首页 > 最新文献

International Journal of Bioprinting最新文献

英文 中文
Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. 评估在猪软骨缺损中植入熔融电烙强化透明质酸水凝胶复合材料的手术固定方法。
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-06-14 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.775
Jonathan H Galarraga, Hannah M Zlotnick, Ryan C Locke, Sachin Gupta, Natalie L Fogarty, Kendall M Masada, Brendan D Stoeckl, Lorielle Laforest, Miguel Castilho, Jos Malda, Riccardo Levato, James L Carey, Robert L Mauck, Jason A Burdick

The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.

关节软骨的手术修复仍是骨科领域的一项持续挑战。组织工程是治疗软骨缺损的一种很有前景的方法;然而,支架必须:(1)具有支持新软骨形成所需的材料特性;(2)在植入过程中表现出足够的机械完整性;(3)在手术过程中能可靠地固定在软骨缺损处。在这项研究中,我们展示了通过聚己内酯的熔融电包覆(MEW)来增强软降冰片烯改性透明质酸(NorHA)水凝胶,从而制造出复合支架,这种支架可支持包裹的猪间充质基质细胞(pMSC,三种供体)的软骨生成和软骨形成,并表现出适合植入过程中处理的机械性能。随后,使用生物可吸收针或纤维蛋白胶将无细胞 MEW-NorHA 复合材料或封装了 pMSCs 并预培养 28 天的 MEW-NorHA 复合材料植入猪膝关节全厚软骨缺损处,以评估手术固定方法。在大多数情况下(80%),使用生物可降解针或纤维蛋白胶固定复合材料可确保植入物的固定;然而,与使用胶粘复合材料处理的缺损相比,使用针固定复合材料处理的缺损表现出更多的软骨下骨重塑和更差的软骨修复,这分别通过显微计算机断层扫描(micro-CT)和黄蓍苷 O/ 快绿染色得到证明。有趣的是,在无细胞植入物和细胞化植入物之间没有观察到修复组织的差异。要评估这些支架在软骨修复方面的全部潜力,还需要做更多的工作。不过,这些结果表明,未来使用 MEW 增强水凝胶进行软骨修复时,应仔细评估其固定方法对构建物的保持力和周围软骨组织的损伤情况。
{"title":"Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects.","authors":"Jonathan H Galarraga, Hannah M Zlotnick, Ryan C Locke, Sachin Gupta, Natalie L Fogarty, Kendall M Masada, Brendan D Stoeckl, Lorielle Laforest, Miguel Castilho, Jos Malda, Riccardo Levato, James L Carey, Robert L Mauck, Jason A Burdick","doi":"10.18063/ijb.775","DOIUrl":"10.18063/ijb.775","url":null,"abstract":"<p><p>The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 5","pages":"775"},"PeriodicalIF":8.4,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/45/IJB-9-5-775.PMC10339416.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9817196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood-derived biomaterials for tissue graft biofabrication by solvent-based extrusion bioprinting 溶剂型挤压生物打印用于组织移植生物制造的血源性生物材料
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-05-26 DOI: 10.18063/ijb.762
C. D. Amo, I. Andia
This article provides an overview of the different types of blood-derived biomaterials that can be used as solvent additives in the formulation of inks/bioinks for use in solvent extrusion printing/bioprinting. We discuss the properties of various blood sub-products obtained after blood fractionation in terms of their use in tailoring ink/bioink to produce functional constructs designed to improve tissue repair. Blood-derived additives include platelets and/or their secretome, including signaling proteins and microvesicles, which can drive cell migration, inflammation, angiogenesis, and synthesis of extracellular matrix proteins. The contribution of plasma to ink/bioink functionalization relies not only on growth factors, such as hepatocyte growth factor and insulin growth factors, but also on adhesive proteins, such as fibrinogen/fibrin, vitronectin, and fibronectin. We review the current developments and progress in solvent-based extrusion printing/bioprinting with inks/bioinks functionalized with different blood-derived products, leading toward the development of more advanced patient-specific 3D constructs in multiple medical fields, including but not limited to oral tissues and cartilage, bone, skin, liver, and neural tissues. This information will assist researchers in identifying the most suitable blood-derived product for their ink/bioink formulation based on the intended regenerative functionality of the target tissue.
