首页 > 最新文献

International Journal of Bioprinting最新文献

英文 中文
Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair   3d打印甲基丙烯酸明胶基关节软骨修复生物材料的研究进展
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-08-01 DOI: 10.36922/ijb.0116
Liang Chen, Guowei Huang, Ming-Han Yu, Yang Liu, Tao Cheng, Aiguo Li, Wen Wang, Shengnan Qin
The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.
关节软骨的结构和组成复杂,其自愈能力有限,因此,一旦关节软骨受损,很难达到理想的愈合。近年来,三维打印技术为关节软骨的修复提供了新的可能。考虑到不同的几何结构和组织成分,工程软骨组织可以通过叠加定制墨水来制造。3D打印可以有效地用于制造具有复杂几何形状的高精度结构,解决了传统支架制造技术的不足。凝胶甲基丙烯酸酯(GelMA)是一种改性明胶,由于其光交联特性,目前是一种广泛使用的3D打印油墨。具有良好的生物相容性和可调节的物理性能,可为细胞增殖和生长因子释放提供良好的支架平台。鉴于3D打印技术在软骨修复中的作用已被广泛报道,本文综述了3D打印gelma基生物材料在关节软骨组织工程中的研究进展。我们主要关注3D打印技术如何解决关节软骨组织工程领域固有的现有挑战。我们强调在基于gelma的3D打印支架中实施的修改,以优化关节软骨再生。此外,我们还全面总结了gelma基生物材料的利用,这些生物材料包含各种细胞、生长因子或其他组织成分,并强调了这些适应性如何与3D打印技术的优势相结合,促进了关节软骨修复的改善。
{"title":"Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair  ","authors":"Liang Chen, Guowei Huang, Ming-Han Yu, Yang Liu, Tao Cheng, Aiguo Li, Wen Wang, Shengnan Qin","doi":"10.36922/ijb.0116","DOIUrl":"https://doi.org/10.36922/ijb.0116","url":null,"abstract":"The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"1 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80578932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting technology for the management of diabetic foot disease: Emerging applications, challenges, and prospects 糖尿病足病管理的生物打印技术:新兴应用、挑战和前景
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-31 DOI: 10.36922/ijb.0142
Fan Xu, Shunli Rui, Cheng Yang, Xiaoyan Jiang, Wei Wu, Xianlun Tang, David G Armstrong, Yu Ma, Wu Deng
Most conventional therapies have limitations in the repair of complex wounds caused by chronic inflammation in patients with diabetic foot ulcers (DFUs). In response to the demand for more biotechnology strategies, bioprinting has been explored in the regeneration field in recent years. However, challenges remain regarding the structure of complex models and the selection of proper biomaterials. The purpose of this review is to introduce the current applications of bioprinting technology in chronic diabetic foot wound healing. First, the most common application of bioprinting in producing skin equivalents to promote wound healing is introduced; second, functional improvements in the treatment of chronic and difficult-to-heal DFU wounds facilitated by bioprinting applications are discussed; and last but not least, bioprinting applications in addressing unique diabetic foot disease characteristics are summarized. Furthermore, the present work summarizes material selection and correlations between three-dimensional (3D) bioprinting and a variety of biomimetic strategies for accelerating wound healing. Novel, biotechnological tools such as organoids for developing new biomaterials for bioprinting in the future are also discussed. 
大多数传统疗法在修复糖尿病足溃疡(DFUs)患者慢性炎症引起的复杂伤口方面存在局限性。近年来,为了响应更多生物技术战略的需求,生物打印在再生领域得到了探索。然而,复杂模型的结构和适当生物材料的选择仍然存在挑战。本文就生物打印技术在慢性糖尿病足创面愈合中的应用现状进行综述。首先,介绍了生物打印在生产皮肤等效物以促进伤口愈合方面最常见的应用;其次,讨论了生物打印在治疗慢性和难以愈合的DFU伤口方面的功能改进;最后,总结了生物打印在解决糖尿病足病独特特征方面的应用。此外,本工作总结了材料选择和三维(3D)生物打印与各种加速伤口愈合的仿生策略之间的相关性。新的生物技术工具,如用于开发未来生物打印的新生物材料的类器官也进行了讨论。
{"title":"Bioprinting technology for the management of diabetic foot disease: Emerging applications, challenges, and prospects","authors":"Fan Xu, Shunli Rui, Cheng Yang, Xiaoyan Jiang, Wei Wu, Xianlun Tang, David G Armstrong, Yu Ma, Wu Deng","doi":"10.36922/ijb.0142","DOIUrl":"https://doi.org/10.36922/ijb.0142","url":null,"abstract":"Most conventional therapies have limitations in the repair of complex wounds caused by chronic inflammation in patients with diabetic foot ulcers (DFUs). In response to the demand for more biotechnology strategies, bioprinting has been explored in the regeneration field in recent years. However, challenges remain regarding the structure of complex models and the selection of proper biomaterials. The purpose of this review is to introduce the current applications of bioprinting technology in chronic diabetic foot wound healing. First, the most common application of bioprinting in producing skin equivalents to promote wound healing is introduced; second, functional improvements in the treatment of chronic and difficult-to-heal DFU wounds facilitated by bioprinting applications are discussed; and last but not least, bioprinting applications in addressing unique diabetic foot disease characteristics are summarized. Furthermore, the present work summarizes material selection and correlations between three-dimensional (3D) bioprinting and a variety of biomimetic strategies for accelerating wound healing. Novel, biotechnological tools such as organoids for developing new biomaterials for bioprinting in the future are also discussed.\u0000 ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82175129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chondrocyte spheroid-laden microporous hydrogel-based 3D bioprinting for cartilage regeneration 软骨细胞球负载微孔水凝胶生物3D打印软骨再生技术
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-28 DOI: 10.36922/ijb.0161
Ruiquan Liu, Litao Jia, Jianguo Chen, Y. Long, Jinshi Zeng, Siyu Liu, Bo Pan, Xia Liu, Haiyue Jiang
