Xiaolong Zhu, Feng Chen, Hong Cao, Ling Li, Ning He, Xiaoxiao Han
3D-printed scaffolds that forge a new path for regenerative medicine are widely used in breast reconstruction due to their personalized shape and adjustable mechanical properties. However, the elastic modulus of present breast scaffolds is significantly higher than that of native breast tissue, leading to insufficient stimulation for cell differentiation and tissue formation. In addition, the lack of a tissue-like environment results in breast scaffolds being difficult to promote cell growth. This paper presents a geometrically new scaffold, featuring a triply periodic minimal surface (TPMS) that ensures structural stability and multiple parallel channels that can modulate elastic modulus as required. The geometrical parameters for TPMS and parallel channels were optimized to obtain ideal elastic modulus and permeability through numerical simulations. The topologically optimized scaffold integrated with two types of structures was then fabricated using fused deposition modeling. Finally, the poly (ethylene glycol) diacrylate/gelatin methacrylate hydrogel loaded with human adipose-derived stem cells was incorporated into the scaffold by perfusion and ultraviolet curing for improvement of the cell growth environment. Compressive experiments were also performed to verify the mechanical performance of the scaffold, demonstrating high structural stability, appropriate tissue-like elastic modulus (0.2 - 0.83 MPa), and rebound capability (80% of the original height). In addition, the scaffold exhibited a wide energy absorption window, offering reliable load buffering capability. The biocompatibility was also confirmed by cell live/dead staining assay.
{"title":"Design and fused deposition modeling of triply periodic minimal surface scaffolds with channels and hydrogel for breast reconstruction.","authors":"Xiaolong Zhu, Feng Chen, Hong Cao, Ling Li, Ning He, Xiaoxiao Han","doi":"10.18063/ijb.685","DOIUrl":"https://doi.org/10.18063/ijb.685","url":null,"abstract":"<p><p>3D-printed scaffolds that forge a new path for regenerative medicine are widely used in breast reconstruction due to their personalized shape and adjustable mechanical properties. However, the elastic modulus of present breast scaffolds is significantly higher than that of native breast tissue, leading to insufficient stimulation for cell differentiation and tissue formation. In addition, the lack of a tissue-like environment results in breast scaffolds being difficult to promote cell growth. This paper presents a geometrically new scaffold, featuring a triply periodic minimal surface (TPMS) that ensures structural stability and multiple parallel channels that can modulate elastic modulus as required. The geometrical parameters for TPMS and parallel channels were optimized to obtain ideal elastic modulus and permeability through numerical simulations. The topologically optimized scaffold integrated with two types of structures was then fabricated using fused deposition modeling. Finally, the poly (ethylene glycol) diacrylate/gelatin methacrylate hydrogel loaded with human adipose-derived stem cells was incorporated into the scaffold by perfusion and ultraviolet curing for improvement of the cell growth environment. Compressive experiments were also performed to verify the mechanical performance of the scaffold, demonstrating high structural stability, appropriate tissue-like elastic modulus (0.2 - 0.83 MPa), and rebound capability (80% of the original height). In addition, the scaffold exhibited a wide energy absorption window, offering reliable load buffering capability. The biocompatibility was also confirmed by cell live/dead staining assay.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"685"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/c3/IJB-9-2-685.PMC10090808.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iruthayapandi Selestin Raja, Moon Sung Kang, Suck Won Hong, Hojae Bae, Bongju Kim, Yu-Shik Hwang, Jae Min Cha, Dong-Wook Han
181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.
