical noise of the CNS is much smaller than the ‘true’ physical solution of turbulence in a long enough interval of time so that the CNS result is very close to the ‘true’ physical solution and thus can remain symmetric, which can be used as a benchmark solution for comparison. Besides, it is found that numerical noise as a kind of artificial tiny disturbances can lead to huge deviations at large scale on the two-dimensional Kolmogorov turbulence governed by the NS equations, not only quantitatively (even in statistics) but also qualitatively (such as spatial symmetry of flow). This highly suggests that fine enough spatial grid spacing with small enough time-step alone could not guarantee the validity of the DNS of the NS equations: it is only a necessary condition but not sufficient. All of these findings might challenge some of our general beliefs in turbulence: for example, it might be wrong in physics to neglect the influences of small disturbances to NS equations. Our results suggest that, from physical point of view, it should be better to use the Landau-Lifshitz-Navier-Stokes (LLNS) equations, which consider the influence of unavoidable thermal fluctuations, instead of the NS equations, to model turbulent flows.

湍流与自然界和工业界的绝大多数流体流动密切相关。传统上,只要网格间距足够细(即小于最小 Kolmogorov 尺度),时间步长足够小,例如满足 Courant-Friedrichs-Lewy 条件(Courant 数为 1),与著名的千年难题有关的纳维-斯托克斯(Navier-Stokes,NS)方程的直接数值模拟(DNS)结果就被广泛视为湍流的 "可靠 "基准解。事实果真如此吗?本文通过两种数值方法:一种是传统的 DNS,另一种是 "纯数值模拟"(CNS),对空间对称初始条件下由外力驱动的二维持续湍流 Kolmogorov 流进行了数值研究,并进行了详细比较。从理论上讲,精确解必须具有某种空间对称性,因为其初始条件是空间对称的。然而,人们发现 DNS 的数值噪声会迅速扩大到与 "真实 "物理解相同的水平,最终破坏流场的空间对称性。换句话说,由 NS 方程支配的湍流 Kolmogorov 流的 DNS 结果大多受到严重污染。相反,在足够长的时间间隔内,CNS 的数值噪声远小于湍流的 "真实 "物理解,因此 CNS 结果非常接近 "真实 "物理解,从而可以保持对称性,可作为基准解进行比较。此外,研究还发现,数值噪声作为一种人为的微小扰动,会导致受 NS 方程支配的二维 Kolmogorov 湍流在大尺度上出现巨大偏差,不仅在数量上(甚至在统计量上),而且在质量上(如流动的空间对称性)也会出现巨大偏差。这高度表明,仅靠足够细的空间网格间距和足够小的时间步长并不能保证 NS 方程 DNS 的有效性:它只是一个必要条件,而不是充分条件。所有这些发现可能会挑战我们对湍流的一些普遍看法:例如,在物理学中,忽视小扰动对 NS 方程的影响可能是错误的。我们的研究结果表明,从物理学角度来看,使用考虑了不可避免的热波动影响的兰道-利夫希茨-纳维尔-斯托克斯(LLNS)方程来模拟湍流应该比使用 NS 方程更好。
{"title":"Is a direct numerical simulation (DNS) of Navier-Stokes equations with small enough grid spacing and time-step definitely reliable/correct?","authors":"Shijie Qin ,&nbsp;Yu Yang ,&nbsp;Yongxiang Huang ,&nbsp;Xinyu Mei ,&nbsp;Lipo Wang ,&nbsp;Shijun Liao","doi":"10.1016/j.joes.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.joes.2024.04.002","url":null,"abstract":"<div><p>Turbulence is strongly associated with the vast majority of fluid flows in nature and industry. Traditionally, results given by the direct numerical simulation (DNS) of Navier-Stokes (NS) equations that relate to a famous millennium problem are widely regarded as ‘reliable’ benchmark solutions of turbulence, as long as grid spacing is fine enough (i.e. less than the minimum Kolmogorov scale) and time-step is small enough, say, satisfying the Courant-Friedrichs-Lewy condition (Courant number <span><math><mo>&lt;</mo></math></span> 1). Is this really true? In this paper a two-dimensional sustained turbulent Kolmogorov flow driven by an external body force governed by the NS equations under an initial condition with a spatial symmetry is investigated numerically by the two numerical methods with detailed comparisons: one is the traditional DNS, the other is the ‘clean numerical simulation’ (CNS). In theory, the exact solution must have a kind of spatial symmetry since its initial condition is spatially symmetric. However, it is found that numerical noises of the DNS are quickly enlarged to the same level as the ‘true’ physical solution, which finally destroy the spatial symmetry of the flow field. In other words, the DNS results of the turbulent Kolmogorov flow governed by the NS equations are badly polluted mostly. On the contrary, the numerical noise of the CNS is much smaller than the ‘true’ physical solution of turbulence in a long enough interval of time so that the CNS result is very close to the ‘true’ physical solution and thus can remain symmetric, which can be used as a benchmark solution for comparison. Besides, it is found that numerical noise as a kind of artificial tiny disturbances can lead to huge deviations at large scale on the two-dimensional Kolmogorov turbulence governed by the NS equations, not only quantitatively (even in statistics) but also qualitatively (such as spatial symmetry of flow). This highly suggests that fine enough spatial grid spacing with small enough time-step alone could not guarantee the validity of the DNS of the NS equations: it is only a necessary condition but not sufficient. All of these findings might challenge some of our general beliefs in turbulence: for example, it might be wrong in physics to neglect the influences of small disturbances to NS equations. Our results suggest that, from physical point of view, it should be better to use the Landau-Lifshitz-Navier-Stokes (LLNS) equations, which consider the influence of unavoidable thermal fluctuations, instead of the NS equations, to model turbulent flows.