Three-dimensional (3D) bioprinting has brought new promising strategies for the regeneration of cartilage with specific shapes. In cartilage bioprinting, chondrocyte-laden hydrogels are the most commonly used bioinks. However, the dispersion of cells and the dense texture of the hydrogel in the conventional bioink may limit cell–cell/ cell–extracellular matrix (ECM) interactions, counting against cartilage regeneration and maturation. To address this issue, in this study, we developed a functional bioink for cartilage bioprinting based on chondrocyte spheroids (CSs) and microporous hydrogels, in which CSs as multicellular aggregates can provide extensive cell– cell/cell–ECM interactions to mimic the natural cartilage microenvironment, and microporous hydrogels can provide space and channel for the growth and fusion of the CSs. Firstly, we used a non-adhesive microporous system to produce homogeneous self-assembled CSs in high-throughput and evaluated the influence of different CSs preparation parameters (cell number and culture time) on CSs, which aids in the preparation of bioink suitable for cartilage bioprinting. Then, polyethylene oxide (PEO) was introduced into gelatin methacrylate (GelMA) to prepare microporous hydrogel. Finally, the CS-laden microporous hydrogels were printed, and the constructs were implanted into nude mice. The results showed that the CSs with 500 cells cultured for 1 day exhibited better proliferation and growth ability in microporous hydrogels compared to those with more cells and cultured for longer time. In addition, the results also demonstrated that the CS-laden bioink can be successfully printed into predefined lattice-shape constructs with little cell damage and regenerated cartilage tissue in vivo with a structure similar to natural cartilage characterized by typical lacunae structure and abundant cartilage-specific ECM deposition. In summary, our study verified the feasibility and advantages of using CSs as building blocks in cartilage bioprinting, which provides novel strategies for the fabrication and regeneration of patient-specific shaped cartilage. 
三维生物打印技术为特定形状软骨的再生带来了新的前景。在软骨生物打印中,满载软骨细胞的水凝胶是最常用的生物墨水。然而,在传统的生物连接中,细胞的分散和水凝胶的致密结构可能会限制细胞-细胞/细胞-细胞外基质(ECM)的相互作用,不利于软骨的再生和成熟。为了解决这一问题,在本研究中,我们开发了一种基于软骨细胞球体(CSs)和微孔水凝胶的软骨生物打印功能生物链接,其中软骨细胞球体作为多细胞聚集体可以提供广泛的细胞-细胞/细胞- ecm相互作用来模拟天然软骨微环境,微孔水凝胶可以为软骨细胞的生长和融合提供空间和通道。首先,我们采用无黏着微孔系统高通量制备了均匀自组装的CSs,并评估了不同的CSs制备参数(细胞数量和培养时间)对CSs的影响,这有助于制备适合软骨生物打印的生物墨水。然后,将聚氧化物(PEO)引入到甲基丙烯酸明胶(GelMA)中制备微孔水凝胶。最后,打印负载cs的微孔水凝胶,并将其植入裸鼠体内。结果表明,500个细胞培养1 d的CSs在微孔水凝胶中的增殖和生长能力优于细胞数量较多、培养时间较长的CSs。此外,结果还表明,cs -负载生物链接可以成功打印成预定义的晶格形状结构,细胞损伤小,并在体内再生软骨组织,其结构与天然软骨相似,具有典型的腔隙结构和丰富的软骨特异性ECM沉积。综上所述,我们的研究验证了使用CSs作为软骨生物打印构建块的可行性和优势,为患者特异性形状软骨的制造和再生提供了新的策略。
{"title":"Chondrocyte spheroid-laden microporous hydrogel-based 3D bioprinting for cartilage regeneration","authors":"Ruiquan Liu, Litao Jia, Jianguo Chen, Y. Long, Jinshi Zeng, Siyu Liu, Bo Pan, Xia Liu, Haiyue Jiang","doi":"10.36922/ijb.0161","DOIUrl":"https://doi.org/10.36922/ijb.0161","url":null,"abstract":"Three-dimensional (3D) bioprinting has brought new promising strategies for the regeneration of cartilage with specific shapes. In cartilage bioprinting, chondrocyte-laden hydrogels are the most commonly used bioinks. However, the dispersion of cells and the dense texture of the hydrogel in the conventional bioink may limit cell–cell/ cell–extracellular matrix (ECM) interactions, counting against cartilage regeneration and maturation. To address this issue, in this study, we developed a functional bioink for cartilage bioprinting based on chondrocyte spheroids (CSs) and microporous hydrogels, in which CSs as multicellular aggregates can provide extensive cell– cell/cell–ECM interactions to mimic the natural cartilage microenvironment, and microporous hydrogels can provide space and channel for the growth and fusion of the CSs. Firstly, we used a non-adhesive microporous system to produce homogeneous self-assembled CSs in high-throughput and evaluated the influence of different CSs preparation parameters (cell number and culture time) on CSs, which aids in the preparation of bioink suitable for cartilage bioprinting. Then, polyethylene oxide (PEO) was introduced into gelatin methacrylate (GelMA) to prepare microporous hydrogel. Finally, the CS-laden microporous hydrogels were printed, and the constructs were implanted into nude mice. The results showed that the CSs with 500 cells cultured for 1 day exhibited better proliferation and growth ability in microporous hydrogels compared to those with more cells and cultured for longer time. In addition, the results also demonstrated that the CS-laden bioink can be successfully printed into predefined lattice-shape constructs with little cell damage and regenerated cartilage tissue in vivo with a structure similar to natural cartilage characterized by typical lacunae structure and abundant cartilage-specific ECM deposition. In summary, our study verified the feasibility and advantages of using CSs as building blocks in cartilage bioprinting, which provides novel strategies for the fabrication and regeneration of patient-specific shaped cartilage.\u0000 ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78358794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoclay-reinforced alginate/salecan composite inks for 3D printing applications 纳米粘土增强海藻酸盐/salecan复合油墨用于3D打印应用
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-27 DOI: 10.36922/ijb.0967
R. Ianchiș, Maria Minodora Marin, Rebeca Leu Alexa, Ioana Catalina Gifu, E. Alexandrescu, G. Pîrcălăbioru, George Mihail Vlasceanu, George Mihail Teodorescu, A. Serafim, S. Preda, Cristina Lavinia Nistor, C. Petcu
