Additive manufacturing has rapidly revolutionized the medical sectors since it is a versatile, cost-effective, assembly free technique with the ability to replicate geometrically complicated features. Some of the widely reported applications include the printing of scaffolds, implants, or microfluidic devices. In this study, a 3D-printed micro-perfused culture (MPC) device embedded with a nanofibrous scaffold was designed to create an integrated micro-perfused 3D cell culture environment for living cells. The addition of 3D fibrous scaffold onto the microfluidic chip was to provide a more physiologically relevant microenvironment for cell culture studies. Stereolithography was adopted in this study as this technique obviates excessive preassembly and bonding steps, which would otherwise be needed in conventional microfluidic fabrication. Huh7.5 hepatocellular carcinoma cells were used as model cells for this platform since liver cells experience similar perfused microenvironment. Preliminary cell studies revealed that gene expressions of albumin (ALB) and cytochrome P450 isoform (CYP3A7) were found to be significantly upregulated on the 3D-printed MPC device as compared to the static counterpart. Taken together, the 3D-printed MPC device is shown to be a physiologically relevant platform for the maintenance of liver cells. The device and printing technique developed in this study is highly versatile and tailorable to mimic local in vivo microenvironment needs of various tissues, which could be studied in future.
{"title":"A 3D-printed micro-perfused culture device with embedded 3D fibrous scaffold for enhanced biomimicry","authors":"Feng Lin Ng, Zhanhong Cen, Y. Toh, L. P. Tan","doi":"10.36922/ijb.0226","DOIUrl":"https://doi.org/10.36922/ijb.0226","url":null,"abstract":"Additive manufacturing has rapidly revolutionized the medical sectors since it is a versatile, cost-effective, assembly free technique with the ability to replicate geometrically complicated features. Some of the widely reported applications include the printing of scaffolds, implants, or microfluidic devices. In this study, a 3D-printed micro-perfused culture (MPC) device embedded with a nanofibrous scaffold was designed to create an integrated micro-perfused 3D cell culture environment for living cells. The addition of 3D fibrous scaffold onto the microfluidic chip was to provide a more physiologically relevant microenvironment for cell culture studies. Stereolithography was adopted in this study as this technique obviates excessive preassembly and bonding steps, which would otherwise be needed in conventional microfluidic fabrication. Huh7.5 hepatocellular carcinoma cells were used as model cells for this platform since liver cells experience similar perfused microenvironment. Preliminary cell studies revealed that gene expressions of albumin (ALB) and cytochrome P450 isoform (CYP3A7) were found to be significantly upregulated on the 3D-printed MPC device as compared to the static counterpart. Taken together, the 3D-printed MPC device is shown to be a physiologically relevant platform for the maintenance of liver cells. The device and printing technique developed in this study is highly versatile and tailorable to mimic local in vivo microenvironment needs of various tissues, which could be studied in future.\u0000 ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"14 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91308712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Wang, Yang Liu, Shuqing Zhang, F. He, T. Shi, Jizong Li, Zhimin Wang, Jia Jia
Bioprinting is an emerging technology for tissue engineering and regenerative medicine. Despite its fast, accurate manufacture for tissues and organs in vitro, bioprinting has been seriously limited for biofabrication because of the restricted approaches to reproducing the extracellular matrix (ECM) with sufficient bioactivities for bioprinted cells. Exosomes are natural biological particles with proteins, lipids, or genetic materials. They have distinct properties and unique biological functions to manipulate cellular behaviors and cell fates, showing great potential to support cells for bioprinting. Here, we reviewed the recent progresses of exosome-advanced bioprinting for tissue engineering and regenerative medicine. Firstly, we offer an overview of the basics of exosomes and the current representative applications of exosomes in bone tissue engineering, immunological regulations, angiogenesis, and neural regenerations. Then, a brief introduction about the bioinks and the currently developed bioprinting methods is provided. We further give an in-depth review of the biomedical applications of bioprinting with exosomes, majorly in bone engineering, vascular engineering, therapy of neuron injury, and skin regeneration. We also conclude with an outlook on the challenges of the unmet needs of bioprinting cells with correspondent ECM environments through bioprinting with exosomes.