{"title":"State-of-the-art techniques for promoting tissue regeneration: Combination of three-dimensional bioprinting and carbon nanomaterials.","authors":"Iruthayapandi Selestin Raja, Moon Sung Kang, Suck Won Hong, Hojae Bae, Bongju Kim, Yu-Shik Hwang, Jae Min Cha, Dong-Wook Han","doi":"10.18063/ijb.v9i1.635","DOIUrl":"https://doi.org/10.18063/ijb.v9i1.635","url":null,"abstract":"<p><p>181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 1","pages":"635"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/55/IJB-9-1-635.PMC9947385.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9340843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresa Carranza, Jone Uranga, Ainhoa Irastorza, Ander Izeta, Pedro Guerrero, Koro de la Caba
In this study, novel scaffolds based on natural polymers were developed by combining 3D printing (3DP) and electrospinning (ES) techniques. ES ink was prepared with gelatin and poly(vinyl alcohol) (PVA), while 3DP ink was prepared with gelatin and chitin. Different biopolymers were used to confer unique properties to each ink and obtain a multilayered scaffold suitable for tissue regeneration. First, gelatin is able to exhibit the characteristics needed for both inks since gelatin chains contain arginineglycine-aspartic (RGD) motifs, an important sequence in the promotion of cell adhesion, which gives gelatin an improved biological behavior in comparison to other polymers. Additionally, PVA was selected for ES ink to facilitate gelatin spinnability, and chitin was incorporated into 3DP ink as reinforcement to provide mechanical support and protection to the overall design. In this work, chitin was extracted from fruit fly pupae. The high extraction yield and purity of the chitin obtained from the fruit fly pupae confirmed that this pupa is an alternative source to produce chitin. Once the chitin was characterized, both inks were prepared and rheological analysis was carried out in order to confirm the shear thinning behavior required for additive manufacturing processes. The combination of 3DP and ES processes resulted in porous scaffolds, which were proven biocompatible, highlighting their potential for biomedical applications.
{"title":"Combination of 3D printing and electrospinning to develop chitin/gelatin/PVA scaffolds.","authors":"Teresa Carranza, Jone Uranga, Ainhoa Irastorza, Ander Izeta, Pedro Guerrero, Koro de la Caba","doi":"10.18063/ijb.701","DOIUrl":"https://doi.org/10.18063/ijb.701","url":null,"abstract":"<p><p>In this study, novel scaffolds based on natural polymers were developed by combining 3D printing (3DP) and electrospinning (ES) techniques. ES ink was prepared with gelatin and poly(vinyl alcohol) (PVA), while 3DP ink was prepared with gelatin and chitin. Different biopolymers were used to confer unique properties to each ink and obtain a multilayered scaffold suitable for tissue regeneration. First, gelatin is able to exhibit the characteristics needed for both inks since gelatin chains contain arginineglycine-aspartic (RGD) motifs, an important sequence in the promotion of cell adhesion, which gives gelatin an improved biological behavior in comparison to other polymers. Additionally, PVA was selected for ES ink to facilitate gelatin spinnability, and chitin was incorporated into 3DP ink as reinforcement to provide mechanical support and protection to the overall design. In this work, chitin was extracted from fruit fly pupae. The high extraction yield and purity of the chitin obtained from the fruit fly pupae confirmed that this pupa is an alternative source to produce chitin. Once the chitin was characterized, both inks were prepared and rheological analysis was carried out in order to confirm the shear thinning behavior required for additive manufacturing processes. The combination of 3DP and ES processes resulted in porous scaffolds, which were proven biocompatible, highlighting their potential for biomedical applications.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 3","pages":"701"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/cc/IJB-9-3-701.PMC10236333.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhang Guoqing, Li Junxin, Zhou Xiaoyu, Zhou Yongsheng, Yuchao Bai
In order to generate a high-performance personalized biological fixation plate with matching mechanical properties and biocompatibility, reverse reconstruction and fracture reduction of a femur were performed by combining reverse and forward approaches, and the surface was extracted according to the installation position of the plate to complete plate modeling by shifting, thickening, and performing other operations. Subsequently, topology optimization and three-dimensional (3D) printing were performed, and the properties of the manufactured plate were probed. The results showed that the maximum displacement of the plate was 4.13 mm near the femoral head, the maximum stress was 5.15e2 MPa on both sides of the plate across its entire length, and the stress concentration decreased following topology optimization. The plate with optimized topology and filled with porous structure has a good filling effect. The final mass of the H-shaped plate was 12.05 g, while that of the B-shaped plate was 11.05 g, which dropped by 20.93% and 27.49%, respectively, compared with the original plate. The surface of the 3D-printed plate was bright and new, with a clear pore structure and good lap joint. The B-shaped and H-shaped plates were closely dovetailed with the host bone, which met the assembly requirements. This lays a foundation for the direct application of a high-performance personalized biological fixation plate.