The main objective of the present work was to produce three-dimensional (3D)- printable nanocomposite hydrogels based on two kinds of marine-sourced polysaccharides doped with nanoclay with potential biomedical application. First part of the research study investigated the preparation of the polysaccharide bicomponent hydrogel formulations followed by the selection of the optimal ratio of polysaccharides concentrations which ensured proper morphostructural stability of the 3D-printed constructs. Second step aimed to generate 3D scaffolds with high printing fidelity by modulating the nanoclay amount doped within the previously selected biopolymer ink. In compliance with the additive manufacturing experiments, the alginate–salecan hydrogels enriched with the highest nanofiller concentrations demonstrated the highest suitability for 3D printing process. The morphological and structural studies confirmed the ability of the nanocomposite formulations to efficiently produce porous 3D-printed constructs with improved fidelity. The morphostructural findings underlined the implication of choosing the appropriate ratio between components, as they have a considerable impact on the functionality of printing formulations and subsequent 3D-printed structures. Hence, from the obtained results, these novel hydrogel nanocomposites inks are considered valuable biomaterials with suitable features for applications in the additive manufacturing of 3D structures with precise shape for customized regenerative therapy. 
本工作的主要目的是制备三维(3D)可打印的纳米复合水凝胶,其基础是两种海洋多糖掺杂纳米粘土,具有潜在的生物医学应用前景。研究的第一部分研究了多糖双组分水凝胶配方的制备,然后选择最佳的多糖浓度比例,以确保3d打印结构体的适当形态结构稳定性。第二步的目标是通过调节在先前选择的生物聚合物墨水中掺杂纳米粘土的量来生成具有高打印保真度的3D支架。根据增材制造实验,富含最高纳米填料浓度的藻酸盐- salecan水凝胶最适合3D打印工艺。形态学和结构研究证实了纳米复合材料配方能够有效地生产出具有更高保真度的多孔3d打印结构。形态结构的发现强调了选择组件之间适当比例的含义,因为它们对打印配方和随后的3d打印结构的功能有相当大的影响。因此,从获得的结果来看,这些新型的水凝胶纳米复合材料墨水被认为是有价值的生物材料,具有合适的特征,可用于3D结构的增材制造,具有精确的形状,用于定制再生治疗。
{"title":"Nanoclay-reinforced alginate/salecan composite inks for 3D printing applications","authors":"R. Ianchiș, Maria Minodora Marin, Rebeca Leu Alexa, Ioana Catalina Gifu, E. Alexandrescu, G. Pîrcălăbioru, George Mihail Vlasceanu, George Mihail Teodorescu, A. Serafim, S. Preda, Cristina Lavinia Nistor, C. Petcu","doi":"10.36922/ijb.0967","DOIUrl":"https://doi.org/10.36922/ijb.0967","url":null,"abstract":"The main objective of the present work was to produce three-dimensional (3D)- printable nanocomposite hydrogels based on two kinds of marine-sourced polysaccharides doped with nanoclay with potential biomedical application. First part of the research study investigated the preparation of the polysaccharide bicomponent hydrogel formulations followed by the selection of the optimal ratio of polysaccharides concentrations which ensured proper morphostructural stability of the 3D-printed constructs. Second step aimed to generate 3D scaffolds with high printing fidelity by modulating the nanoclay amount doped within the previously selected biopolymer ink. In compliance with the additive manufacturing experiments, the alginate–salecan hydrogels enriched with the highest nanofiller concentrations demonstrated the highest suitability for 3D printing process. The morphological and structural studies confirmed the ability of the nanocomposite formulations to efficiently produce porous 3D-printed constructs with improved fidelity. The morphostructural findings underlined the implication of choosing the appropriate ratio between components, as they have a considerable impact on the functionality of printing formulations and subsequent 3D-printed structures. Hence, from the obtained results, these novel hydrogel nanocomposites inks are considered valuable biomaterials with suitable features for applications in the additive manufacturing of 3D structures with precise shape for customized regenerative therapy.\u0000 ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79926442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D bioprinting and scaffold-free strategies for fabrication of multi-cellular tissues or organoids 用于制造多细胞组织或类器官的3D生物打印和无支架策略
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-25 DOI: 10.36922/ijb.0135
Haoyu Li, Huixing Zhou, Chongwen Xu, Yen Wei, Xiuying Tang
The biofabrication of multi-cellular tissues or organoids (MTOs) has been challenging in regenerative medicine for decades. Currently, two primary technological approaches are being explored: scaffold-based strategies utilizing three-dimensional (3D) bioprinting techniques and scaffold-free strategies employing bioassembly techniques. 3D bioprinting techniques include jetting-based, extrusion-based, and vat photopolymerization-based methods, and bioassembly techniques include Kenzan, fluid-based manipulation and microfluid, bioprinting-assisted tissue emergence, and aspiration-assisted technology methods. Scaffold-based strategies primarily concentrate on the construction of scaffold structures to provide an extracellular environment, while scaffold-free strategies primarily emphasize the assembly methods of building blocks. Different biofabrication technologies have their advantages and limitations. This review provides an overview of the mechanisms, advantages, and limitations of scaffold-based and scaffold-free strategies in tissue engineering. It also compares the strengths and weaknesses of these two strategies, along with their respective suitability under different conditions. Moreover, the significant challenges in the future development of convergence strategies, specifically the integration of scaffold-based and scaffold-free approaches, are examined in an objective manner. This review concludes that integrating scaffold-based and scaffold-free strategies could overcome the problems in the biofabrication of MTOs. A novel fabrication method, the BioMicroMesh method, is proposed based on the convergence strategy. Concurrently, the development of a desktop-scale integrated intelligent biofabrication device, the BioMicroMesh system, is underway. This system is tailored to the BioMicroMesh method and incorporates cell aggregate spheroids preparation, 3D bioprinting, bioassembly, and multi-organoid co-culture functions, providing an objective perspective on its capabilities.