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"9 3","pages":"Pages 293-310"},"PeriodicalIF":7.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013324000214/pdfft?md5=05f9e31d26b4448a68efd583d1819189&pid=1-s2.0-S2468013324000214-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative control for automatic towing operation by multiple DP tugboats with fully unknown model parameters 模型参数完全未知的多 DP 拖船自动拖曳操作的协同控制
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-12-01 DOI: 10.1016/j.joes.2023.12.005
Xu Jiang, Yiming Zhu, Lei Wang, Yiting Wang
{"title":"Cooperative control for automatic towing operation by multiple DP tugboats with fully unknown model parameters","authors":"Xu Jiang, Yiming Zhu, Lei Wang, Yiting Wang","doi":"10.1016/j.joes.2023.12.005","DOIUrl":"https://doi.org/10.1016/j.joes.2023.12.005","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"28 1-2","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139194492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transfer learning-based method for marine machinery diagnosis with small samples in noisy environments 基于迁移学习的噪声环境下小样本海洋机械诊断方法
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-12-01 DOI: 10.1016/j.joes.2023.12.004
Yongjin Guo, Chao Gao, Yang Jin, Yintao Li, Jianyao Wang, Qing Li, Hongdong Wang
{"title":"A transfer learning-based method for marine machinery diagnosis with small samples in noisy environments","authors":"Yongjin Guo, Chao Gao, Yang Jin, Yintao Li, Jianyao Wang, Qing Li, Hongdong Wang","doi":"10.1016/j.joes.2023.12.004","DOIUrl":"https://doi.org/10.1016/j.joes.2023.12.004","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"60 5-6","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139190660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An advanced laboratorial measurement technique of scour topography based on the fusion method for 3D reconstruction 基于三维重建融合方法的先进冲刷地形实验室测量技术
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-12-01 DOI: 10.1016/j.joes.2023.12.002
Kan Huang, Xiaoni Wu, Zhiliang Lin
{"title":"An advanced laboratorial measurement technique of scour topography based on the fusion method for 3D reconstruction","authors":"Kan Huang, Xiaoni Wu, Zhiliang Lin","doi":"10.1016/j.joes.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.joes.2023.12.002","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"720 ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138985988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Message from the head, State Key Laboratory of Ocean Engineering 海洋工程国家重点实验室主任寄语
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-11-23 DOI: 10.1016/S2468-0133(23)00083-9
{"title":"Message from the head, State Key Laboratory of Ocean Engineering","authors":"","doi":"10.1016/S2468-0133(23)00083-9","DOIUrl":"https://doi.org/10.1016/S2468-0133(23)00083-9","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 6","pages":"Page iv"},"PeriodicalIF":7.1,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013323000839/pdfft?md5=0c4bd9cec787c566deaf6415bacc2368&pid=1-s2.0-S2468013323000839-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138335387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the discipline of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University 上海交通大学船舶与海洋工程专业简介
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-11-23 DOI: 10.1016/S2468-0133(23)00082-7
{"title":"Introduction to the discipline of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University","authors":"","doi":"10.1016/S2468-0133(23)00082-7","DOIUrl":"https://doi.org/10.1016/S2468-0133(23)00082-7","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 6","pages":"Page iii"},"PeriodicalIF":7.1,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013323000827/pdfft?md5=7af20a1be10bb317cc526d2967429681&pid=1-s2.0-S2468013323000827-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138335386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eight Key Open Questions in Ocean Engineering 海洋工程中的八个关键开放性问题