本文概述了不同类型的血液来源生物材料,这些材料可作为溶剂添加剂用于溶剂挤出打印/生物打印的油墨/生物油墨配方。我们讨论了血液分离后获得的各种血液子产品的特性,即它们在定制墨水/生物墨水中的使用,以生产旨在改善组织修复的功能结构。血液来源的添加剂包括血小板和/或其分泌组,包括信号蛋白和微泡,它们可以驱动细胞迁移、炎症、血管生成和细胞外基质蛋白的合成。血浆对墨水/生物墨水功能化的贡献不仅依赖于生长因子,如肝细胞生长因子和胰岛素生长因子,还依赖于粘附蛋白,如纤维蛋白原/纤维蛋白、玻璃体连接蛋白和纤维连接蛋白。我们回顾了用不同血液来源产品功能化的墨水/生物墨水进行溶剂基挤出打印/生物打印的当前发展和进展,从而在多个医疗领域开发出更先进的患者特异性3D结构,包括但不限于口腔组织和软骨、骨骼、皮肤、肝脏和神经组织。这些信息将帮助研究人员根据目标组织的预期再生功能,为他们的墨水/生物墨水配方确定最合适的血液来源产品。
{"title":"Blood-derived biomaterials for tissue graft biofabrication by solvent-based extrusion bioprinting","authors":"C. D. Amo, I. Andia","doi":"10.18063/ijb.762","DOIUrl":"https://doi.org/10.18063/ijb.762","url":null,"abstract":"This article provides an overview of the different types of blood-derived biomaterials that can be used as solvent additives in the formulation of inks/bioinks for use in solvent extrusion printing/bioprinting. We discuss the properties of various blood sub-products obtained after blood fractionation in terms of their use in tailoring ink/bioink to produce functional constructs designed to improve tissue repair. Blood-derived additives include platelets and/or their secretome, including signaling proteins and microvesicles, which can drive cell migration, inflammation, angiogenesis, and synthesis of extracellular matrix proteins. The contribution of plasma to ink/bioink functionalization relies not only on growth factors, such as hepatocyte growth factor and insulin growth factors, but also on adhesive proteins, such as fibrinogen/fibrin, vitronectin, and fibronectin. We review the current developments and progress in solvent-based extrusion printing/bioprinting with inks/bioinks functionalized with different blood-derived products, leading toward the development of more advanced patient-specific 3D constructs in multiple medical fields, including but not limited to oral tissues and cartilage, bone, skin, liver, and neural tissues. This information will assist researchers in identifying the most suitable blood-derived product for their ink/bioink formulation based on the intended regenerative functionality of the target tissue.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"22 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80384637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: A comparative study. 关于消毒过程对用于外科规划和医疗应用的 3D 打印材料的影响的最新指南:比较研究。
IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-05-17 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.756
Arnau Valls-Esteve, Pamela Lustig-Gainza, Nuria Adell-Gomez, Aitor Tejo-Otero, Marti Englí-Rueda, Estibaliz Julian-Alvarez, Osmeli Navarro-Sureda, Felip Fenollosa-Artés, Josep Rubio-Palau, Lucas Krauel, Josep Munuera

Surgeons use different medical devices in the surgery, such as patient-specific anatomical models, cutting and positioning guides, or implants. These devices must be sterilized before being used in the operation room. There are many sterilization processes available, with autoclave, hydrogen peroxide, and ethylene oxide being the most common in hospital settings. Each method has both advantages and disadvantages in terms of mechanics, chemical interaction, and post-treatment accuracy. The aim of the present study is to evaluate the dimensional and mechanical effect of the most commonly used sterilization techniques available in clinical settings, i.e., Autoclave 121, Autoclave 134, and hydrogen peroxide (HPO), on 11 of the most used 3D-printed materials fabricated using additive manufacturing technologies. The results showed that the temperature (depending on the sterilization method) and the exposure time to that temperature influence not only the mechanical behavior but also the original dimensioning planned on the 3D model. Therefore, HPO is a better overall option for most of the materials evaluated. Finally, based on the results of the study, a recommendation guide on sterilization methods per material, technology, and clinical application is presented.

外科医生在手术中使用不同的医疗器械,如病人专用的解剖模型、切割和定位导板或植入物。这些设备在手术室使用前必须进行消毒。灭菌方法有很多种,高压灭菌器、过氧化氢和环氧乙烷是医院最常用的灭菌方法。每种方法在机械、化学作用和处理后的准确性方面都各有利弊。本研究旨在评估临床上最常用的灭菌技术,即 121 号高压蒸汽灭菌器、134 号高压蒸汽灭菌器和过氧化氢(HPO),对使用增材制造技术制造的 11 种最常用 3D 打印材料的尺寸和机械影响。结果表明,温度(取决于灭菌方法)和暴露在该温度下的时间不仅会影响机械性能,还会影响三维模型上规划的原始尺寸。因此,对于大多数被评估的材料来说,HPO 是一种更好的综合选择。最后,在研究结果的基础上,提出了针对不同材料、技术和临床应用的灭菌方法建议指南。
{"title":"A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: A comparative study.","authors":"Arnau Valls-Esteve, Pamela Lustig-Gainza, Nuria Adell-Gomez, Aitor Tejo-Otero, Marti Englí-Rueda, Estibaliz Julian-Alvarez, Osmeli Navarro-Sureda, Felip Fenollosa-Artés, Josep Rubio-Palau, Lucas Krauel, Josep Munuera","doi":"10.18063/ijb.756","DOIUrl":"10.18063/ijb.756","url":null,"abstract":"<p><p>Surgeons use different medical devices in the surgery, such as patient-specific anatomical models, cutting and positioning guides, or implants. These devices must be sterilized before being used in the operation room. There are many sterilization processes available, with autoclave, hydrogen peroxide, and ethylene oxide being the most common in hospital settings. Each method has both advantages and disadvantages in terms of mechanics, chemical interaction, and post-treatment accuracy. The aim of the present study is to evaluate the dimensional and mechanical effect of the most commonly used sterilization techniques available in clinical settings, i.e., Autoclave 121, Autoclave 134, and hydrogen peroxide (HPO), on 11 of the most used 3D-printed materials fabricated using additive manufacturing technologies. The results showed that the temperature (depending on the sterilization method) and the exposure time to that temperature influence not only the mechanical behavior but also the original dimensioning planned on the 3D model. Therefore, HPO is a better overall option for most of the materials evaluated. Finally, based on the results of the study, a recommendation guide on sterilization methods per material, technology, and clinical application is presented.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 5","pages":"756"},"PeriodicalIF":6.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b7/0e/IJB-9-5-756.PMC10406103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swelling compensation of engineered vasculature fabricated by additive manufacturing and sacrifice-based technique using thermoresponsive hydrogel. 使用热致伸缩性水凝胶的增材制造和牺牲型技术制造的工程血管的膨胀补偿。
IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-05-10 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.749
Xue Yang, Shuai Li, Xin Sun, Ya Ren, Lei Qiang, Yihao Liu, Jinwu Wang, Kerong Dai

Engineered vasculature is widely employed to maintain the cell viability within in vitro tissues. A variety of fabrication techniques for engineered vasculature have been explored, with combination of additive manufacturing with a sacrifice-based technique being the most common approach. However, the size deformation of vasculature caused by the swelling of sacrificial materials remains unaddressed. In this study, Pluronic F-127 (PF-127), the most widely used sacrificial material, was employed to study the deformation of the vasculature. Then, a thermoresponsive hydrogel comprising poly(N-isopropylacrylamide) (PNIPAM) and gelatin methacrylate (GelMA) was used to induce volume shrinkage at 37°C to compensate for the deformation of vasculature caused by the swelling of a three-dimensional (3D)-printed sacrificial template, and to generate vasculature of a smaller size than that after deformation. Our results showed that the vasculature diameter increased after the sacrificial template was removed, whereas it decreased to the designed diameter after the volume shrinkage. Human umbilical vein endothelial cells (HUVECs) formed an endothelial monolayer in the engineered vasculature. Osteosarcoma cells (OCs) were loaded into a hierarchical vasculature within the thermoresponsive hydrogel to investigate the interaction between HUVECs and OCs. New blood vessel infiltration was observed within the lumen of the engineered vasculature after in vivo subcutaneous implantation for 4 weeks. In addition, engineered vasculature was implanted in a rat ischemia model to further study the function of engineered vasculature for blood vessel infiltration. This study presents a small method aiming to accurately create engineered vasculature by additive manufacturing and a sacrificebased technique.