几十年来,多细胞组织或类器官(MTOs)的生物制造一直是再生医学领域的一个挑战。目前,人们正在探索两种主要的技术途径:利用三维生物打印技术的基于支架的策略和利用生物组装技术的无支架策略。生物3D打印技术包括基于喷射、基于挤压和基于还原光聚合的方法,生物组装技术包括Kenzan、基于流体的操作和微流体、生物打印辅助组织涌现和吸气辅助技术方法。基于支架的策略主要集中于支架结构的构建以提供细胞外环境,而无支架策略主要强调构建块的组装方法。不同的生物制造技术有其优点和局限性。本文综述了组织工程中基于支架和无支架策略的机制、优点和局限性。并比较了这两种策略的优缺点,以及它们在不同条件下的适用性。此外,以客观的方式审查了未来融合策略发展中的重大挑战,特别是基于支架和无支架方法的整合。综上所述,结合基于支架和无支架的策略可以克服mto生物制造中存在的问题。基于收敛策略,提出了一种新的制作方法——BioMicroMesh方法。与此同时,桌面级集成智能生物制造设备BioMicroMesh系统的开发正在进行中。该系统是为BioMicroMesh方法量身定制的,结合了细胞聚集体球体制备、3D生物打印、生物组装和多器官共培养功能,为其能力提供了客观的视角。
{"title":"3D bioprinting and scaffold-free strategies for fabrication of multi-cellular tissues or organoids","authors":"Haoyu Li, Huixing Zhou, Chongwen Xu, Yen Wei, Xiuying Tang","doi":"10.36922/ijb.0135","DOIUrl":"https://doi.org/10.36922/ijb.0135","url":null,"abstract":"The biofabrication of multi-cellular tissues or organoids (MTOs) has been challenging in regenerative medicine for decades. Currently, two primary technological approaches are being explored: scaffold-based strategies utilizing three-dimensional (3D) bioprinting techniques and scaffold-free strategies employing bioassembly techniques. 3D bioprinting techniques include jetting-based, extrusion-based, and vat photopolymerization-based methods, and bioassembly techniques include Kenzan, fluid-based manipulation and microfluid, bioprinting-assisted tissue emergence, and aspiration-assisted technology methods. Scaffold-based strategies primarily concentrate on the construction of scaffold structures to provide an extracellular environment, while scaffold-free strategies primarily emphasize the assembly methods of building blocks. Different biofabrication technologies have their advantages and limitations. This review provides an overview of the mechanisms, advantages, and limitations of scaffold-based and scaffold-free strategies in tissue engineering. It also compares the strengths and weaknesses of these two strategies, along with their respective suitability under different conditions. Moreover, the significant challenges in the future development of convergence strategies, specifically the integration of scaffold-based and scaffold-free approaches, are examined in an objective manner. This review concludes that integrating scaffold-based and scaffold-free strategies could overcome the problems in the biofabrication of MTOs. A novel fabrication method, the BioMicroMesh method, is proposed based on the convergence strategy. Concurrently, the development of a desktop-scale integrated intelligent biofabrication device, the BioMicroMesh system, is underway. This system is tailored to the BioMicroMesh method and incorporates cell aggregate spheroids preparation, 3D bioprinting, bioassembly, and multi-organoid co-culture functions, providing an objective perspective on its capabilities.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"542 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77178097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of 3D-printed customized titanium implants and its clinical validation in foot and ankle surgery 3D 打印定制钛植入物在足踝手术中的功效及其临床验证
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-24 DOI: 10.36922/ijb.0125
Yangjing Lin, P. He, Guangyu Yang, Fuyou Wang, L. Jia, Huaquan Fan, Liu Yang, Huiping Tang, Xiaojun Duan
In foot and ankle surgery, internal fixation was crucial to maintain the stability of bony structure, and bone grafting material is commonly used to treat bone defects. With rapid development of three-dimensional (3D) printing technology, new advances were made in these two aspects. In this study, digital image correlation method (DICM) data of the patient’s ankle via computed tomography (CT) examination were obtained and imported into a series of software. The engineer cooperated with the surgeon to design the customized implants. Ti-6Al-4V spherical metal powder was chosen as raw material and fused together by selective electron beam melting (SEBM), a type of 3D printing technology, to prepare the implant. The implants were sterilized with ethylene oxide. The customized 3D-printed implants were successfully utilized in tibiotalocalcaneal (TTC) arthrodesis to maintain the bony structures at the functional position. In another case, the 3D-printed fusion cage was applied in subtalar arthrodesis to treat bone defects. In these clinical cases, 3D-printed customized titanium implants helped improve the surgical operation flow, and no obvious tissue reaction was observed. The successful implementation suggested that the application of 3D printing technology to prepare customized titanium implants would play an important role in future foot and ankle surgery.
