Joeng Ju Kim, Mihyeon Bae, Jongmin Kim, Dong-Woo Cho
An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.
{"title":"Application of biomaterial-based three-dimensional bioprinting for organ-on-a-chip fabrication","authors":"Joeng Ju Kim, Mihyeon Bae, Jongmin Kim, Dong-Woo Cho","doi":"10.36922/ijb.1972","DOIUrl":"https://doi.org/10.36922/ijb.1972","url":null,"abstract":"An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"48 10","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Wei, Yuhao Peng, Weicheng Chen, Yudong Duan, Genglei Chua, Jie Hu, Shujun Lyu, Zhigang Chen, F. Han, Bin Li
Musculoskeletal disease and injury are highly prevalent disorders that impose tremendous medical and socioeconomic burdens. Tissue engineering has attracted increasing attention as a promising technique of regenerative medicine to restore degenerative or damaged tissues and is used to produce functional disease models. As a revolutionary technology, three-dimensional (3D) bioprinting has demonstrated a considerable potential in enhancing the versatility of tissue engineering. 3D bioprinting allows for the rapid and accurate spatial patterning of cells, growth factors, and biomaterials to generate biomimetic tissue constructs. Meanwhile, 3D-bioprinted in vitro models also offer a viable option to enable precise pharmacological interventions in various diseases. This review provides an overview of 3D bioprinting methods and bioinks for therapeutic applications and describes their potential for musculoskeletal tissue regeneration. We also highlight the fabrication of 3D-bioprinted models for drug development targeting musculoskeletal disease. Finally, the existing challenges and future perspectives of 3D bioprinting for musculoskeletal regeneration and disease modeling are discussed.
{"title":"Three-dimensional bioprinting for musculoskeletal regeneration and disease modeling","authors":"Qiang Wei, Yuhao Peng, Weicheng Chen, Yudong Duan, Genglei Chua, Jie Hu, Shujun Lyu, Zhigang Chen, F. Han, Bin Li","doi":"10.36922/ijb.1037","DOIUrl":"https://doi.org/10.36922/ijb.1037","url":null,"abstract":"Musculoskeletal disease and injury are highly prevalent disorders that impose tremendous medical and socioeconomic burdens. Tissue engineering has attracted increasing attention as a promising technique of regenerative medicine to restore degenerative or damaged tissues and is used to produce functional disease models. As a revolutionary technology, three-dimensional (3D) bioprinting has demonstrated a considerable potential in enhancing the versatility of tissue engineering. 3D bioprinting allows for the rapid and accurate spatial patterning of cells, growth factors, and biomaterials to generate biomimetic tissue constructs. Meanwhile, 3D-bioprinted in vitro models also offer a viable option to enable precise pharmacological interventions in various diseases. This review provides an overview of 3D bioprinting methods and bioinks for therapeutic applications and describes their potential for musculoskeletal tissue regeneration. We also highlight the fabrication of 3D-bioprinted models for drug development targeting musculoskeletal disease. Finally, the existing challenges and future perspectives of 3D bioprinting for musculoskeletal regeneration and disease modeling are discussed.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"29 5","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bio-inertness of titanium, which is the ultimate choice of metallic material for implant applications, causes delayed bone–tissue integration at the implant site and prevents expedited healing for the patient. This can result in a severe issue for patients with immunocompromised bone health as titanium does not offer inherent antimicrobial properties, and thus, infections at the implant site are another concern. Current strategies addressing the issues above include using cemented implants as a coating on Ti6Al4V bulk material for orthopedic applications. Roadblock arises with coating failure due to weak interfacial bond at the Ti–cement interface, which necessitates revision surgeries. In this study, we added osteogenic MgO and antibacterial Cu to commercially pure titanium (CpTi) and processed them using metal additive manufacturing. Mg, an essential trace element in the body, has been proven to enhance osseointegration in vivo. Cu has been popular for its bactericidal capabilities. With the addition of 1 wt.% of MgO to the CpTi matrix, we observed a four-fold increase in the mineralized bone formation at the bone–implant interface in vivo. The addition of 3 wt.% of Cu did not result in cytotoxicity, and adding Cu to CpTi-MgO chemical makeup yielded in vivo performance similar to that in CpTi-MgO. In in vitro bacterial studies with gram-positive Staphylococcus aureus, CpTi-MgO-Cu displayed an antibacterial efficacy of 81% at the end of 72 h of culture. Our findings highlight the synergistic benefits of CpTi-MgO-Cu, which exhibit superior early-stage osseointegration and antimicrobial capabilities.