{"title":"Exosome-based bioinks for 3D bioprinting applications in tissue engineering and regenerative medicine","authors":"Qian Wang, Yang Liu, Shuqing Zhang, F. He, T. Shi, Jizong Li, Zhimin Wang, Jia Jia","doi":"10.36922/ijb.0114","DOIUrl":"https://doi.org/10.36922/ijb.0114","url":null,"abstract":"Bioprinting is an emerging technology for tissue engineering and regenerative medicine. Despite its fast, accurate manufacture for tissues and organs in vitro, bioprinting has been seriously limited for biofabrication because of the restricted approaches to reproducing the extracellular matrix (ECM) with sufficient bioactivities for bioprinted cells. Exosomes are natural biological particles with proteins, lipids, or genetic materials. They have distinct properties and unique biological functions to manipulate cellular behaviors and cell fates, showing great potential to support cells for bioprinting. Here, we reviewed the recent progresses of exosome-advanced bioprinting for tissue engineering and regenerative medicine. Firstly, we offer an overview of the basics of exosomes and the current representative applications of exosomes in bone tissue engineering, immunological regulations, angiogenesis, and neural regenerations. Then, a brief introduction about the bioinks and the currently developed bioprinting methods is provided. We further give an in-depth review of the biomedical applications of bioprinting with exosomes, majorly in bone engineering, vascular engineering, therapy of neuron injury, and skin regeneration. We also conclude with an outlook on the challenges of the unmet needs of bioprinting cells with correspondent ECM environments through bioprinting with exosomes.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"78 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88289079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Ezio Garciamendez-Mijares, Gilberto Emilio Guerra-Alvarez, Mónica Gabriela Sánchez-Salazar1,4, Andrés García-Rubio, Germán García-Martínez, Anne-Sophie Mertgen, C. Ceballos-González, Edna Johana Bolívar-Monsalve, Yu Shrike Zhang, G. Santiago, M. M. Álvarez
Bioprinters show great promise as enablers of regenerative medicine and other biomedical engineering applications. In this work, we present a flexible and cost-effective design for a do-it-yourself bioprinter capable of printing/bioprinting gelatin methacryloyl (GelMA) and Pluronic constructs at flow rates of 0.05–0.1 mL/min and effective resolutions of 500–700 μm. The most distinctive feature of this bioprinter is its ability to control the rheology of bioinks simply by adjusting the extrusion temperature during printing. This is achieved by circulating temperature-controlled water within the printhead, which is engineered as a single 3D-printed component consisting of a water-recirculation jacket surrounding the ink/bioink cartridge. The flexibility to circulate either warm or cold water allows the system to be adapted according to the needs dictated by the bioink composition. Herein, we demonstrate the ability to control the printability of GelMA or Pluronic fibers by decreasing or increasing the temperature, respectively, thereby regulating its viscosity. In addition, any commercial needle with a Luer lock can be incorporated into the printhead, allowing the easy fabrication of fibers of different diameters with a single printhead. We showed that our bioprinter is capable of printing simple 2D constructs with high fidelity (i.e., lines of GelMA with a thickness of ~522 ± 36.83 μm can be printed at linear speeds of 100 mm min−1) and 3D constructs composed of as many as five layers of cell-laden 5% GelMA. We also demonstrated that C2C12 cells bioprinted through needle tips (300 μm in diameter) exhibit adequate post-printing viability (~90%), as well as spreading after 7 days of culture. The presentation of this bioprinter may contribute appreciably to the expansion of bioprinter use due to its low overall cost of manufacture, flexibility and open-source character, amenability to modification and adaptation for use with different 3D-printed printheads, and ability to bioprint using GelMA.