在足踝外科手术中,内固定是保持骨结构稳定的关键,而骨移植材料则常用于治疗骨缺损。随着三维打印技术的快速发展,这两方面都取得了新的进展。本研究通过计算机断层扫描(CT)获取了患者踝关节的数字图像关联法(DICM)数据,并将其导入一系列软件。工程师与外科医生合作设计了定制植入物。选用 Ti-6Al-4V 球形金属粉末作为原材料,并通过选择性电子束熔化(SEMM)(一种三维打印技术)将其融合在一起,制备植入体。植入体用环氧乙烷灭菌。定制的三维打印植入物被成功用于胫骨-腓骨-踝骨(TTC)关节成形术,将骨性结构保持在功能位置。在另一个病例中,三维打印融合笼被应用于距骨下关节成形术,以治疗骨缺损。在这些临床病例中,3D打印定制钛植入物有助于改善手术操作流程,且未观察到明显的组织反应。这些案例的成功实施表明,应用 3D 打印技术制备定制钛植入物将在未来的足踝外科手术中发挥重要作用。
{"title":"Efficacy of 3D-printed customized titanium implants and its clinical validation in foot and ankle surgery","authors":"Yangjing Lin, P. He, Guangyu Yang, Fuyou Wang, L. Jia, Huaquan Fan, Liu Yang, Huiping Tang, Xiaojun Duan","doi":"10.36922/ijb.0125","DOIUrl":"https://doi.org/10.36922/ijb.0125","url":null,"abstract":"In foot and ankle surgery, internal fixation was crucial to maintain the stability of bony structure, and bone grafting material is commonly used to treat bone defects. With rapid development of three-dimensional (3D) printing technology, new advances were made in these two aspects. In this study, digital image correlation method (DICM) data of the patient’s ankle via computed tomography (CT) examination were obtained and imported into a series of software. The engineer cooperated with the surgeon to design the customized implants. Ti-6Al-4V spherical metal powder was chosen as raw material and fused together by selective electron beam melting (SEBM), a type of 3D printing technology, to prepare the implant. The implants were sterilized with ethylene oxide. The customized 3D-printed implants were successfully utilized in tibiotalocalcaneal (TTC) arthrodesis to maintain the bony structures at the functional position. In another case, the 3D-printed fusion cage was applied in subtalar arthrodesis to treat bone defects. In these clinical cases, 3D-printed customized titanium implants helped improve the surgical operation flow, and no obvious tissue reaction was observed. The successful implementation suggested that the application of 3D printing technology to prepare customized titanium implants would play an important role in future foot and ankle surgery.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"79 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139355761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The attractiveness of 4D printing in the medical field: Revealing scientific and technological advances in design factors and applications   4D打印在医疗领域的吸引力:揭示设计因素和应用中的科技进步
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-21 DOI: 10.36922/ijb.1112
Angelica A. Martinez-De-Anda, M. Rodríguez-Salvador, Pedro F. Castillo-Valdez
Currently, there is an increasing demand in the medical field for low-cost, high-quality products as well as personalized solutions, and different manufacturing methods are being investigated to provide innovative solutions. Four-dimensional (4D) printing is a promising technology that could overcome the challenges associated with the applications of three-dimensional printing in regenerative medicine and biomedical devices. A revolution is expected in this regard, and it is essential to keep abreast of the latest developments. Under this context, the purpose of this paper is to reveal scientific and technological advances of 4D printing in the medical field using a competitive technology intelligence (CTI) methodology. To this end, publications were analyzed from the Scopus database between January 1, 2017, and May 9, 2023. The main trends were identified for both design factors and applications. In the first case, the following were considered: 4D printing methods, external stimuli, materials, mathematical models, and interaction mechanisms. In contrast, in the second case, the applications of 4D printing involved were considered: drug delivery systems, stents, and scaffolds. The obtained design factors results included improvements in mechanical properties of hydrogels by adding magnetic nanoparticles, biopolyurethane, and other materials, the development of cell-friendly bioprinting methods to print cellular structures, and the use of theoretical-experimental approaches to predict shape deformation of structures. While for applications, results included advances in the development of expandable drug delivery systems, fabrication of stents for the treatment of vascular and tracheal stenosis, and the design of scaffolds to treat cartilage defects and bone regeneration. This study provides insights to researchers, academics, and companies involved in research and development as well as innovation that are looking for new solutions to improve health by incorporating breakthrough technologies such as 4D printing.