{"title":"The design and processing of a 3D-printed high-performance biological fixation plate.","authors":"Zhang Guoqing, Li Junxin, Zhou Xiaoyu, Zhou Yongsheng, Yuchao Bai","doi":"10.18063/ijb.v9i2.658","DOIUrl":"https://doi.org/10.18063/ijb.v9i2.658","url":null,"abstract":"<p><p>In order to generate a high-performance personalized biological fixation plate with matching mechanical properties and biocompatibility, reverse reconstruction and fracture reduction of a femur were performed by combining reverse and forward approaches, and the surface was extracted according to the installation position of the plate to complete plate modeling by shifting, thickening, and performing other operations. Subsequently, topology optimization and three-dimensional (3D) printing were performed, and the properties of the manufactured plate were probed. The results showed that the maximum displacement of the plate was 4.13 mm near the femoral head, the maximum stress was 5.15e<sup>2</sup> MPa on both sides of the plate across its entire length, and the stress concentration decreased following topology optimization. The plate with optimized topology and filled with porous structure has a good filling effect. The final mass of the H-shaped plate was 12.05 g, while that of the B-shaped plate was 11.05 g, which dropped by 20.93% and 27.49%, respectively, compared with the original plate. The surface of the 3D-printed plate was bright and new, with a clear pore structure and good lap joint. The B-shaped and H-shaped plates were closely dovetailed with the host bone, which met the assembly requirements. This lays a foundation for the direct application of a high-performance personalized biological fixation plate.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"658"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f2/04/IJB-9-2-658.PMC10231755.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9571939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhang, Ruixing Liu, Xiaowu Liu, Songlin Hou, Runan Dou, Xingchen Geng, Yan Li, Jingguo Li, Lei Zhu, Zhanrong Li
In the present work, we used three-dimensional (3D) printing technology to make a polylactic acid (PLA) amniotic fornical ring (AFR) for ocular surface reconstruction. This work is a retrospective and interventional case series of patients with ocular surface diseases who underwent either personalized 3D-printed AFR-assisted amniotic membrane transplantation (AMT) or sutured AMT (SAMT). Patient epidemiology, treatment, operative duration, epithelial healing time, retention time, vision changes, morbidity, and costs were analyzed. Thirty-one patients (40 eyes) and 19 patients (22 eyes) were enrolled in the 3D-printed AFR group and the SAMT group, respectively. The clinical indications of AFR and SAMT were similar, such as corneal and/or conjunctival epithelial defects due to chemical burns, thermal burns, Stevens-Johnson syndrome (SJS), or toxic epidermal necrolysis (TEN). The mean dissolution time was 15 ± 11 days in the AFR group, compared with 14 ± 7 days in the SAMT group. The percentage of healed corneal area was 90.91% (66.10%-100.00%) for AFR and 93.67% (60.23%-100.00%) for SAMT. The median time for corneal epithelial healing was 14 (7-75) days in the AFR group and 30 (14-55) days in the suture AMT group. There were no significant differences in the initial visual acuity, final visual acuity, or improvement in visual acuity between the two groups. The operation duration in the AFR group was significantly shorter than that in the SAMT group. Regarding the cost analysis, the average cost per eye in the AFR group was significantly lower than that in the SAMT group. Furthermore, 3D-printed and sterile AFR showed no obvious side effects on the eyes. Our results suggested that 3D-printed PLA scaffolds could be used as an AFR device for ocular surface disease. In addition, personalized 3D-printed AFR is superior to conventional AMT in operation duration and cost effectiveness, thereby reducing the financial burden on our health care system.