生物打印机作为再生医学和其他生物医学工程应用的推动者显示出巨大的前景。在这项工作中,我们提出了一种灵活且具有成本效益的diy生物打印机设计,能够以0.05-0.1 mL/min的流速和500-700 μm的有效分辨率打印/生物打印明胶甲基丙烯酰(GelMA)和Pluronic结构。这种生物打印机最显著的特点是它能够控制生物墨水的流变性,只需在打印过程中调整挤出温度。这是通过在打印头内循环温度控制的水来实现的,打印头被设计成一个单一的3d打印组件,由围绕墨水/生物墨水墨盒的水循环套组成。温水或冷水循环的灵活性使系统能够根据生物链接成分的需要进行调整。在这里,我们展示了通过分别降低或提高温度来控制GelMA或Pluronic纤维的可打印性,从而调节其粘度的能力。此外,任何具有鲁尔锁的商业针都可以并入打印头,允许使用单个打印头轻松制造不同直径的纤维。我们证明了我们的生物打印机能够以高保真度打印简单的2D结构(即厚度为~522±36.83 μm的GelMA线可以以100 mm min - 1的线性速度打印)和由多达五层细胞负载的5% GelMA组成的3D结构。我们还证明了通过针尖(直径300 μm)生物打印的C2C12细胞具有足够的打印后活力(~90%),并且在培养7天后扩散。这种生物打印机的介绍可能会对生物打印机的使用做出显着的贡献,因为它的制造总体成本低,灵活性和开源特性,可修改和适应使用不同的3d打印打印头,以及使用GelMA进行生物打印的能力。
{"title":"Development of an affordable extrusion 3D bioprinter equipped with a temperature-controlled printhead","authors":"Carlos Ezio Garciamendez-Mijares, Gilberto Emilio Guerra-Alvarez, Mónica Gabriela Sánchez-Salazar1,4, Andrés García-Rubio, Germán García-Martínez, Anne-Sophie Mertgen, C. Ceballos-González, Edna Johana Bolívar-Monsalve, Yu Shrike Zhang, G. Santiago, M. M. Álvarez","doi":"10.36922/ijb.0244","DOIUrl":"https://doi.org/10.36922/ijb.0244","url":null,"abstract":"Bioprinters show great promise as enablers of regenerative medicine and other biomedical engineering applications. In this work, we present a flexible and cost-effective design for a do-it-yourself bioprinter capable of printing/bioprinting gelatin methacryloyl (GelMA) and Pluronic constructs at flow rates of 0.05–0.1 mL/min and effective resolutions of 500–700 μm. The most distinctive feature of this bioprinter is its ability to control the rheology of bioinks simply by adjusting the extrusion temperature during printing. This is achieved by circulating temperature-controlled water within the printhead, which is engineered as a single 3D-printed component consisting of a water-recirculation jacket surrounding the ink/bioink cartridge. The flexibility to circulate either warm or cold water allows the system to be adapted according to the needs dictated by the bioink composition. Herein, we demonstrate the ability to control the printability of GelMA or Pluronic fibers by decreasing or increasing the temperature, respectively, thereby regulating its viscosity. In addition, any commercial needle with a Luer lock can be incorporated into the printhead, allowing the easy fabrication of fibers of different diameters with a single printhead. We showed that our bioprinter is capable of printing simple 2D constructs with high fidelity (i.e., lines of GelMA with a thickness of ~522 ± 36.83 μm can be printed at linear speeds of 100 mm min−1) and 3D constructs composed of as many as five layers of cell-laden 5% GelMA. We also demonstrated that C2C12 cells bioprinted through needle tips (300 μm in diameter) exhibit adequate post-printing viability (~90%), as well as spreading after 7 days of culture. The presentation of this bioprinter may contribute appreciably to the expansion of bioprinter use due to its low overall cost of manufacture, flexibility and open-source character, amenability to modification and adaptation for use with different 3D-printed printheads, and ability to bioprint using GelMA.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"13 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78090200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santosh Kumar Parupelli, Sheikh Saudi, N. Bhattarai, S. Desai
Three-dimensional (3D) printing was utilized for the fabrication of a composite scaffold of poly(ε-caprolactone) (PCL) and calcium magnesium phosphate (CMP) bioceramics for bone tissue engineering application. Four groups of scaffolds, that is, PMC-0, PMC-5, PMC-10, and PMC-15, were fabricated using a custom 3D printer. Rheology analysis, surface morphology, and wettability of the scaffolds were characterized. The PMC-0 scaffolds displayed a smoother surface texture and an increase in the ceramic content of the composite scaffolds exhibited a rougher structure. The hydrophilicity of the composite scaffold was significantly enhanced compared to the control PMC-0. The effect of ceramic content on the bioactivity of fibroblast NIH/3T3 cells in the composite scaffold was investigated. Cell viability