为了保持体外组织中细胞的活力,人们广泛采用了工程血管。人们探索了多种工程血管的制造技术,其中最常见的方法是将增材制造技术与牺牲材料技术相结合。然而,牺牲材料膨胀导致的血管尺寸变形问题仍未得到解决。在本研究中,我们采用了最广泛使用的牺牲材料 Pluronic F-127(PF-127)来研究血管的变形。然后,使用由聚(N-异丙基丙烯酰胺)(PNIPAM)和甲基丙烯酸明胶(GelMA)组成的热致伸缩性水凝胶在 37°C 下诱导体积收缩,以补偿三维(3D)打印牺牲模板膨胀引起的脉管变形,并生成比变形后更小的脉管。我们的结果表明,去除牺牲模板后,血管直径增大,而体积收缩后,血管直径减小到设计直径。人脐静脉内皮细胞(HUVECs)在工程血管中形成了内皮单层。骨肉瘤细胞(OCs)被载入热致伸缩水凝胶中的分层血管,以研究 HUVECs 和 OCs 之间的相互作用。在体内皮下植入 4 周后,在工程血管的管腔内观察到了新的血管浸润。此外,还在大鼠缺血模型中植入了工程血管,以进一步研究工程血管的血管浸润功能。本研究提出了一种小方法,旨在通过增材制造和基于牺牲的技术精确创建工程血管。
{"title":"Swelling compensation of engineered vasculature fabricated by additive manufacturing and sacrifice-based technique using thermoresponsive hydrogel.","authors":"Xue Yang, Shuai Li, Xin Sun, Ya Ren, Lei Qiang, Yihao Liu, Jinwu Wang, Kerong Dai","doi":"10.18063/ijb.749","DOIUrl":"10.18063/ijb.749","url":null,"abstract":"<p><p>Engineered vasculature is widely employed to maintain the cell viability within <i>in vitro</i> tissues. A variety of fabrication techniques for engineered vasculature have been explored, with combination of additive manufacturing with a sacrifice-based technique being the most common approach. However, the size deformation of vasculature caused by the swelling of sacrificial materials remains unaddressed. In this study, Pluronic F-127 (PF-127), the most widely used sacrificial material, was employed to study the deformation of the vasculature. Then, a thermoresponsive hydrogel comprising poly(N-isopropylacrylamide) (PNIPAM) and gelatin methacrylate (GelMA) was used to induce volume shrinkage at 37°C to compensate for the deformation of vasculature caused by the swelling of a three-dimensional (3D)-printed sacrificial template, and to generate vasculature of a smaller size than that after deformation. Our results showed that the vasculature diameter increased after the sacrificial template was removed, whereas it decreased to the designed diameter after the volume shrinkage. Human umbilical vein endothelial cells (HUVECs) formed an endothelial monolayer in the engineered vasculature. Osteosarcoma cells (OCs) were loaded into a hierarchical vasculature within the thermoresponsive hydrogel to investigate the interaction between HUVECs and OCs. New blood vessel infiltration was observed within the lumen of the engineered vasculature after <i>in vivo</i> subcutaneous implantation for 4 weeks. In addition, engineered vasculature was implanted in a rat ischemia model to further study the function of engineered vasculature for blood vessel infiltration. This study presents a small method aiming to accurately create engineered vasculature by additive manufacturing and a sacrificebased technique.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 5","pages":"749"},"PeriodicalIF":6.8,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/7a/IJB-9-5-749.PMC10339422.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using 3D-bioprinted models to study pediatric neural crest-derived tumors. 利用三维生物打印模型研究小儿神经嵴衍生肿瘤。
IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-03-29 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.723
Colin H Quinn, Andee M Beierle, Janet R Julson, Michael E Erwin, Hasan Alrefai, Hooper R Markert, Jerry E Stewart, Sara Claire Hutchins, Laura V Bownes, Jamie M Aye, Elizabeth Mroczek-Musulman, Patricia H Hicks, Karina J Yoon, Christopher D Willey, Elizabeth A Beierle

The use of three-dimensional (3D) bioprinting has remained at the forefront of tissue engineering and has recently been employed for generating bioprinted solid tumors to be used as cancer models to test therapeutics. In pediatrics, neural crest-derived tumors are the most common type of extracranial solid tumors. There are only a few tumor-specific therapies that directly target these tumors, and the lack of new therapies remains detrimental to improving the outcomes for these patients. The absence of more efficacious therapies for pediatric solid tumors, in general, may be due to the inability of the currently employed preclinical models to recapitulate the solid tumor phenotype. In this study, we utilized 3D bioprinting to generate neural crest-derived solid tumors. The bioprinted tumors consisted of cells from established cell lines and patient-derived xenograft tumors mixed with a 6% gelatin/1% sodium alginate bioink. The viability and morphology of the bioprints were analyzed via bioluminescence and immunohisto chemistry, respectively. We compared the bioprints to traditional twodimensional (2D) cell culture under conditions such as hypoxia and therapeutics. We successfully produced viable neural crest-derived tumors that retained the histology and immunostaining characteristics of the original parent tumors. The bioprinted tumors propagated in culture and grew in orthotopic murine models. Furthermore, compared to cells grown in traditional 2D culture, the bioprinted tumors were resistant to hypoxia and chemotherapeutics, suggesting that the bioprints exhibited a phenotype that is consistent with that seen clinically in solid tumors, thus potentially making this model superior to traditional 2D culture for preclinical investigations. Future applications of this technology entail the potential to rapidly print pediatric solid tumors for use in high-throughput drug studies, expediting the identification of novel, individualized therapies.