{"title":"Personalized 3D-printed amniotic fornical ring for ocular surface reconstruction.","authors":"Nan Zhang, Ruixing Liu, Xiaowu Liu, Songlin Hou, Runan Dou, Xingchen Geng, Yan Li, Jingguo Li, Lei Zhu, Zhanrong Li","doi":"10.18063/ijb.713","DOIUrl":"https://doi.org/10.18063/ijb.713","url":null,"abstract":"<p><p>In the present work, we used three-dimensional (3D) printing technology to make a polylactic acid (PLA) amniotic fornical ring (AFR) for ocular surface reconstruction. This work is a retrospective and interventional case series of patients with ocular surface diseases who underwent either personalized 3D-printed AFR-assisted amniotic membrane transplantation (AMT) or sutured AMT (SAMT). Patient epidemiology, treatment, operative duration, epithelial healing time, retention time, vision changes, morbidity, and costs were analyzed. Thirty-one patients (40 eyes) and 19 patients (22 eyes) were enrolled in the 3D-printed AFR group and the SAMT group, respectively. The clinical indications of AFR and SAMT were similar, such as corneal and/or conjunctival epithelial defects due to chemical burns, thermal burns, Stevens-Johnson syndrome (SJS), or toxic epidermal necrolysis (TEN). The mean dissolution time was 15 ± 11 days in the AFR group, compared with 14 ± 7 days in the SAMT group. The percentage of healed corneal area was 90.91% (66.10%-100.00%) for AFR and 93.67% (60.23%-100.00%) for SAMT. The median time for corneal epithelial healing was 14 (7-75) days in the AFR group and 30 (14-55) days in the suture AMT group. There were no significant differences in the initial visual acuity, final visual acuity, or improvement in visual acuity between the two groups. The operation duration in the AFR group was significantly shorter than that in the SAMT group. Regarding the cost analysis, the average cost per eye in the AFR group was significantly lower than that in the SAMT group. Furthermore, 3D-printed and sterile AFR showed no obvious side effects on the eyes. Our results suggested that 3D-printed PLA scaffolds could be used as an AFR device for ocular surface disease. In addition, personalized 3D-printed AFR is superior to conventional AMT in operation duration and cost effectiveness, thereby reducing the financial burden on our health care system.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 3","pages":"713"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/2c/IJB-9-3-713.PMC10236349.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9576907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhang Du, Ziqing Zhu, Jia Liu, Xiaogang Bao, Qian Wang, Changgui Shi, Chaoqian Zhao, Guohua Xu, Dejian Li
Articular osteochondral defects are quite common in clinical practice, and tissue engineering techniques can offer a promising therapeutic option to address this issue.The articular osteochondral unit comprises hyaline cartilage, calcified cartilage zone (CCZ), and subchondral bone.As the interface layer of articular cartilage and bone, the CCZ plays an essentialpart in stress transmission and microenvironmental regulation.Osteochondral scaffolds with the interface structure for defect repair are the future direction of tissue engineering. Three-dimensional (3D) printing has the advantages of speed, precision, and personalized customization, which can satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. This paper summarizes the anatomy, physiology, pathology, and restoration mechanisms of the articular osteochondral unit, and reviews the necessity for a boundary layer structure in osteochondral tissue engineering scaffolds and the strategy for constructing the scaffolds using 3D printing. In the future, we should not only strengthen the basic research on osteochondral structural units, but also actively explore the application of 3D printing technology in osteochondral tissue engineering. This will enable better functional and structural bionics of the scaffold, which ultimately improve the repair of osteochondral defects caused by various diseases.