{"title":"Enhanced osteogenesis and bactericidal performance of additively manufactured MgO-and Cu-added CpTi for load-bearing implants","authors":"Sushant Ciliveri, Amit Bandyopadhyay","doi":"10.36922/ijb.1167","DOIUrl":"https://doi.org/10.36922/ijb.1167","url":null,"abstract":"The bio-inertness of titanium, which is the ultimate choice of metallic material for implant applications, causes delayed bone–tissue integration at the implant site and prevents expedited healing for the patient. This can result in a severe issue for patients with immunocompromised bone health as titanium does not offer inherent antimicrobial properties, and thus, infections at the implant site are another concern. Current strategies addressing the issues above include using cemented implants as a coating on Ti6Al4V bulk material for orthopedic applications. Roadblock arises with coating failure due to weak interfacial bond at the Ti–cement interface, which necessitates revision surgeries. In this study, we added osteogenic MgO and antibacterial Cu to commercially pure titanium (CpTi) and processed them using metal additive manufacturing. Mg, an essential trace element in the body, has been proven to enhance osseointegration in vivo. Cu has been popular for its bactericidal capabilities. With the addition of 1 wt.% of MgO to the CpTi matrix, we observed a four-fold increase in the mineralized bone formation at the bone–implant interface in vivo. The addition of 3 wt.% of Cu did not result in cytotoxicity, and adding Cu to CpTi-MgO chemical makeup yielded in vivo performance similar to that in CpTi-MgO. In in vitro bacterial studies with gram-positive Staphylococcus aureus, CpTi-MgO-Cu displayed an antibacterial efficacy of 81% at the end of 72 h of culture. Our findings highlight the synergistic benefits of CpTi-MgO-Cu, which exhibit superior early-stage osseointegration and antimicrobial capabilities.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"203 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136213526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinjin Li, Jin Su, Annan Chen, Yifei Li, Xi Yuan, Kezhuo Chen, Zhaoqing Li, Chunze Yan, Jian Lu, Yusheng Shi
Strontium-doped calcium silicate (SrCS) bioceramics have demonstrated outstanding vasculogenic ability to repair large segmental bone defects, while their poor mechanical properties and rapid degradation rate remain the major obstacles in clinical treatment. Here, we proposed a novel approach to significantly enhance the mechanical properties of SrCS bioceramics with tunable biodegradability using micron barium titanate-based (BTA) powders as a dopant. Biomimetic SrCS-BTA scaffolds with triply periodic minimal surface structures were fabricated by vat photopolymerization. The effects of BTA content on microtopography, mechanical properties, degradability, and bioactivity of composite scaffolds were studied. On the one hand, the BTA greatly increased the maximum densification rate of SrCS ceramics by 84.37%, while the corresponding densification temperature decreased by 95°C. On the other hand, CaTiO3 generated by the reaction of SrCS and BTA intercepted cracks at the grain boundaries, and thus, the mechanical properties were enhanced due to the pinning effect. The SrCS-40BTA scaffold exhibited much higher compressive strength and elastic modulus by 296% compared with the pure SrCS scaffold. The energy absorption of SrCS-40BTA scaffolds was 5.6 times higher than that of the pure SrCS scaffold. In addition, biocompatible SrCS-BTA scaffolds with lower degradation rates can play a supporting role in the process of repair for a longer duration. This work provides a promising strategy to fabricate biomimetic scaffolds with highly enhanced mechanical properties and tunable biodegradability for repairing damaged large segmental bone tissues.