三维(3D)生物打印技术一直处于组织工程学的最前沿,最近被用于生成生物打印实体肿瘤,作为癌症模型来测试治疗方法。在儿科,神经嵴衍生肿瘤是最常见的颅外实体瘤类型。目前只有少数几种直接针对这些肿瘤的特异性疗法,缺乏新疗法仍然不利于改善这些患者的预后。总体而言,儿科实体瘤缺乏更有效的疗法可能是由于目前使用的临床前模型无法再现实体瘤的表型。在这项研究中,我们利用三维生物打印技术生成了神经嵴衍生实体肿瘤。生物打印肿瘤由来自已建立的细胞系和患者异种移植肿瘤的细胞与 6% 明胶/1% 海藻酸钠生物墨水混合而成。生物打印的活力和形态分别通过生物发光和免疫组织化学分析。我们将生物印迹与缺氧和治疗等条件下的传统二维(2D)细胞培养进行了比较。我们成功培育出了存活的神经嵴衍生肿瘤,这些肿瘤保留了原始母体肿瘤的组织学和免疫染色特征。生物打印肿瘤在培养物中繁殖,并在小鼠模型中生长。此外,与在传统二维培养基中生长的细胞相比,生物打印肿瘤对缺氧和化疗具有抵抗力,这表明生物打印表现出的表型与临床上常见的实体瘤表型一致,从而可能使这种模型在临床前研究中优于传统的二维培养基。这项技术的未来应用包括快速打印小儿实体瘤,用于高通量药物研究,加快新型个体化疗法的鉴定。
{"title":"Using 3D-bioprinted models to study pediatric neural crest-derived tumors.","authors":"Colin H Quinn, Andee M Beierle, Janet R Julson, Michael E Erwin, Hasan Alrefai, Hooper R Markert, Jerry E Stewart, Sara Claire Hutchins, Laura V Bownes, Jamie M Aye, Elizabeth Mroczek-Musulman, Patricia H Hicks, Karina J Yoon, Christopher D Willey, Elizabeth A Beierle","doi":"10.18063/ijb.723","DOIUrl":"10.18063/ijb.723","url":null,"abstract":"<p><p>The use of three-dimensional (3D) bioprinting has remained at the forefront of tissue engineering and has recently been employed for generating bioprinted solid tumors to be used as cancer models to test therapeutics. In pediatrics, neural crest-derived tumors are the most common type of extracranial solid tumors. There are only a few tumor-specific therapies that directly target these tumors, and the lack of new therapies remains detrimental to improving the outcomes for these patients. The absence of more efficacious therapies for pediatric solid tumors, in general, may be due to the inability of the currently employed preclinical models to recapitulate the solid tumor phenotype. In this study, we utilized 3D bioprinting to generate neural crest-derived solid tumors. The bioprinted tumors consisted of cells from established cell lines and patient-derived xenograft tumors mixed with a 6% gelatin/1% sodium alginate bioink. The viability and morphology of the bioprints were analyzed via bioluminescence and immunohisto chemistry, respectively. We compared the bioprints to traditional twodimensional (2D) cell culture under conditions such as hypoxia and therapeutics. We successfully produced viable neural crest-derived tumors that retained the histology and immunostaining characteristics of the original parent tumors. The bioprinted tumors propagated in culture and grew in orthotopic murine models. Furthermore, compared to cells grown in traditional 2D culture, the bioprinted tumors were resistant to hypoxia and chemotherapeutics, suggesting that the bioprints exhibited a phenotype that is consistent with that seen clinically in solid tumors, thus potentially making this model superior to traditional 2D culture for preclinical investigations. Future applications of this technology entail the potential to rapidly print pediatric solid tumors for use in high-throughput drug studies, expediting the identification of novel, individualized therapies.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 4","pages":"723"},"PeriodicalIF":6.8,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/be/IJB-9-4-723.PMC10261178.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10411473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional materials of 3D bioprinting for wound dressings and skin tissue engineering applications: A review 生物3D打印功能材料在伤口敷料和皮肤组织工程中的应用综述
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-03-18 DOI: 10.18063/ijb.757
H. Fang, Jie Xu, Hailin Ma, Jiaqi Liu, Erpai Xing, Y. Cheng, Hong Wang, Yi Nie, Bo Pan, Kedong Song
The skin plays an important role in vitamin D synthesis, humoral balance, temperature regulation, and waste excretion. Due to the complexity of the skin, fluids loss, bacterial infection, and other life-threatening secondary complications caused by skin defects often lead to the damage of skin functions. 3D bioprinting technology, as a customized and precise biomanufacturing platform, can manufacture dressings and tissue engineering scaffolds that accurately simulate tissue structure, which is more conducive to wound healing. In recent years, with the development of emerging technologies, an increasing number of 3D-bioprinted wound dressings and skin tissue engineering scaffolds with multiple functions, such as antibacterial, antiinflammatory, antioxidant, hemostatic, and antitumor properties, have significantly improved wound healing and skin treatment. In this article, we review the process of wound healing and summarize the classification of 3D bioprinting technology. Following this, we shift our focus on the functional materials for wound dressing and skin tissue engineering, and also highlight the research progress and development direction of 3D-bioprinted multifunctional wound healing materials.