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-11-23 DOI: 10.1016/S2468-0133(23)00084-0
{"title":"Eight Key Open Questions in Ocean Engineering","authors":"","doi":"10.1016/S2468-0133(23)00084-0","DOIUrl":"https://doi.org/10.1016/S2468-0133(23)00084-0","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 6","pages":"Pages v-vi"},"PeriodicalIF":7.1,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468013323000840/pdfft?md5=72e18d53f89692bf051e9381e69cd361&pid=1-s2.0-S2468013323000840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138404240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the dynamic response of a floating wind-aquaculture platform under the combined actions of wind, waves and current 浮动风力水产养殖平台在风、波浪和水流共同作用下的动态响应研究
IF 7.1 1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-11-01 DOI: 10.1016/j.joes.2023.11.003
Qixiang Fan, Yuwang Xu, Qianhui Xie, Mengmeng Zhang, H. Ren, Tongxiao Sun
{"title":"Investigation of the dynamic response of a floating wind-aquaculture platform under the combined actions of wind, waves and current","authors":"Qixiang Fan, Yuwang Xu, Qianhui Xie, Mengmeng Zhang, H. Ren, Tongxiao Sun","doi":"10.1016/j.joes.2023.11.003","DOIUrl":"https://doi.org/10.1016/j.joes.2023.11.003","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"22 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139291521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning based Bayesian decision support system for efficient navigation of double-ended ferries 基于机器学习的双端轮渡高效导航贝叶斯决策支持系统
1区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-11-01 DOI: 10.1016/j.joes.2023.11.002
Vergara Daniel, Alexandersson Martin, Lang Xiao, Mao Wengang
Ships can be operated more efficiently by utilizing intelligent decision support integrated with onboard data collection systems. In this study, a Bayesian optimization-based decision support system, which utilizes ship performance models built by machine learning methods, is proposed to help determine the operational set-points of two engines for double-ended ferries. By optimizing the ferries’ power allocation between the stern and bow engines, the Decision Support System (DSS) will simultaneously attempt to keep the ETA of the ferry fixed under a set of operational constraints using the Bayesian optimization. Its objective is to minimize fuel consumption along individual trips. Based on simulation environment, the DSS can reduce at maximum 40% fuel consumption with no significant change of the ETA. Final full-scale experiments of a double-ended ferry demonstrated an average of 15%, where at least half of this saving was achieved by the optimized power allocation between bow and stern engines.
通过利用集成了船上数据收集系统的智能决策支持,船舶可以更有效地运行。在这项研究中,提出了一个基于贝叶斯优化的决策支持系统,该系统利用机器学习方法建立的船舶性能模型来帮助确定双端渡轮的两台发动机的运行设值。决策支持系统(DSS)通过优化轮渡的动力分配,同时尝试使用贝叶斯优化在一系列操作约束下保持轮渡的预计到达时间固定。它的目标是尽量减少个人旅行中的燃料消耗。基于仿真环境,DSS可以在不显著改变ETA的情况下最大降低40%的油耗。双端渡轮的最终全尺寸实验表明,平均节省15%,其中至少一半的节省是通过优化船头和船尾发动机之间的功率分配实现的。
{"title":"A machine learning based Bayesian decision support system for efficient navigation of double-ended ferries","authors":"Vergara Daniel, Alexandersson Martin, Lang Xiao, Mao Wengang","doi":"10.1016/j.joes.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.joes.2023.11.002","url":null,"abstract":"Ships can be operated more efficiently by utilizing intelligent decision support integrated with onboard data collection systems. In this study, a Bayesian optimization-based decision support system, which utilizes ship performance models built by machine learning methods, is proposed to help determine the operational set-points of two engines for double-ended ferries. By optimizing the ferries’ power allocation between the stern and bow engines, the Decision Support System (DSS) will simultaneously attempt to keep the ETA of the ferry fixed under a set of operational constraints using the Bayesian optimization. Its objective is to minimize fuel consumption along individual trips. Based on simulation environment, the DSS can reduce at maximum 40% fuel consumption with no significant change of the ETA. Final full-scale experiments of a double-ended ferry demonstrated an average of 15%, where at least half of this saving was achieved by the optimized power allocation between bow and stern engines.","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"17 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135615616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ocean Engineering and Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1