{"title":"Strontium-doped calcium silicate scaffolds with enhanced mechanical properties and tunable biodegradability fabricated by vat photopolymerization","authors":"Yinjin Li, Jin Su, Annan Chen, Yifei Li, Xi Yuan, Kezhuo Chen, Zhaoqing Li, Chunze Yan, Jian Lu, Yusheng Shi","doi":"10.36922/ijb.1233","DOIUrl":"https://doi.org/10.36922/ijb.1233","url":null,"abstract":" Strontium-doped calcium silicate (SrCS) bioceramics have demonstrated outstanding vasculogenic ability to repair large segmental bone defects, while their poor mechanical properties and rapid degradation rate remain the major obstacles in clinical treatment. Here, we proposed a novel approach to significantly enhance the mechanical properties of SrCS bioceramics with tunable biodegradability using micron barium titanate-based (BTA) powders as a dopant. Biomimetic SrCS-BTA scaffolds with triply periodic minimal surface structures were fabricated by vat photopolymerization. The effects of BTA content on microtopography, mechanical properties, degradability, and bioactivity of composite scaffolds were studied. On the one hand, the BTA greatly increased the maximum densification rate of SrCS ceramics by 84.37%, while the corresponding densification temperature decreased by 95°C. On the other hand, CaTiO3 generated by the reaction of SrCS and BTA intercepted cracks at the grain boundaries, and thus, the mechanical properties were enhanced due to the pinning effect. The SrCS-40BTA scaffold exhibited much higher compressive strength and elastic modulus by 296% compared with the pure SrCS scaffold. The energy absorption of SrCS-40BTA scaffolds was 5.6 times higher than that of the pure SrCS scaffold. In addition, biocompatible SrCS-BTA scaffolds with lower degradation rates can play a supporting role in the process of repair for a longer duration. This work provides a promising strategy to fabricate biomimetic scaffolds with highly enhanced mechanical properties and tunable biodegradability for repairing damaged large segmental bone tissues.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134972970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronica L. Rios-Mata, Marisela Rodriguez-Salvador, Jia An, Chee Kai Chua, Pedro F. Castillo-Valdez
The increasing demand for innovative drugs and personalized treatment is radically changing the pharmaceutical industry, where significant efforts in research and development (R&D) are taking place. Three-dimensional (3D) printing offers interesting solutions for these demands, solving some of the limitations of current manufacturing processes. 3D-printed oral drug delivery systems can improve the delivery of pharmaceutical substances in the body, and the dynamic interaction between pharmaceutical ingredients, while providing personalized formulations, geometries, sizes, controlled release rates, and increasing time in the gastrointestinal tract. Advances in 3D printing for oral drug delivery systems have been investigated in terms of processes, materials, and effects. However, it is important to also consider other topics, such as the specific needs of the users to enhance drugs acceptability, the quality control processes due to the absence of approved guidelines, and the digitalization of the industry to respond to future challenges of the digital era; nevertheless, there are no studies that comprise these elements. To fill this gap, the aim of this research is to identify advances in terms of final end-user applications, quality assurance, user acceptability, and digital technologies for 3D-printed oral drug delivery systems. To accomplish this, a competitive technology intelligence (CTI) methodology was applied, where scientific literature was retrieved from the Web of Science covering the period from January 1, 1900, to May 1, 2023. For this task, a scientometric analysis was performed, and the main trends involving the previously mentioned elements were identified. In the first case, 3D-printed oral drug delivery systems are being designed for different purposes, including as anti-deterrent formulations to decrease the global problem of opioid abuse. For quality assurance, the results demonstrated the implementation of approaches like quality by design to increase the quality of the 3D-printed dosage forms. In the case of user acceptability, the interest in creating more attractive formulations was identified; for this, innovative technologies such as ColorJet 3D printing are being used. Lastly, regarding digital technologies, the importance of cyberattacks while sending the 3D-printed dosage form file to the 3D printer is highlighted; for this, cybersecurity systems are being studied. The outcomes of this study can add value to researchers, organizations, and investment firms interested in the R&D of novel and personalized treatments, and the areas of 3D printing, pharmaceutical, medical, and health.