皮肤在维生素D合成、体液平衡、温度调节和废物排泄中起着重要作用。由于皮肤的复杂性,皮肤缺损引起的体液流失、细菌感染和其他危及生命的继发性并发症往往导致皮肤功能的损害。生物3D打印技术作为定制化、精准化的生物制造平台,可以制造出准确模拟组织结构的敷料和组织工程支架,更有利于伤口愈合。近年来,随着新兴技术的发展,越来越多的具有抗菌、抗炎、抗氧化、止血、抗肿瘤等多种功能的生物3d打印伤口敷料和皮肤组织工程支架,显著改善了伤口愈合和皮肤治疗。本文综述了伤口愈合的过程,并对生物3D打印技术的分类进行了总结。随后,我们将重点转向伤口敷料和皮肤组织工程功能材料,并重点介绍了3d生物打印多功能伤口愈合材料的研究进展和发展方向。
{"title":"Functional materials of 3D bioprinting for wound dressings and skin tissue engineering applications: A review","authors":"H. Fang, Jie Xu, Hailin Ma, Jiaqi Liu, Erpai Xing, Y. Cheng, Hong Wang, Yi Nie, Bo Pan, Kedong Song","doi":"10.18063/ijb.757","DOIUrl":"https://doi.org/10.18063/ijb.757","url":null,"abstract":"The skin plays an important role in vitamin D synthesis, humoral balance, temperature regulation, and waste excretion. Due to the complexity of the skin, fluids loss, bacterial infection, and other life-threatening secondary complications caused by skin defects often lead to the damage of skin functions. 3D bioprinting technology, as a customized and precise biomanufacturing platform, can manufacture dressings and tissue engineering scaffolds that accurately simulate tissue structure, which is more conducive to wound healing. In recent years, with the development of emerging technologies, an increasing number of 3D-bioprinted wound dressings and skin tissue engineering scaffolds with multiple functions, such as antibacterial, antiinflammatory, antioxidant, hemostatic, and antitumor properties, have significantly improved wound healing and skin treatment. In this article, we review the process of wound healing and summarize the classification of 3D bioprinting technology. Following this, we shift our focus on the functional materials for wound dressing and skin tissue engineering, and also highlight the research progress and development direction of 3D-bioprinted multifunctional wound healing materials.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83463564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
3D printing of biomaterials for vascularized and innervated tissue regeneration. 用于血管和神经组织再生的三维打印生物材料。
IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-03-10 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.706
Hongjian Zhang, Chengtie Wu

Neurovascular networks play significant roles in the metabolism and regeneration of many tissues and organs in the human body. Blood vessels can transport sufficient oxygen, nutrients, and biological factors, while nerve fibers transmit excitation signals to targeted cells. However, traditional scaffolds cannot satisfy the requirement of stimulating angiogenesis and innervation in a timely manner due to the complexity of host neurovascular networks. Three-dimensional (3D) printing, as a versatile and favorable technique, provides an effective approach to fabricating biological scaffolds with biomimetic architectures and multimaterial compositions, which are capable of regulating multiple cell behaviors. This review paper presents a summary of the current progress in 3D-printed biomaterials for vascularized and innervated tissue regeneration by presenting skin, bone, and skeletal muscle tissues as an example. In addition, we highlight the crucial roles of blood vessels and nerve fibers in the process of tissue regeneration and discuss the future perspectives for engineering novel biomaterials. It is expected that 3D-printed biomaterials with angiogenesis and innervation properties can not only recapitulate the physiological microenvironment of damaged tissues but also rapidly integrate with host neurovascular networks, resulting in accelerated functional tissue regeneration.

神经血管网络在人体许多组织和器官的新陈代谢和再生过程中发挥着重要作用。血管可以输送充足的氧气、营养物质和生物因子,而神经纤维则向靶细胞传递兴奋信号。然而,由于宿主神经血管网络的复杂性,传统支架无法满足及时刺激血管生成和神经支配的要求。三维(3D)打印作为一种多用途的有利技术,为制造具有仿生结构和多材料成分的生物支架提供了一种有效方法,这种支架能够调节多种细胞行为。本综述论文以皮肤、骨骼和骨骼肌组织为例,总结了目前用于血管和神经组织再生的三维打印生物材料的研究进展。此外,我们还强调了血管和神经纤维在组织再生过程中的关键作用,并探讨了新型生物材料工程学的未来前景。预计具有血管生成和神经支配特性的三维打印生物材料不仅能再现受损组织的生理微环境,还能与宿主神经血管网络快速整合,从而加速组织的功能再生。
{"title":"3D printing of biomaterials for vascularized and innervated tissue regeneration.","authors":"Hongjian Zhang, Chengtie Wu","doi":"10.18063/ijb.706","DOIUrl":"10.18063/ijb.706","url":null,"abstract":"<p><p>Neurovascular networks play significant roles in the metabolism and regeneration of many tissues and organs in the human body. Blood vessels can transport sufficient oxygen, nutrients, and biological factors, while nerve fibers transmit excitation signals to targeted cells. However, traditional scaffolds cannot satisfy the requirement of stimulating angiogenesis and innervation in a timely manner due to the complexity of host neurovascular networks. Three-dimensional (3D) printing, as a versatile and favorable technique, provides an effective approach to fabricating biological scaffolds with biomimetic architectures and multimaterial compositions, which are capable of regulating multiple cell behaviors. This review paper presents a summary of the current progress in 3D-printed biomaterials for vascularized and innervated tissue regeneration by presenting skin, bone, and skeletal muscle tissues as an example. In addition, we highlight the crucial roles of blood vessels and nerve fibers in the process of tissue regeneration and discuss the future perspectives for engineering novel biomaterials. It is expected that 3D-printed biomaterials with angiogenesis and innervation properties can not only recapitulate the physiological microenvironment of damaged tissues but also rapidly integrate with host neurovascular networks, resulting in accelerated functional tissue regeneration.