and toxicity studies were evaluated by comparing results from lactate dehydrogenase (LDH) and Alamar Blue (AB) colorimetric assays, respectively. The live-dead cell assay illustrated the biocompatibility of the tested samples with more than 100% of live cells on day 3 compared to the control one. The LDH release indicated that the composite scaffolds improved cell attachment and proliferation. In this research, the fabrication of a customized composite 3D scaffold not only mimics the rough textured architecture, porosity, and chemical composition of natural bone tissue matrices but also serves as a source for soluble ions of calcium and magnesium that are favorable for bone cells to grow. These 3D-printed scaffolds thus provide a desirable microenvironment to facilitate biomineralization and could be a new effective approach for preparing constructs suitable for bone tissue engineering.
采用三维(3D)打印技术制备了用于骨组织工程的聚ε-己内酯(PCL)和磷酸钙镁(CMP)生物陶瓷复合支架。使用定制3D打印机制作四组支架,分别为PMC-0、PMC-5、PMC-10和PMC-15。对支架的流变性、表面形貌和润湿性进行了表征。PMC-0复合材料支架的表面纹理更加光滑,陶瓷含量的增加使得复合材料支架的表面结构更加粗糙。与对照PMC-0相比,复合支架的亲水性明显增强。研究了陶瓷含量对复合支架成纤维细胞NIH/3T3细胞生物活性的影响。细胞活力和毒性研究分别通过乳酸脱氢酶(LDH)和Alamar Blue (AB)比色法进行比较。活死细胞实验表明,与对照相比,被试样品在第3天具有100%以上的活细胞的生物相容性。乳酸脱氢酶的释放表明复合支架改善了细胞的附着和增殖。在这项研究中,定制复合3D支架的制造不仅模仿了天然骨组织基质的粗糙纹理结构,孔隙度和化学成分,而且还作为有利于骨细胞生长的钙和镁的可溶性离子的来源。因此,这些3d打印支架为促进生物矿化提供了理想的微环境,并可能成为制备适合骨组织工程的构建体的新有效方法。
{"title":"3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications","authors":"Santosh Kumar Parupelli, Sheikh Saudi, N. Bhattarai, S. Desai","doi":"10.36922/ijb.0196","DOIUrl":"https://doi.org/10.36922/ijb.0196","url":null,"abstract":"Three-dimensional (3D) printing was utilized for the fabrication of a composite scaffold of poly(ε-caprolactone) (PCL) and calcium magnesium phosphate (CMP) bioceramics for bone tissue engineering application. Four groups of scaffolds, that is, PMC-0, PMC-5, PMC-10, and PMC-15, were fabricated using a custom 3D printer. Rheology analysis, surface morphology, and wettability of the scaffolds were characterized. The PMC-0 scaffolds displayed a smoother surface texture and an increase in the ceramic content of the composite scaffolds exhibited a rougher structure. The hydrophilicity of the composite scaffold was significantly enhanced compared to the control PMC-0. The effect of ceramic content on the bioactivity of fibroblast NIH/3T3 cells in the composite scaffold was investigated. Cell viability and toxicity studies were evaluated by comparing results from lactate dehydrogenase (LDH) and Alamar Blue (AB) colorimetric assays, respectively. The live-dead cell assay illustrated the biocompatibility of the tested samples with more than 100% of live cells on day 3 compared to the control one. The LDH release indicated that the composite scaffolds improved cell attachment and proliferation. In this research, the fabrication of a customized composite 3D scaffold not only mimics the rough textured architecture, porosity, and chemical composition of natural bone tissue matrices but also serves as a source for soluble ions of calcium and magnesium that are favorable for bone cells to grow. These 3D-printed scaffolds thus provide a desirable microenvironment to facilitate biomineralization and could be a new effective approach for preparing constructs suitable for bone tissue engineering.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"3 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87944021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organoids are three-dimensional cell structures cultured in vitro. They are self-organizing and can mimic real organs in structure and function. Bioprinting technology breaks through some limitations of organoid manufacturing, making it more widely used in drug screening, regenerative medicine, and other fields. In this review, we first introduce bioinks and bioprinting methods for stem cell and organoid bioprinting, then summarize several vascularization strategies for bioprinting organoids, and present applications in biomedicine. In the future, the development of microfluidic technology and four-dimensional bioprinting technology may be conducive to forming better bioprinted organoids.