{"title":"Uncovering advances in final end-user applications, user acceptability, quality assurance, and digital technologies for 3D-printed oral drug delivery systems","authors":"Veronica L. Rios-Mata, Marisela Rodriguez-Salvador, Jia An, Chee Kai Chua, Pedro F. Castillo-Valdez","doi":"10.36922/ijb.1119","DOIUrl":"https://doi.org/10.36922/ijb.1119","url":null,"abstract":"The increasing demand for innovative drugs and personalized treatment is radically changing the pharmaceutical industry, where significant efforts in research and development (R&D) are taking place. Three-dimensional (3D) printing offers interesting solutions for these demands, solving some of the limitations of current manufacturing processes. 3D-printed oral drug delivery systems can improve the delivery of pharmaceutical substances in the body, and the dynamic interaction between pharmaceutical ingredients, while providing personalized formulations, geometries, sizes, controlled release rates, and increasing time in the gastrointestinal tract. Advances in 3D printing for oral drug delivery systems have been investigated in terms of processes, materials, and effects. However, it is important to also consider other topics, such as the specific needs of the users to enhance drugs acceptability, the quality control processes due to the absence of approved guidelines, and the digitalization of the industry to respond to future challenges of the digital era; nevertheless, there are no studies that comprise these elements. To fill this gap, the aim of this research is to identify advances in terms of final end-user applications, quality assurance, user acceptability, and digital technologies for 3D-printed oral drug delivery systems. To accomplish this, a competitive technology intelligence (CTI) methodology was applied, where scientific literature was retrieved from the Web of Science covering the period from January 1, 1900, to May 1, 2023. For this task, a scientometric analysis was performed, and the main trends involving the previously mentioned elements were identified. In the first case, 3D-printed oral drug delivery systems are being designed for different purposes, including as anti-deterrent formulations to decrease the global problem of opioid abuse. For quality assurance, the results demonstrated the implementation of approaches like quality by design to increase the quality of the 3D-printed dosage forms. In the case of user acceptability, the interest in creating more attractive formulations was identified; for this, innovative technologies such as ColorJet 3D printing are being used. Lastly, regarding digital technologies, the importance of cyberattacks while sending the 3D-printed dosage form file to the 3D printer is highlighted; for this, cybersecurity systems are being studied. The outcomes of this study can add value to researchers, organizations, and investment firms interested in the R&D of novel and personalized treatments, and the areas of 3D printing, pharmaceutical, medical, and health.    ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136362191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.
{"title":"Bioprinting of cell-laden protein-based hydrogels: From cartilage to bone tissue engineering","authors":"Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani","doi":"10.36922/ijb.1089","DOIUrl":"https://doi.org/10.36922/ijb.1089","url":null,"abstract":"The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135097801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Santos-Beato, Andrew A. Pitsillides, Alberto Saiani, Aline Miller, Ryo Torii, Deepak M. Kalaskar
Cartilage pathology in human disease is poorly understood and requires further research. Various attempts have been made to study cartilage pathologies using in vitro human cartilage models as an alternative for preclinical research. Three-dimensional (3D) bioprinting is a technique that has been used to 3D-bioprint cartilage tissue models in vitro using animal-derived materials such as gelatine or hyaluronan, which present challenges in terms of scalability, reproducibility, and ethical concerns. We present an assessment of synthetic self-assembling peptides as bioinks for bioprinted human in vitro cartilage models. Primary human chondrocytes were mixed with PeptiInk Alpha 1, 3D-bioprinted and cultured for 14 days, and compared with 3D chondrocyte pellet controls. Cell viability was assessed through LIVE/DEAD assays and DNA quantification. High cell viability was observed in the PeptiInk culture, while a fast decrease in DNA levels was observed in the 3D pellet control. Histological evaluation using hematoxylin and eosin staining and immunofluorescence labeling for SOX-9, collagen type II, and aggrecan showed a homogeneous cell distribution in the 3D-bioprinted PeptiInks as well as high expression of chondrogenic markers in both control and PeptiInk cultures. mRNA expression levels assessed by - qRT-PCR (quantitative real time-polymerase chain reaction) confirmed chondrogenic cell behavior. These data showed promise in the potential use of PeptiInk Alpha 1 as a bioprintable manufacturing material for human cartilage in vitro models.