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 3","pages":"706"},"PeriodicalIF":6.8,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/7b/IJB-9-3-706.PMC10236343.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9578371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A biocompatible double-crosslinked gelatin/ sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology 一种基于生物3D打印技术的生物相容性双交联明胶/海藻酸钠/多巴胺/季铵化壳聚糖水凝胶伤口敷料
3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-02-20 DOI: 10.18063/ijb.689
Yueqi Lu, Jie Xu, Ya Su, Huan Fang, Jiaqi Liu, Siyao Lv, Yuen Yee Cheng, Yi Nie, Wenfang Li, Bo Pan, Kedong Song
Severe skin injuries can cause serious problems, which could affect the patient&rsquo;s normal life, if not dealt properly in a timely and effective manner. It is an urgent requirement to develop personalized wound dressings with excellent antibacterial activity and biocompatibility to match the shape of the wound to facilitate clinical application. In this study, a bioink (GAQ) based on gelatin (Gel)/sodium alginate (SA)/ quaternized chitosan (QCS) was prepared, and GAQ hydrogel dressing grafting with dopamine (GADQ) was fabricated by an extrusion three-dimensional (3D) printing technology. QCS was synthesized by modifying quaternary ammonium group on chitosan, and its structure was successfully characterized by nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Our results showed that the GADQ hydrogel dressing that was double-crosslinked by EDC/ NHS and Ca2+ had good tensile strength, considerable swelling ratio, and effective antioxidation properties. It also showed that GADQ1.5% had 93.17% and 91.06% antibacterial activity against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the relative survival ratios of fibroblast cells seeded on these hydrogels exceeded 350% after cultured for 7 days, which proved the biocompatibility of these hydrogels. Overall, this advanced 3D-printed GADQ1.5% hydrogels with effective antioxidation, excellent antibacterial activity and good biocompatibility had a considerable application potential for wound healing.
严重的皮肤损伤会导致严重的问题,如果不及时有效地处理,可能会影响患者的正常生活。开发与创面形状相匹配的具有良好抗菌活性和生物相容性的个性化创面敷料是迫切需要的,以方便临床应用。本研究制备了基于明胶(Gel)/海藻酸钠(SA)/季铵化壳聚糖(QCS)的生物墨水(GAQ),并采用挤压三维(3D)打印技术制备了与多巴胺(GADQ)接枝的GAQ水凝胶。在壳聚糖上改性季铵基合成了QCS,并用核磁共振(1H NMR)和傅里叶变换红外光谱(FT-IR)对其结构进行了表征。结果表明,EDC/ NHS与Ca2+双交联的GADQ水凝胶敷料具有良好的抗拉强度、可观的溶胀率和有效的抗氧化性能。GADQ1.5%对金黄色葡萄球菌和大肠杆菌的抑菌活性分别为93.17%和91.06%。培养7天后,成纤维细胞的相对存活率超过350%,证明了水凝胶的生物相容性。总之,这种先进的3d打印GADQ1.5%水凝胶具有有效的抗氧化、优异的抗菌活性和良好的生物相容性,在伤口愈合方面具有相当大的应用潜力。
{"title":"A biocompatible double-crosslinked gelatin/ sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology","authors":"Yueqi Lu, Jie Xu, Ya Su, Huan Fang, Jiaqi Liu, Siyao Lv, Yuen Yee Cheng, Yi Nie, Wenfang Li, Bo Pan, Kedong Song","doi":"10.18063/ijb.689","DOIUrl":"https://doi.org/10.18063/ijb.689","url":null,"abstract":"Severe skin injuries can cause serious problems, which could affect the patient&amp;rsquo;s normal life, if not dealt properly in a timely and effective manner. It is an urgent requirement to develop personalized wound dressings with excellent antibacterial activity and biocompatibility to match the shape of the wound to facilitate clinical application. In this study, a bioink (GAQ) based on gelatin (Gel)/sodium alginate (SA)/ quaternized chitosan (QCS) was prepared, and GAQ hydrogel dressing grafting with dopamine (GADQ) was fabricated by an extrusion three-dimensional (3D) printing technology. QCS was synthesized by modifying quaternary ammonium group on chitosan, and its structure was successfully characterized by nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Our results showed that the GADQ hydrogel dressing that was double-crosslinked by EDC/ NHS and Ca2+ had good tensile strength, considerable swelling ratio, and effective antioxidation properties. It also showed that GADQ1.5% had 93.17% and 91.06% antibacterial activity against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the relative survival ratios of fibroblast cells seeded on these hydrogels exceeded 350% after cultured for 7 days, which proved the biocompatibility of these hydrogels. Overall, this advanced 3D-printed GADQ1.5% hydrogels with effective antioxidation, excellent antibacterial activity and good biocompatibility had a considerable application potential for wound healing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135081125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: An in vitro evaluation using human dermal fibroblasts. 通过基于挤压的三维生物打印技术实现明胶-PVA 混合生物墨水与基因素的整合:利用人体真皮成纤维细胞进行体外评估。
IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-02-07 eCollection Date: 2023-01-01 DOI: 10.18063/ijb.677
Syafira Masri, Manira Maarof, Izhar Abd Aziz, Ruszymah Idrus, Mh Busra Fauzi