目前,医疗领域对低成本、高质量产品和个性化解决方案的需求日益增加,人们正在研究不同的制造方法,以提供创新的解决方案。四维(4D)打印是一项很有前途的技术,可以克服与三维打印在再生医学和生物医学设备中的应用相关的挑战。在这方面预计会发生一场革命,必须跟上最新的发展。在此背景下,本文的目的是利用竞争技术情报(CTI)方法揭示4D打印在医疗领域的科技进步。为此,我们分析了2017年1月1日至2023年5月9日Scopus数据库中的出版物。确定了设计因素和应用的主要趋势。在第一种情况下,考虑了以下方面:4D打印方法、外部刺激、材料、数学模型和相互作用机制。相比之下,在第二种情况下,考虑了4D打印的应用:药物输送系统、支架和支架。获得的设计因素结果包括通过添加磁性纳米颗粒、生物聚氨酯和其他材料来改善水凝胶的机械性能,开发细胞友好型生物打印方法来打印细胞结构,以及使用理论-实验方法来预测结构的形状变形。而在应用方面,结果包括可扩展药物输送系统的发展,用于治疗血管和气管狭窄的支架的制造,以及用于治疗软骨缺陷和骨再生的支架的设计。这项研究为研究人员、学者和参与研发和创新的公司提供了见解,这些公司正在寻找新的解决方案,通过结合4D打印等突破性技术来改善健康。
{"title":"The attractiveness of 4D printing in the medical field: Revealing scientific and technological advances in design factors and applications  ","authors":"Angelica A. Martinez-De-Anda, M. Rodríguez-Salvador, Pedro F. Castillo-Valdez","doi":"10.36922/ijb.1112","DOIUrl":"https://doi.org/10.36922/ijb.1112","url":null,"abstract":"Currently, there is an increasing demand in the medical field for low-cost, high-quality products as well as personalized solutions, and different manufacturing methods are being investigated to provide innovative solutions. Four-dimensional (4D) printing is a promising technology that could overcome the challenges associated with the applications of three-dimensional printing in regenerative medicine and biomedical devices. A revolution is expected in this regard, and it is essential to keep abreast of the latest developments. Under this context, the purpose of this paper is to reveal scientific and technological advances of 4D printing in the medical field using a competitive technology intelligence (CTI) methodology. To this end, publications were analyzed from the Scopus database between January 1, 2017, and May 9, 2023. The main trends were identified for both design factors and applications. In the first case, the following were considered: 4D printing methods, external stimuli, materials, mathematical models, and interaction mechanisms. In contrast, in the second case, the applications of 4D printing involved were considered: drug delivery systems, stents, and scaffolds. The obtained design factors results included improvements in mechanical properties of hydrogels by adding magnetic nanoparticles, biopolyurethane, and other materials, the development of cell-friendly bioprinting methods to print cellular structures, and the use of theoretical-experimental approaches to predict shape deformation of structures. While for applications, results included advances in the development of expandable drug delivery systems, fabrication of stents for the treatment of vascular and tracheal stenosis, and the design of scaffolds to treat cartilage defects and bone regeneration. This study provides insights to researchers, academics, and companies involved in research and development as well as innovation that are looking for new solutions to improve health by incorporating breakthrough technologies such as 4D printing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"70 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90682035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical evaluation of an anatomical bone plate assembly for thin patella fracture fixation fabricated by titanium alloy 3D printing   钛合金3D打印薄型髌骨骨折解剖钢板固定装置的生物力学评价
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-18 DOI: 10.36922/ijb.0117
Chi-Yang Liao, Shao-Fu Huang, Wei-Che Tsai, Yukun Zeng, Chia-Hsuan Li, Chun-Li Lin
This study established and evaluated the feasibility of a three-dimensional (3D)- printed titanium anatomical surface with adjustable thin bone plate assembly (AATBP) for patella fracture fixation. The AATBP was 1.6 mm in thickness and divided into a proximal plate (PP) with locking screw holes and a distal plate (DP) (0.4 mm in thickness) with compressive screw holes for assembly using a ratchet mechanism to adjust the total fixation height according to the patella size. Two pairs of hooks were designed on the proximal/distal edges to allow passage through the tendon to grip the fractured fragments. 3D printing combined with Computer Numerical Control (CNC) drilling was performed to manufacture the AATBP. Four-point bending and surface roughness tests were performed to evaluate the AATBP mechanical behavior. A cyclic (300 times) load test with 15-kg weights was adopted to compare the biomechanical stability between the AATBP and conventional tension band wiring (TBW) fixations. A parallel finite element (FE) analysis was achieved to understand the fracture gap and bone stress in the two different fixations on a transverse patella fracture. The result showed that the maximum AATBP manufacturing error was 3.75%. The average fracture gaps on the medial/lateral sides after cyclic loads were 2.38 ± 0.57 mm/2.30 ± 0.30 mm for TBW and 0.03 ± 0.01 mm/0.06 ± 0.03 mm for AATBP fixations. The same trend occurred in the FE simulation. This study confirmed that a complicated thin bone plate, including the anatomical surface, hooks, and ratchet with size-adjustable characteristics, can be fabricated using metal 3D printing with acceptable manufacturing error and reasonable anatomical surface/ thin bone plate assembly fitness. Biomechanical cyclic tests and FE simulation showed that the AATBP fixation is superior to the conventional TBW for patella transverse fractures.