{"title":"Evaluation of a synthetic peptide-based bioink (PeptiInk Alpha 1) for in vitro 3D bioprinting of cartilage tissue models","authors":"Patricia Santos-Beato, Andrew A. Pitsillides, Alberto Saiani, Aline Miller, Ryo Torii, Deepak M. Kalaskar","doi":"10.36922/ijb.0899","DOIUrl":"https://doi.org/10.36922/ijb.0899","url":null,"abstract":"Cartilage pathology in human disease is poorly understood and requires further research. Various attempts have been made to study cartilage pathologies using in vitro human cartilage models as an alternative for preclinical research. Three-dimensional (3D) bioprinting is a technique that has been used to 3D-bioprint cartilage tissue models in vitro using animal-derived materials such as gelatine or hyaluronan, which present challenges in terms of scalability, reproducibility, and ethical concerns. We present an assessment of synthetic self-assembling peptides as bioinks for bioprinted human in vitro cartilage models. Primary human chondrocytes were mixed with PeptiInk Alpha 1, 3D-bioprinted and cultured for 14 days, and compared with 3D chondrocyte pellet controls. Cell viability was assessed through LIVE/DEAD assays and DNA quantification. High cell viability was observed in the PeptiInk culture, while a fast decrease in DNA levels was observed in the 3D pellet control. Histological evaluation using hematoxylin and eosin staining and immunofluorescence labeling for SOX-9, collagen type II, and aggrecan showed a homogeneous cell distribution in the 3D-bioprinted PeptiInks as well as high expression of chondrogenic markers in both control and PeptiInk cultures. mRNA expression levels assessed by - qRT-PCR (quantitative real time-polymerase chain reaction) confirmed chondrogenic cell behavior. These data showed promise in the potential use of PeptiInk Alpha 1 as a bioprintable manufacturing material for human cartilage in vitro models.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135204658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengbei Fan, Fanli Jin, Yanqin Qin, Yuanyuan Wu, Qingzhen Yang, Han Liu, Jiansheng Li
Lung tissue engineering (LTE) has gained significant attention as a highly promising and innovative strategy to tackle the formidable obstacles posed by lung-related diseases and the lack of compatible donor organs availability. In the realm of groundbreaking advancements in tissue engineering (TE), one particular technology that has emerged as a game-changer is three-dimensional (3D) bioprinting. It distinguishes itself by offering a potent and versatile approach to constructing intricate structures while opening up new horizons for TE and regenerative medicine (RM). This review focuses on the application of multiscale 3D bioprinting techniques in LTE and the reconstitution of lung tissue in vitro. We analyzed the key aspects such as bioink formulations and printing strategies utilized from macroscale 3D bioprinting to micro/nanoscale 3D bioprinting. Additionally, we evaluated the potential of multiscale bioprinting to replicate the complex architecture of the lung, ranging from macrostructures to micro/nanoscale features. We discussed the challenges and future directions in biofabrication approaches for LTE. Furthermore, we highlight the current progress and future perspectives in tissue reconstitution of lung in vitro, considering factors such as cell source, functionalization, and integration of physiological cues. Overall, multiscale 3D bioprinting offers exciting possibilities for the development of functional lung tissues, enabling disease modeling, new drug screening, and personalized regenerative therapies.
{"title":"Multiscale 3D bioprinting for the recapitulation of lung tissue","authors":"Pengbei Fan, Fanli Jin, Yanqin Qin, Yuanyuan Wu, Qingzhen Yang, Han Liu, Jiansheng Li","doi":"10.36922/ijb.1166","DOIUrl":"https://doi.org/10.36922/ijb.1166","url":null,"abstract":"Lung tissue engineering (LTE) has gained significant attention as a highly promising and innovative strategy to tackle the formidable obstacles posed by lung-related diseases and the lack of compatible donor organs availability. In the realm of groundbreaking advancements in tissue engineering (TE), one particular technology that has emerged as a game-changer is three-dimensional (3D) bioprinting. It distinguishes itself by offering a potent and versatile approach to constructing intricate structures while opening up new horizons for TE and regenerative medicine (RM). This review focuses on the application of multiscale 3D bioprinting techniques in LTE and the reconstitution of lung tissue in vitro. We analyzed the key aspects such as bioink formulations and printing strategies utilized from macroscale 3D bioprinting to micro/nanoscale 3D bioprinting. Additionally, we evaluated the potential of multiscale bioprinting to replicate the complex architecture of the lung, ranging from macrostructures to micro/nanoscale features. We discussed the challenges and future directions in biofabrication approaches for LTE. Furthermore, we highlight the current progress and future perspectives in tissue reconstitution of lung in vitro, considering factors such as cell source, functionalization, and integration of physiological cues. Overall, multiscale 3D bioprinting offers exciting possibilities for the development of functional lung tissues, enabling disease modeling, new drug screening, and personalized regenerative therapies.    ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135492003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang
The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.