3D bioprinting technology is a well-established and promising advanced fabrication technique that utilizes potential biomaterials as bioinks to replace lost skin and promote new tissue regeneration. Cutaneous regenerative biomaterials are highly commended since they benefit patients with larger wound sizes and irregular wound shapes compared to the painstaking split-skin graft. This study aimed to fabricate biocompatible, biodegradable, and printable bioinks as a cutaneous substitute that leads to newly formed tissue post-transplantation. Briefly, gelatin (GE) and polyvinyl alcohol (PVA) bioinks were prepared in various concentrations (w/v); GE (6% GE: 0% PVA), GPVA3 (6% GE: 3% PVA), and GPVA5 (6% GE: 5% PVA), followed by 0.1% (w/v) genipin (GNP) crosslinking to achieve optimum printability. According to the results, GPVA5_GNP significantly presented at least 590.93 ± 164.7% of swelling ratio capacity and optimal water vapor transmission rate (WVTR), which is <1500 g/m2/h to maintain the moisture of the wound microenvironment. Besides, GPVA5_GNP is also more durable than other hydrogels with the slowest biodegradation rate of 0.018 ± 0.08 mg/h. The increasing amount of PVA improved the rheological properties of the hydrogels, leading the GPVA5_GNP to have the highest viscosity, around 3.0 ± 0.06 Pa.s. It allows a better performance of bioinks printability via extrusion technique. Moreover, the cross-section of the microstructure hydrogels showed the average pore sizes >100 μm with excellent interconnected porosity. X-ray diffraction (XRD) analysis showed that the hydrogels maintain their amorphous properties and were well-distributed through energy dispersive X-ray after crosslinking. Furthermore, there had no substantial functional group changes, as observed by Fourier transform infrared spectroscopy, after the addition of crosslinker. In addition, GPVA hydrogels were biocompatible to the cells, effectively demonstrating >90% of cell viability. In conclusion, GPVA hydrogels crosslinked with GNP, as prospective bioinks, exhibited the superior properties necessary for wound healing treatment.

三维生物打印技术是一种成熟且前景广阔的先进制造技术,它利用潜在的生物材料作为生物墨水来替代失去的皮肤并促进新组织的再生。皮肤再生生物材料备受推崇,因为与费力的分割皮肤移植相比,它能使伤口面积更大、伤口形状不规则的患者受益。本研究旨在制造生物相容性好、可生物降解、可印刷的生物墨水,作为皮肤替代物,在移植后形成新的组织。简而言之,我们制备了不同浓度(w/v)的明胶(GE)和聚乙烯醇(PVA)生物墨水:GE(6% GE:0% PVA)、GPVA3(6% GE:3% PVA)和 GPVA5(6% GE:5% PVA),然后用 0.1%(w/v)的基因素(GNP)交联,以获得最佳的可印刷性。结果表明,GPVA5_GNP 显著提高了至少 590.93 ± 164.7% 的膨胀率能力和最佳水蒸气透过率(WVTR),即 2/h,以保持伤口微环境的湿度。此外,GPVA5_GNP 比其他水凝胶更耐久,生物降解速度最慢,为 0.018 ± 0.08 mg/h。增加 PVA 的用量可改善水凝胶的流变特性,使 GPVA5_GNP 的粘度最高,约为 3.0 ± 0.06 Pa.s。此外,微结构水凝胶的横截面显示平均孔径大于 100 μm,具有极佳的互联孔隙度。X 射线衍射(XRD)分析表明,交联后的水凝胶保持了无定形特性,并通过能量色散 X 射线进行了良好的分布。此外,通过傅立叶变换红外光谱观察,在加入交联剂后,水凝胶的官能团没有发生实质性变化。此外,GPVA 水凝胶对细胞具有生物相容性,细胞存活率大于 90%。总之,与 GNP 交联的 GPVA 水凝胶作为前瞻性生物链接物,具有伤口愈合治疗所需的优异特性。
{"title":"Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: An <i>in vitro</i> evaluation using human dermal fibroblasts.","authors":"Syafira Masri, Manira Maarof, Izhar Abd Aziz, Ruszymah Idrus, Mh Busra Fauzi","doi":"10.18063/ijb.677","DOIUrl":"10.18063/ijb.677","url":null,"abstract":"<p><p>3D bioprinting technology is a well-established and promising advanced fabrication technique that utilizes potential biomaterials as bioinks to replace lost skin and promote new tissue regeneration. Cutaneous regenerative biomaterials are highly commended since they benefit patients with larger wound sizes and irregular wound shapes compared to the painstaking split-skin graft. This study aimed to fabricate biocompatible, biodegradable, and printable bioinks as a cutaneous substitute that leads to newly formed tissue post-transplantation. Briefly, gelatin (GE) and polyvinyl alcohol (PVA) bioinks were prepared in various concentrations (w/v); GE (6% GE: 0% PVA), GPVA3 (6% GE: 3% PVA), and GPVA5 (6% GE: 5% PVA), followed by 0.1% (w/v) genipin (GNP) crosslinking to achieve optimum printability. According to the results, GPVA5_GNP significantly presented at least 590.93 ± 164.7% of swelling ratio capacity and optimal water vapor transmission rate (WVTR), which is <1500 g/m<sup>2</sup>/h to maintain the moisture of the wound microenvironment. Besides, GPVA5_GNP is also more durable than other hydrogels with the slowest biodegradation rate of 0.018 ± 0.08 mg/h. The increasing amount of PVA improved the rheological properties of the hydrogels, leading the GPVA5_GNP to have the highest viscosity, around 3.0 ± 0.06 Pa.s. It allows a better performance of bioinks printability via extrusion technique. Moreover, the cross-section of the microstructure hydrogels showed the average pore sizes >100 μm with excellent interconnected porosity. X-ray diffraction (XRD) analysis showed that the hydrogels maintain their amorphous properties and were well-distributed through energy dispersive X-ray after crosslinking. Furthermore, there had no substantial functional group changes, as observed by Fourier transform infrared spectroscopy, after the addition of crosslinker. In addition, GPVA hydrogels were biocompatible to the cells, effectively demonstrating >90% of cell viability. In conclusion, GPVA hydrogels crosslinked with GNP, as prospective bioinks, exhibited the superior properties necessary for wound healing treatment.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 3","pages":"677"},"PeriodicalIF":6.8,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/de/IJB-9-3-677.PMC10236347.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9950896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening 水凝胶珠生物打印用于胰腺肿瘤基质微组织的药物筛选