{"title":"Organoid bioprinting strategy and application in biomedicine: A review","authors":"Chen He, Jiasheng Yan, Yusheng Fu, Jiuchuan Guo, Yuxing Shi, Jinhong Guo","doi":"10.36922/ijb.0112","DOIUrl":"https://doi.org/10.36922/ijb.0112","url":null,"abstract":"Organoids are three-dimensional cell structures cultured in vitro. They are self-organizing and can mimic real organs in structure and function. Bioprinting technology breaks through some limitations of organoid manufacturing, making it more widely used in drug screening, regenerative medicine, and other fields. In this review, we first introduce bioinks and bioprinting methods for stem cell and organoid bioprinting, then summarize several vascularization strategies for bioprinting organoids, and present applications in biomedicine. In the future, the development of microfluidic technology and four-dimensional bioprinting technology may be conducive to forming better bioprinted organoids.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"95 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79649681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris
Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.
{"title":"3D Aerosol Jet® printing for microstructuring: Advantages and limitations","authors":"Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris","doi":"10.36922/ijb.0257","DOIUrl":"https://doi.org/10.36922/ijb.0257","url":null,"abstract":"Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"61 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84846611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangdong He, Long Chao, Chen Jiao, Hong Wang, Deqiao Xie, Guofeng Wu, Lin Wang, Changjiang Wang, Jianfeng Zhao, Lida Shen, Hui-xin Liang
With the increasing demand for bone repair, the bionic bone scaffolds have become a research hotspot. A sub-regional design method of the bionic bone scaffolds, using macrostructural topology, is proposed in this paper, aiming to provide a functionally enhanced region division method for the gradient design. The macrostructural topology was carried out by the bi-directional evolutionary structural optimization (BESO), dividing the predefined design domain into sub-region A and sub-region B. Subsequently, a combined probability sphere model and a distance-to-scale coefficient mapping model are established to implement the graded porosification based on the Voronoi tessellation. This approach takes geometric and mechanical continuity into fully account and assures a reasonable distribution of characteristic parameters, yielding to improve the mechanical strength under specific stress conditions. Finally, the scaffolds were fabricated by the laser powder bed fusion (LPBF) process using the Ti-6Al-4V powder. The results of compression tests are satisfactory, showing that the as-built specimens implement sub-regional functionality. The apparent elastic modulus and the ultimate strength range, respectively, between 1.50 GPa and 7.12 GPa (for the first module) and between 38.55 MPa and 268.03 MPa (for the second module), which conform to the required level of natural bone, providing a possibility for clinical application.