{"title":"Lightweight load-bearing heat dissipation multifunctional pomelo peel-inspired structures fabricated by laser powder bed fusion","authors":"Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang","doi":"10.36922/ijb.1011","DOIUrl":"https://doi.org/10.36922/ijb.1011","url":null,"abstract":"   The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136242101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Type 1 diabetes (T1D) is characterized by the degeneration of insulin-producing beta cells within pancreatic islets, resulting in impaired endogenous insulin synthesis, which necessitates exogenous insulin therapy. Although intensive insulin therapy has been effective in many patients, a subset of individuals with unstable T1D encounter challenges in maintaining optimal glycemic control through insulin injections. Pancreatic islet transplantation has emerged as a promising therapeutic alternative for such patients, offering enhanced glucose regulation, reduced risk of complications, and liberation from exogenous insulin reliance. However, impediments such as immune rejection and the need for an optimal transplantation environment limit the success of islet transplantation. Revascularization, a crucial requirement for proper islet functionality, poses a challenge in transplantation settings. Biomaterial-based biofabrication approaches have attracted considerable attention to address these challenges. Biomaterials engineered to emulate the native extracellular matrix provide a supportive environment for islet viability and functionality. This review article presents the recent advancements in biomaterials and biofabrication technologies aimed at engineering cell delivery systems to enhance the efficacy of islet transplantation. Immune protection and vascularization strategies are discussed, key biomaterials employed in islet transplantation are highlighted, and various biofabrication techniques, including electrospinning, microfabrication, and bioprinting, are explored. Furthermore, the future directions and challenges in the field of cell delivery systems for islet transplantation are discussed. The integration of appropriate biomaterials and biofabrication methods has significant potential to promote successful islet transplantation by facilitating vascularization and bolstering the immune defense mechanisms.
{"title":"Advancements in biomaterials and biofabrication for enhancing islet transplantation","authors":"Dayoon Kang, Jaewook Kim, Jinah Jang","doi":"10.36922/ijb.1024","DOIUrl":"https://doi.org/10.36922/ijb.1024","url":null,"abstract":"Type 1 diabetes (T1D) is characterized by the degeneration of insulin-producing beta cells within pancreatic islets, resulting in impaired endogenous insulin synthesis, which necessitates exogenous insulin therapy. Although intensive insulin therapy has been effective in many patients, a subset of individuals with unstable T1D encounter challenges in maintaining optimal glycemic control through insulin injections. Pancreatic islet transplantation has emerged as a promising therapeutic alternative for such patients, offering enhanced glucose regulation, reduced risk of complications, and liberation from exogenous insulin reliance. However, impediments such as immune rejection and the need for an optimal transplantation environment limit the success of islet transplantation. Revascularization, a crucial requirement for proper islet functionality, poses a challenge in transplantation settings. Biomaterial-based biofabrication approaches have attracted considerable attention to address these challenges. Biomaterials engineered to emulate the native extracellular matrix provide a supportive environment for islet viability and functionality. This review article presents the recent advancements in biomaterials and biofabrication technologies aimed at engineering cell delivery systems to enhance the efficacy of islet transplantation. Immune protection and vascularization strategies are discussed, key biomaterials employed in islet transplantation are highlighted, and various biofabrication techniques, including electrospinning, microfabrication, and bioprinting, are explored. Furthermore, the future directions and challenges in the field of cell delivery systems for islet transplantation are discussed. The integration of appropriate biomaterials and biofabrication methods has significant potential to promote successful islet transplantation by facilitating vascularization and bolstering the immune defense mechanisms.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}