3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-02-01 DOI: 10.18063/ijb.v9i3.676
Beisi Huang, Xiaoyun Wei, Keke Chen, Ling Wang, Mingen Xu
Pancreatic ductal adenocarcinoma (PDAC) having features of dense fibrotic stromal and extracellular matrix (ECM) components has poor clinical outcome. In vitro construction of relevant preclinical PDAC models recapitulating the tumor-stroma characteristics is therefore in great need for the development of pancreatic cancer therapy. In this work, a three-dimensional (3D) heterogeneous PDAC microtissue based on a dot extrusion printing (DEP) system is reported. Gelatin methacryloyl (GelMA) hydrogel beads encapsulating human pancreatic cancer cells and stromal fibroblasts were printed, which demonstrated the capacity of providing ECM-mimetic microenvironments and thus mimicked the native cell-cell junctions and cell-ECM interactions. Besides, the spherical structure of the generated hydrogel beads, which took the advantage of encapsulating cells in a reduced volume, enabled efficient diffusion of oxygen, nutrients and cell waste, thus allowing the embedded cells to proliferate and eventually form a dense pancreatic tumor-stroma microtissue around hundred microns. Furthermore, a tunable stromal microenvironment was easily achieved by adjusting the density of stromal cells in the hydrogel beads. Based on our results, the produced heterogeneous pancreatic microtissue recapitulated the features of cellular interactions and stromal-like microenvironments, and displayed better anti-cancer drug resistance than mono-cultured pancreatic cancer spheroids. Together, the DEP system possesses the ability to simply and flexibly produce GelMA hydrogel beads, providing a robust manufacturing tool for the pancreatic cancer drug screening platform fabrication. In addition, the engineered pancreatic tumor-stroma microtissue based on bioprinted GelMA hydrogel beads, other than being ECM-biomimetic and stroma-tunable, can be used for observation in situ and may serve as a new drug screening platform.
胰腺导管腺癌(PDAC)具有致密纤维化间质和细胞外基质(ECM)成分的特征,临床预后较差。因此,在体外构建反映肿瘤间质特征的相关临床前PDAC模型是胰腺癌治疗发展的迫切需要。在这项工作中,报告了基于点挤压打印(DEP)系统的三维(3D)异构PDAC微组织。凝胶甲基丙烯酰(GelMA)水凝胶珠包被人类胰腺癌细胞和间质成纤维细胞,证明了提供模拟ecm微环境的能力,从而模拟了天然细胞-细胞连接和细胞- ecm相互作用。此外,所生成的水凝胶珠的球形结构利用了将细胞包裹在更小体积中的优势,使氧气、营养物质和细胞废物能够有效扩散,从而使包埋的细胞增殖,最终形成约100微米的致密胰腺肿瘤基质微组织。此外,通过调节水凝胶珠中基质细胞的密度,可以很容易地实现可调节的基质微环境。根据我们的研究结果,产生的异质胰腺微组织再现了细胞相互作用和基质样微环境的特征,并且比单一培养的胰腺癌球体表现出更好的抗癌耐药性。总之,DEP系统具有简单灵活地生产GelMA水凝胶珠的能力,为胰腺癌药物筛选平台的制造提供了强大的制造工具。此外,基于生物打印GelMA水凝胶珠的工程胰腺肿瘤基质微组织,除了具有ecm仿生和基质可调性外,还可以用于原位观察,并可能作为新的药物筛选平台。
{"title":"Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening","authors":"Beisi Huang, Xiaoyun Wei, Keke Chen, Ling Wang, Mingen Xu","doi":"10.18063/ijb.v9i3.676","DOIUrl":"https://doi.org/10.18063/ijb.v9i3.676","url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) having features of dense fibrotic stromal and extracellular matrix (ECM) components has poor clinical outcome. In vitro construction of relevant preclinical PDAC models recapitulating the tumor-stroma characteristics is therefore in great need for the development of pancreatic cancer therapy. In this work, a three-dimensional (3D) heterogeneous PDAC microtissue based on a dot extrusion printing (DEP) system is reported. Gelatin methacryloyl (GelMA) hydrogel beads encapsulating human pancreatic cancer cells and stromal fibroblasts were printed, which demonstrated the capacity of providing ECM-mimetic microenvironments and thus mimicked the native cell-cell junctions and cell-ECM interactions. Besides, the spherical structure of the generated hydrogel beads, which took the advantage of encapsulating cells in a reduced volume, enabled efficient diffusion of oxygen, nutrients and cell waste, thus allowing the embedded cells to proliferate and eventually form a dense pancreatic tumor-stroma microtissue around hundred microns. Furthermore, a tunable stromal microenvironment was easily achieved by adjusting the density of stromal cells in the hydrogel beads. Based on our results, the produced heterogeneous pancreatic microtissue recapitulated the features of cellular interactions and stromal-like microenvironments, and displayed better anti-cancer drug resistance than mono-cultured pancreatic cancer spheroids. Together, the DEP system possesses the ability to simply and flexibly produce GelMA hydrogel beads, providing a robust manufacturing tool for the pancreatic cancer drug screening platform fabrication. In addition, the engineered pancreatic tumor-stroma microtissue based on bioprinted GelMA hydrogel beads, other than being ECM-biomimetic and stroma-tunable, can be used for observation in situ and may serve as a new drug screening platform.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135755200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
International Journal of Bioprinting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1