本研究建立并评估了三维(3D)打印钛解剖表面可调节薄骨板组件(AATBP)用于髌骨骨折固定的可行性。AATBP厚度为1.6 mm,分为带锁定螺钉孔的近端钢板(PP)和带压缩螺钉孔的远端钢板(DP)(厚度0.4 mm),使用棘轮机构根据髌骨大小调整总固定高度。在近端/远端边缘设计两对钩,以便通过肌腱抓住骨折碎片。采用3D打印与数控钻孔相结合的方法制造AATBP。通过四点弯曲和表面粗糙度测试来评估AATBP的力学性能。采用循环(300次)负荷试验,比较AATBP与常规张力带钢丝(TBW)固定的生物力学稳定性。通过平行有限元分析了解髌骨横向骨折两种不同固定方式下的骨折间隙和骨应力。结果表明,AATBP的最大制造误差为3.75%。TBW和AATBP分别为2.38±0.57 mm/2.30±0.30 mm和0.03±0.01 mm/0.06±0.03 mm。在有限元模拟中也出现了同样的趋势。本研究证实,利用金属3D打印技术可以制造出复杂的薄骨板,包括具有尺寸可调特性的解剖面、挂钩和棘轮,制造误差可接受,解剖面/薄骨板装配适合度合理。生物力学循环试验和有限元模拟表明,AATBP固定优于传统的TBW治疗髌骨横向骨折。
{"title":"Biomechanical evaluation of an anatomical bone plate assembly for thin patella fracture fixation fabricated by titanium alloy 3D printing  ","authors":"Chi-Yang Liao, Shao-Fu Huang, Wei-Che Tsai, Yukun Zeng, Chia-Hsuan Li, Chun-Li Lin","doi":"10.36922/ijb.0117","DOIUrl":"https://doi.org/10.36922/ijb.0117","url":null,"abstract":"This study established and evaluated the feasibility of a three-dimensional (3D)- printed titanium anatomical surface with adjustable thin bone plate assembly (AATBP) for patella fracture fixation. The AATBP was 1.6 mm in thickness and divided into a proximal plate (PP) with locking screw holes and a distal plate (DP) (0.4 mm in thickness) with compressive screw holes for assembly using a ratchet mechanism to adjust the total fixation height according to the patella size. Two pairs of hooks were designed on the proximal/distal edges to allow passage through the tendon to grip the fractured fragments. 3D printing combined with Computer Numerical Control (CNC) drilling was performed to manufacture the AATBP. Four-point bending and surface roughness tests were performed to evaluate the AATBP mechanical behavior. A cyclic (300 times) load test with 15-kg weights was adopted to compare the biomechanical stability between the AATBP and conventional tension band wiring (TBW) fixations. A parallel finite element (FE) analysis was achieved to understand the fracture gap and bone stress in the two different fixations on a transverse patella fracture. The result showed that the maximum AATBP manufacturing error was 3.75%. The average fracture gaps on the medial/lateral sides after cyclic loads were 2.38 ± 0.57 mm/2.30 ± 0.30 mm for TBW and 0.03 ± 0.01 mm/0.06 ± 0.03 mm for AATBP fixations. The same trend occurred in the FE simulation. This study confirmed that a complicated thin bone plate, including the anatomical surface, hooks, and ratchet with size-adjustable characteristics, can be fabricated using metal 3D printing with acceptable manufacturing error and reasonable anatomical surface/ thin bone plate assembly fitness. Biomechanical cyclic tests and FE simulation showed that the AATBP fixation is superior to the conventional TBW for patella transverse fractures.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"10 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85124880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances of 3D printing in gastroenterology and where it might be going 3D打印在胃肠病学中的进展及其发展趋势
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-17 DOI: 10.36922/ijb.0149
Yu-hang Zhang, Liuxiang Chen, Bing Hu
Gastrointestinal (GI) system comprises a great number of organs and tissues of various functions, both hollow and solid. However, it is still a less well-developed area for three-dimensional (3D) printing (3DP) applications compared to orthopedics. Clinical applications of 3DP in the GI system are presently restricted to preoperative planning, surgical guidance, and education for students, residents, and patients, either for laparoscopy or endoscopy. Several surgery-related accessories have been designed to facilitate surgical procedures. The results are promising but not adequately proven due to a lack of reasonable study design and proper comparisons. Other important requirements for GI systems in clinical scenarios are structural reconstruction, replacement, defect repair, drug screening, and delivery. Many 3D-printed decellularized, cell-seeded, or even bioprinted scaffolds have been studied; however, most studies were conducted on small animal or in vitro models. Although encouraging results have been obtained, there is still a long way to go before products compatible with humans in size, histology, and functions can be printed. The key points to achieving this goal are the printing material, cell type and source, and printing technology. The ultimate goal is to print tissue and organ substitutes with physiological functions for clinical purposes in both time- and cost-effective ways.
胃肠道系统由大量具有不同功能的器官和组织组成,既有空心的,也有实心的。然而,与骨科相比,它仍然是一个不太发达的三维(3D)打印(3DP)应用领域。目前,3d打印技术在胃肠道系统中的临床应用仅限于术前规划、手术指导以及对学生、住院医师和患者的腹腔镜或内窥镜检查教育。一些与手术相关的配件已经被设计出来以方便外科手术。结果是有希望的,但由于缺乏合理的研究设计和适当的比较,没有得到充分的证明。临床对胃肠道系统的其他重要要求是结构重建、替换、缺陷修复、药物筛选和递送。许多3d打印的去细胞,细胞种子,甚至生物打印支架已经被研究;然而,大多数研究都是在小动物或体外模型上进行的。虽然已经取得了令人鼓舞的结果,但要打印出尺寸、组织学和功能与人体兼容的产品,还有很长的路要走。实现这一目标的关键是打印材料、细胞类型和来源以及打印技术。最终目标是打印具有生理功能的组织和器官替代品,以节省时间和成本。