{"title":"Sub-regional design of the bionic bone scaffolds using macrostructural topology","authors":"Yangdong He, Long Chao, Chen Jiao, Hong Wang, Deqiao Xie, Guofeng Wu, Lin Wang, Changjiang Wang, Jianfeng Zhao, Lida Shen, Hui-xin Liang","doi":"10.36922/ijb.0222","DOIUrl":"https://doi.org/10.36922/ijb.0222","url":null,"abstract":"With the increasing demand for bone repair, the bionic bone scaffolds have become a research hotspot. A sub-regional design method of the bionic bone scaffolds, using macrostructural topology, is proposed in this paper, aiming to provide a functionally enhanced region division method for the gradient design. The macrostructural topology was carried out by the bi-directional evolutionary structural optimization (BESO), dividing the predefined design domain into sub-region A and sub-region B. Subsequently, a combined probability sphere model and a distance-to-scale coefficient mapping model are established to implement the graded porosification based on the Voronoi tessellation. This approach takes geometric and mechanical continuity into fully account and assures a reasonable distribution of characteristic parameters, yielding to improve the mechanical strength under specific stress conditions. Finally, the scaffolds were fabricated by the laser powder bed fusion (LPBF) process using the Ti-6Al-4V powder. The results of compression tests are satisfactory, showing that the as-built specimens implement sub-regional functionality. The apparent elastic modulus and the ultimate strength range, respectively, between 1.50 GPa and 7.12 GPa (for the first module) and between 38.55 MPa and 268.03 MPa (for the second module), which conform to the required level of natural bone, providing a possibility for clinical application.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"2014 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87749920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Kanaki, Alexandra Smina, C. Chandrinou, Fotini E. Koukouzeli, Yiannis Ntounias, N. Paschalidis, I. Cheliotis, M. Makrygianni, Jill Ziesmer, Georgios A. Sotiriou, I. Zergioti, C. Tamvakopoulos, A. Klinakis
Small molecule inhibitors targeting specific proteins are claiming a continuously growing share in cancer therapy, more commonly in combination with traditional chemotherapeutic drugs. While these inhibitors are taken orally, the majority of chemotherapies are administered through intravenous injection in the hospital premises. Alternative routes for chemotherapy administration would allow more frequent administration at lower dosing by the patient oneself, allowing combination treatment with reduced side effects. Here, we employed laser printing to prepare microneedles for transdermal delivery of cisplatin. Combination treatment with cisplatin transdermally and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib orally leads to effective treatment in a cancer xenograft mouse model in vivo, while reducing the risk for systemic side effects. This work opens new avenues in anti-cancer therapy by allowing the administration of chemotherapy without the need for intravenous injection alone or in combination with other therapies.
{"title":"Printed cisplatin on microneedle arrays for transdermal delivery enhances olaparib-induced synthetic lethality in a mouse model of homologous recombination deficiency","authors":"Z. Kanaki, Alexandra Smina, C. Chandrinou, Fotini E. Koukouzeli, Yiannis Ntounias, N. Paschalidis, I. Cheliotis, M. Makrygianni, Jill Ziesmer, Georgios A. Sotiriou, I. Zergioti, C. Tamvakopoulos, A. Klinakis","doi":"10.36922/ijb.0048","DOIUrl":"https://doi.org/10.36922/ijb.0048","url":null,"abstract":"Small molecule inhibitors targeting specific proteins are claiming a continuously growing share in cancer therapy, more commonly in combination with traditional chemotherapeutic drugs. While these inhibitors are taken orally, the majority of chemotherapies are administered through intravenous injection in the hospital premises. Alternative routes for chemotherapy administration would allow more frequent administration at lower dosing by the patient oneself, allowing combination treatment with reduced side effects. Here, we employed laser printing to prepare microneedles for transdermal delivery of cisplatin. Combination treatment with cisplatin transdermally and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib orally leads to effective treatment in a cancer xenograft mouse model in vivo, while reducing the risk for systemic side effects. This work opens new avenues in anti-cancer therapy by allowing the administration of chemotherapy without the need for intravenous injection alone or in combination with other therapies.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"29 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80288406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue engineering requires the fabrication of three-dimensional (3D) multimaterial structures in complex geometries mimicking the hierarchical structure of biological tissues. To increase the mechanical and biological integrity of the tissue engineered structures, continuous printing of multiple materials through a printing head consisting of a single nozzle is crucial. In this work, numerical analysis was carried out to investigate the extrusion process of two different shear-thinning biomaterial solutions (alginate and gelatin) inside a novel single-nozzle dispensing system consisting of cartridges and a static mixer for varying input pressures, needle geometries, and outlet diameters. Systematic analysis of the dispensing process was conducted to describe the flow rate, velocity field, pressure drop, and shear stress distribution throughout the printing head. The spatial distribution of the biopolymer solutions along the mixing chamber was quantitatively analyzed and the simulation results were validated by comparing the pressure drop values with empirical correlations. The simulation results showed that the proposed dispensing system enables to fabricate homogenous material distribution across the nozzle outlet. The predicted shear stress along the proposed printing head model is lower than the critical shear values which correspond to negligible cell damage, suggesting that the proposed dispensing system can be used to print cell-laden tissue engineering constructs.