{"title":"3D-printed gradient scaffolds for osteochondral defects: Current status and perspectives.","authors":"Jianhang Du, Ziqing Zhu, Jia Liu, Xiaogang Bao, Qian Wang, Changgui Shi, Chaoqian Zhao, Guohua Xu, Dejian Li","doi":"10.18063/ijb.724","DOIUrl":"https://doi.org/10.18063/ijb.724","url":null,"abstract":"<p><p>Articular osteochondral defects are quite common in clinical practice, and tissue engineering techniques can offer a promising therapeutic option to address this issue.The articular osteochondral unit comprises hyaline cartilage, calcified cartilage zone (CCZ), and subchondral bone.As the interface layer of articular cartilage and bone, the CCZ plays an essentialpart in stress transmission and microenvironmental regulation.Osteochondral scaffolds with the interface structure for defect repair are the future direction of tissue engineering. Three-dimensional (3D) printing has the advantages of speed, precision, and personalized customization, which can satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. This paper summarizes the anatomy, physiology, pathology, and restoration mechanisms of the articular osteochondral unit, and reviews the necessity for a boundary layer structure in osteochondral tissue engineering scaffolds and the strategy for constructing the scaffolds using 3D printing. In the future, we should not only strengthen the basic research on osteochondral structural units, but also actively explore the application of 3D printing technology in osteochondral tissue engineering. This will enable better functional and structural bionics of the scaffold, which ultimately improve the repair of osteochondral defects caused by various diseases.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 4","pages":"724"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/eb/IJB-9-4-724.PMC10261157.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the body's largest organ, the skin has important roles in barrier function, immune response, prevention of water loss and excretion of waste. Patients with extensive and severe skin lesions would die due to insufficient graftable skin. Commonly used treatments include autologous skin grafts, allogeneic/allogeneic skin grafts, cytoactive factors, cell therapy, and dermal substitutes. However, traditional treatment methods are still inadequate regarding skin repair time, treatment costs, and treatment results. In recent years, the rapid development of bioprinting technology has provided new ideas to solve the above-mentioned challenges. This review describes the principles of bioprinting technology and research advances in wound dressing and healing. This review features a data mining and statistical analysis of this topic through bibliometrics. The annual publications on this topic, participating countries, and institutions were used to understand the development history. Keyword analysis was used to understand the focus of investigation and challenges in this topic. According to bibliometric analysis, bioprinting in wound dressing and healing is in an explosive phase, and future research should focus on discovering new cell sources, innovative bioink development, and developing large-scale printing technology processes.
{"title":"Research progress and challenges of bioprinting in wound dressing and healing: Bibliometrics-based analysis and perspectives.","authors":"Shuduan Mao, Junjie Man, Jialei Wang, Li Fu, Chengliang Yin, Hassan Karimi-Maleh","doi":"10.18063/ijb.v9i2.653","DOIUrl":"https://doi.org/10.18063/ijb.v9i2.653","url":null,"abstract":"<p><p>As the body's largest organ, the skin has important roles in barrier function, immune response, prevention of water loss and excretion of waste. Patients with extensive and severe skin lesions would die due to insufficient graftable skin. Commonly used treatments include autologous skin grafts, allogeneic/allogeneic skin grafts, cytoactive factors, cell therapy, and dermal substitutes. However, traditional treatment methods are still inadequate regarding skin repair time, treatment costs, and treatment results. In recent years, the rapid development of bioprinting technology has provided new ideas to solve the above-mentioned challenges. This review describes the principles of bioprinting technology and research advances in wound dressing and healing. This review features a data mining and statistical analysis of this topic through bibliometrics. The annual publications on this topic, participating countries, and institutions were used to understand the development history. Keyword analysis was used to understand the focus of investigation and challenges in this topic. According to bibliometric analysis, bioprinting in wound dressing and healing is in an explosive phase, and future research should focus on discovering new cell sources, innovative bioink development, and developing large-scale printing technology processes.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"653"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f5/70/IJB-9-2-653.PMC10090536.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9687462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cartilage damage is a common orthopedic disease, which can be caused by sports injury, obesity, joint wear, and aging, and cannot be repaired by itself. Surgical autologous osteochondral grafting is often required in deep osteochondral lesions to avoid the later progression of osteoarthritis. In this study, we fabricated a gelatin methacryloyl-marrow mesenchymal stem cells (GelMA-MSCs) scaffold by three-dimensional (3D) bioprinting. This bioink is capable of fast gel photocuring and spontaneous covalent cross-linking, which can maintain high viability of MSCs and provide a benign microenvironment to promote the interaction, migration, and proliferation of cells. In vivo experiments, further, proved that the 3D bioprinting scaffold can promote the regeneration of cartilage collagen fibers and have a remarkable effect on cartilage repair of rabbit cartilage injury model, which may represent a general and versatile strategy for precise engineering of cartilage regeneration system.