{"title":"Advances of 3D printing in gastroenterology and where it might be going","authors":"Yu-hang Zhang, Liuxiang Chen, Bing Hu","doi":"10.36922/ijb.0149","DOIUrl":"https://doi.org/10.36922/ijb.0149","url":null,"abstract":"Gastrointestinal (GI) system comprises a great number of organs and tissues of various functions, both hollow and solid. However, it is still a less well-developed area for three-dimensional (3D) printing (3DP) applications compared to orthopedics. Clinical applications of 3DP in the GI system are presently restricted to preoperative planning, surgical guidance, and education for students, residents, and patients, either for laparoscopy or endoscopy. Several surgery-related accessories have been designed to facilitate surgical procedures. The results are promising but not adequately proven due to a lack of reasonable study design and proper comparisons. Other important requirements for GI systems in clinical scenarios are structural reconstruction, replacement, defect repair, drug screening, and delivery. Many 3D-printed decellularized, cell-seeded, or even bioprinted scaffolds have been studied; however, most studies were conducted on small animal or in vitro models. Although encouraging results have been obtained, there is still a long way to go before products compatible with humans in size, histology, and functions can be printed. The key points to achieving this goal are the printing material, cell type and source, and printing technology. The ultimate goal is to print tissue and organ substitutes with physiological functions for clinical purposes in both time- and cost-effective ways.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"50 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75143280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-bioprinted cell-laden hydrogel with anti-inflammatory and anti-bacterial activities for tracheal cartilage regeneration and restoration 具有抗炎和抗菌活性的3d生物打印细胞负载水凝胶,用于气管软骨再生和修复
IF 8.4 3区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2023-07-13 DOI: 10.36922/ijb.0146
Pengli Wang, Tao Wang, Yong Xu, Nankai Song, Xue Zhang
Despite the notable advances in tissue-engineered tracheal cartilage (TETC), there remain several challenges that need to be addressed, such as uneven cell distribution for cartilage formation, customized C-shaped tracheal morphology, local inflammatory reactions, and infections. To overcome these challenges, this study proposed the addition of icariin (ICA) and chitosan (CS) into a gelatin methacryloyl (GelMA) hydrogel to develop a new ICA/CS/GelMA hydrogel with anti-inflammatory and anti-bacterial properties, and three-dimensional (3D)-bioprinting feasibility. The aim of this study was to construct a TETC, a customized C-shaped cartilage structure, with uniform chondrocyte distribution as well as anti-inflammatory and anti-bacterial functions. Our results confirmed that ICA/CS/GelMA hydrogel provides desirable rheological properties, suitable printability, favorable biocompatibility, and simulated microenvironments for chondrogenesis. Moreover, the addition of ICA stimulated chondrocyte proliferation, extracellular matrix synthesis, and anti-inflammatory ability, while the encapsulation of CS enhanced the hydrogels’ anti-bacterial ability. All these led to the formation of an enhanced TETC after submuscular implantation and an elevated survival rate of experimental rabbits after orthotopic tracheal transplantation. This study provides a reliable cell-laden hydrogel with anti-inflammatory and anti-bacterial activities, suitable printability, and significant advancements in in vivo cartilage regeneration and in situ tracheal cartilage restoration.
尽管组织工程气管软骨(TETC)取得了显著进展,但仍存在一些需要解决的挑战,例如软骨形成的细胞分布不均匀、定制的c形气管形态、局部炎症反应和感染。为了克服这些挑战,本研究提出在明胶甲基丙烯酰(GelMA)水凝胶中添加淫牛藿苷(ICA)和壳聚糖(CS),开发出具有抗炎和抗菌性能的新型ICA/CS/GelMA水凝胶,并具有三维(3D)生物打印的可行性。本研究的目的是构建TETC,这是一种定制的c形软骨结构,软骨细胞分布均匀,具有抗炎和抗菌功能。我们的研究结果证实,ICA/CS/GelMA水凝胶具有理想的流变性、适宜的打印性、良好的生物相容性和模拟软骨形成的微环境。此外,ICA的加入促进了软骨细胞增殖、细胞外基质合成和抗炎能力,而CS的包封增强了水凝胶的抗菌能力。这些都导致肌下植入后TETC的形成增强,实验家兔气管原位移植后存活率提高。该研究提供了一种可靠的细胞负载水凝胶,具有抗炎和抗菌活性,适合打印,并且在体内软骨再生和原位气管软骨修复方面取得了重大进展。
{"title":"3D-bioprinted cell-laden hydrogel with anti-inflammatory and anti-bacterial activities for tracheal cartilage regeneration and restoration","authors":"Pengli Wang, Tao Wang, Yong Xu, Nankai Song, Xue Zhang","doi":"10.36922/ijb.0146","DOIUrl":"https://doi.org/10.36922/ijb.0146","url":null,"abstract":"Despite the notable advances in tissue-engineered tracheal cartilage (TETC), there remain several challenges that need to be addressed, such as uneven cell distribution for cartilage formation, customized C-shaped tracheal morphology, local inflammatory reactions, and infections. To overcome these challenges, this study proposed the addition of icariin (ICA) and chitosan (CS) into a gelatin methacryloyl (GelMA) hydrogel to develop a new ICA/CS/GelMA hydrogel with anti-inflammatory and anti-bacterial properties, and three-dimensional (3D)-bioprinting feasibility. The aim of this study was to construct a TETC, a customized C-shaped cartilage structure, with uniform chondrocyte distribution as well as anti-inflammatory and anti-bacterial functions. Our results confirmed that ICA/CS/GelMA hydrogel provides desirable rheological properties, suitable printability, favorable biocompatibility, and simulated microenvironments for chondrogenesis. Moreover, the addition of ICA stimulated chondrocyte proliferation, extracellular matrix synthesis, and anti-inflammatory ability, while the encapsulation of CS enhanced the hydrogels’ anti-bacterial ability. All these led to the formation of an enhanced TETC after submuscular implantation and an elevated survival rate of experimental rabbits after orthotopic tracheal transplantation. This study provides a reliable cell-laden hydrogel with anti-inflammatory and anti-bacterial activities, suitable printability, and significant advancements in in vivo cartilage regeneration and in situ tracheal cartilage restoration.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"120 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81784096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Bioprinting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1