{"title":"Computational fluid dynamics for the optimization of internal bioprinting parameters and mixing conditions","authors":"Gokhan Ates, P. Bártolo","doi":"10.36922/ijb.0219","DOIUrl":"https://doi.org/10.36922/ijb.0219","url":null,"abstract":"Tissue engineering requires the fabrication of three-dimensional (3D) multimaterial structures in complex geometries mimicking the hierarchical structure of biological tissues. To increase the mechanical and biological integrity of the tissue engineered structures, continuous printing of multiple materials through a printing head consisting of a single nozzle is crucial. In this work, numerical analysis was carried out to investigate the extrusion process of two different shear-thinning biomaterial solutions (alginate and gelatin) inside a novel single-nozzle dispensing system consisting of cartridges and a static mixer for varying input pressures, needle geometries, and outlet diameters. Systematic analysis of the dispensing process was conducted to describe the flow rate, velocity field, pressure drop, and shear stress distribution throughout the printing head. The spatial distribution of the biopolymer solutions along the mixing chamber was quantitatively analyzed and the simulation results were validated by comparing the pressure drop values with empirical correlations. The simulation results showed that the proposed dispensing system enables to fabricate homogenous material distribution across the nozzle outlet. The predicted shear stress along the proposed printing head model is lower than the critical shear values which correspond to negligible cell damage, suggesting that the proposed dispensing system can be used to print cell-laden tissue engineering constructs.\u0000 ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"43 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83256814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed S H Hassan, Abdalla M. Omar, E. Daskalakis, B. Grieve, P. Bártolo
Polyethylene terephthalate glycol (PETG) is a difficult-to-spin material, and no previous papers have reported the correct conditions to create PETG meshes. To address this issue, a preliminary study on the solubility and electrospinnability of PETG using a range of solvent system was conducted and a Teas graph was established to select the ideal solvent system. Based on these preliminary results, electrospun PETG fibers were produced using a highly volatile binary solvent system consisting of dichloromethane (DCM) and trifluoroacetic acid (TFA). Produced meshes were extensively characterized, and the results demonstrated for the first time the ability of electrospun PETG meshes to support the inoculation and germination of yellow rust spores, thus confirming that PETG is an ideal material to be used for the fabrication of agriculture biosensors. The results also showed that the best solvent split was 85/15 (DCM/TFA).
{"title":"Electrospinning polyethylene terephthalate glycol","authors":"Mohamed S H Hassan, Abdalla M. Omar, E. Daskalakis, B. Grieve, P. Bártolo","doi":"10.36922/ijb.0024","DOIUrl":"https://doi.org/10.36922/ijb.0024","url":null,"abstract":"Polyethylene terephthalate glycol (PETG) is a difficult-to-spin material, and no previous papers have reported the correct conditions to create PETG meshes. To address this issue, a preliminary study on the solubility and electrospinnability of PETG using a range of solvent system was conducted and a Teas graph was established to select the ideal solvent system. Based on these preliminary results, electrospun PETG fibers were produced using a highly volatile binary solvent system consisting of dichloromethane (DCM) and trifluoroacetic acid (TFA). Produced meshes were extensively characterized, and the results demonstrated for the first time the ability of electrospun PETG meshes to support the inoculation and germination of yellow rust spores, thus confirming that PETG is an ideal material to be used for the fabrication of agriculture biosensors. The results also showed that the best solvent split was 85/15 (DCM/TFA).","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"59 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80849757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}