{"title":"Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting.","authors":"Zijie Pei, Mingyang Gao, Junhui Xing, Changbao Wang, Piqian Zhao, Hongtao Zhang, Jing Qu","doi":"10.18063/ijb.v9i2.662","DOIUrl":"https://doi.org/10.18063/ijb.v9i2.662","url":null,"abstract":"<p><p>Cartilage damage is a common orthopedic disease, which can be caused by sports injury, obesity, joint wear, and aging, and cannot be repaired by itself. Surgical autologous osteochondral grafting is often required in deep osteochondral lesions to avoid the later progression of osteoarthritis. In this study, we fabricated a gelatin methacryloyl-marrow mesenchymal stem cells (GelMA-MSCs) scaffold by three-dimensional (3D) bioprinting. This bioink is capable of fast gel photocuring and spontaneous covalent cross-linking, which can maintain high viability of MSCs and provide a benign microenvironment to promote the interaction, migration, and proliferation of cells. <i>In vivo</i> experiments, further, proved that the 3D bioprinting scaffold can promote the regeneration of cartilage collagen fibers and have a remarkable effect on cartilage repair of rabbit cartilage injury model, which may represent a general and versatile strategy for precise engineering of cartilage regeneration system.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"662"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/02/IJB-9-2-662.PMC10090535.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9687463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahram Parvaneh, Lajos Kemény, Ameneh Ghaffarinia, Reza Yarani, Zoltán Veréb
256Diabetes is an autoimmune disease that ensues when the pancreas does not deliver adequate insulin or when the body cannot react to the existing insulin. Type 1 diabetes is an autoimmune disease defined by continuous high blood sugar levels and insulin deficiency due to β-cell destruction in the islets of Langerhans (pancreatic islets). Long-term complications, such as vascular degeneration, blindness, and renal failure, result from periodic glucose-level fluctuations following exogenous insulin therapy. Nevertheless, the shortage of organ donors and the lifelong dependency on immunosuppressive drugs limit the transplantation of the entire pancreas or pancreas islet, which is the therapy for this disease. Although encapsulating pancreatic islets using multiple hydrogels creates a semi-privileged environment to prevent immune rejection, hypoxia that occurs in the core of the capsules is the main hindrance that should be solved. Bioprinting technology is an innovative process in advanced tissue engineering that allows the arranging of a wide array of cell types, biomaterials, and bioactive factors as a bioink to simulate the native tissue environment for fabricating clinically applicable bioartificial pancreatic islet tissue. Multipotent stem cells have the potential to be a possible solution for donor scarcity and can be a reliable source for generating autograft and allograft functional β-cells or even pancreatic islet-like tissue. The use of supporting cells, such as endothelial cells, regulatory T cells, and mesenchymal stem cells, in the bioprinting of pancreatic islet-like construct could enhance vasculogenesis and regulate immune activity. Moreover, scaffolds bioprinted using biomaterials that can release oxygen postprinting or enhance angiogenesis could increase the function of β-cells and the survival of pancreatic islets, which could represent a promising avenue.
{"title":"Three-dimensional bioprinting of functional β-islet-like constructs.","authors":"Shahram Parvaneh, Lajos Kemény, Ameneh Ghaffarinia, Reza Yarani, Zoltán Veréb","doi":"10.18063/ijb.v9i2.665","DOIUrl":"https://doi.org/10.18063/ijb.v9i2.665","url":null,"abstract":"<p><p>256Diabetes is an autoimmune disease that ensues when the pancreas does not deliver adequate insulin or when the body cannot react to the existing insulin. Type 1 diabetes is an autoimmune disease defined by continuous high blood sugar levels and insulin deficiency due to β-cell destruction in the islets of Langerhans (pancreatic islets). Long-term complications, such as vascular degeneration, blindness, and renal failure, result from periodic glucose-level fluctuations following exogenous insulin therapy. Nevertheless, the shortage of organ donors and the lifelong dependency on immunosuppressive drugs limit the transplantation of the entire pancreas or pancreas islet, which is the therapy for this disease. Although encapsulating pancreatic islets using multiple hydrogels creates a semi-privileged environment to prevent immune rejection, hypoxia that occurs in the core of the capsules is the main hindrance that should be solved. Bioprinting technology is an innovative process in advanced tissue engineering that allows the arranging of a wide array of cell types, biomaterials, and bioactive factors as a bioink to simulate the native tissue environment for fabricating clinically applicable bioartificial pancreatic islet tissue. Multipotent stem cells have the potential to be a possible solution for donor scarcity and can be a reliable source for generating autograft and allograft functional β-cells or even pancreatic islet-like tissue. The use of supporting cells, such as endothelial cells, regulatory T cells, and mesenchymal stem cells, in the bioprinting of pancreatic islet-like construct could enhance vasculogenesis and regulate immune activity. Moreover, scaffolds bioprinted using biomaterials that can release oxygen postprinting or enhance angiogenesis could increase the function of β-cells and the survival of pancreatic islets, which could represent a promising avenue.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"665"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/96/31/IJB-9-2-665.PMC10090816.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9687467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Liu, Yangyang Liu, Jiayue Liu, Yuwei Li, Jian-Bo Wan, Yiming Niu, Lei Dong, Li Du, Chunming Wang
Edible bird's nests (EBN)-the nests of swiftlet birds harvested from the wild- are high-end healthcare food in East Asia, while their excessive harvesting poses increasing ecological, environmental, and food safety concerns. Here, we report for the first time a tissue-engineering (TE) approach for fabricating EBNs substitutes by integrating the technologies of three-dimensional (3D) printing and live cell culture. The engineered products, tissue-engineered edible bird's nests (TeeBN), comprise two layers. The first is a feeding layer that encapsulates epithelial cells in 3D-printed biocompatible gelation scaffolds. These cells secrete bioactive ingredients, e.g., sialic acid and epidermal growth factors (EGF), recapitulating the natural production of these substances by birds. The second is a receiving layer, consisting of foodgrade natural polymers, e.g., polysaccharides, which mimics the building blocks of natural EBNs while biologically stabilizing the factors released from the feeding layer. In vitro characterizations demonstrate that the feeding layer facilitates 3D cell growth and functions, and the receiving layer (as the end product) contains the necessary nutrients expected from natural EBNs-while without harmful substances commonly detected in natural EBNs. Further, in vivo metabolomics studies in mice indicate that TeeBN showed a similar profile of serum metabolites as natural EBN, reflecting comparable nutritional effects. In summary, we innovatively developed a tissue engineering-based substitute for EBNs with comparable metabolic functions and minimized safety risks, opening a new avenue for producing delicacy food from laboratorial cell culture with 3D printing technology.
{"title":"Tissue-engineered edible bird's nests (TeeBN).","authors":"Yu Liu, Yangyang Liu, Jiayue Liu, Yuwei Li, Jian-Bo Wan, Yiming Niu, Lei Dong, Li Du, Chunming Wang","doi":"10.18063/ijb.691","DOIUrl":"https://doi.org/10.18063/ijb.691","url":null,"abstract":"<p><p>Edible bird's nests (EBN)-the nests of swiftlet birds harvested from the wild- are high-end healthcare food in East Asia, while their excessive harvesting poses increasing ecological, environmental, and food safety concerns. Here, we report for the first time a tissue-engineering (TE) approach for fabricating EBNs substitutes by integrating the technologies of three-dimensional (3D) printing and live cell culture. The engineered products, tissue-engineered edible bird's nests (TeeBN), comprise two layers. The first is a feeding layer that encapsulates epithelial cells in 3D-printed biocompatible gelation scaffolds. These cells secrete bioactive ingredients, e.g., sialic acid and epidermal growth factors (EGF), recapitulating the natural production of these substances by birds. The second is a receiving layer, consisting of foodgrade natural polymers, e.g., polysaccharides, which mimics the building blocks of natural EBNs while biologically stabilizing the factors released from the feeding layer. <i>In vitro</i> characterizations demonstrate that the feeding layer facilitates 3D cell growth and functions, and the receiving layer (as the end product) contains the necessary nutrients expected from natural EBNs-while without harmful substances commonly detected in natural EBNs. Further, <i>in vivo</i> metabolomics studies in mice indicate that TeeBN showed a similar profile of serum metabolites as natural EBN, reflecting comparable nutritional effects. In summary, we innovatively developed a tissue engineering-based substitute for EBNs with comparable metabolic functions and minimized safety risks, opening a new avenue for producing delicacy food from laboratorial cell culture with 3D printing technology.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 5","pages":"691"},"PeriodicalIF":8.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/24/IJB-9-5-691.PMC10339468.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}