首页 > 最新文献

Journal of Civil Structural Health Monitoring最新文献

英文 中文
Study on the shear mechanical response and failure characteristics of prefabricated double-cabin utility tunnel joints 预制双舱公用事业隧道接头的剪切机械响应和失效特征研究
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-26 DOI: 10.1007/s13349-024-00806-9
Chao Zhang, Zhengrong Zhao, Youjun Xu, Xuzhi Nie

Longitudinal joints are the most vulnerable parts of prefabricated utility tunnels, susceptible to damage from external forces and foundation settlement. Currently, the shear mechanical properties of prefabricated double-cabin utility tunnel joints are unclear, preventing the evaluation of the structural or joint safety of utility tunnels. The shear mechanical response and failure characteristics of the joints of prefabricated double-cabin utility tunnels are investigated by combining model testing with numerical simulation. The results indicate that the shear deformation of utility tunnel joints can be categorized into elastic, crack propagation, and damage stages. In the course of joint-shear deformation, the middle utility tunnel sustains centrosymmetric failure. The degree of deformation of the large cabin is greater than that of the small cabin, while the damage to the small cabin is more severe. When the utility tunnel is subjected to the same load, the joint dislocation under the gravelly sand foundation is the smallest, but the damage range is the largest and the cracks are the most. Local strengthening and protection are needed at the chamfer, near the bolt hole, and the top and bottom. The stratum conditions have little effect on the shear stiffness of the joint during the elastic stage, but they have a significant impact during the crack propagation and damage stages. Finally, the joint damage area is approximately 15% of the total utility tunnel, and the deformation region of the longitudinal connectors is approximately 16% of its length.

纵向接缝是预制水电隧道中最脆弱的部分,容易受到外力和地基沉降的破坏。目前,预制双舱水电隧道接头的剪切力学性能尚不明确,无法对水电隧道的结构或接头安全性进行评估。本文通过模型试验和数值模拟相结合的方法,研究了预制双舱水电隧道接头的剪切力学响应和破坏特征。结果表明,水电隧道接头的剪切变形可分为弹性阶段、裂缝扩展阶段和破坏阶段。在接缝剪切变形过程中,中间公用设施隧道发生中心对称破坏。大舱室的变形程度大于小舱室,而小舱室的损坏更为严重。当水电隧道承受相同荷载时,砾砂地基下的接缝错位最小,但破坏范围最大,裂缝最多。在倒角处、螺栓孔附近以及顶部和底部需要进行局部加固和保护。地层条件在弹性阶段对接缝的剪切刚度影响不大,但在裂缝扩展和破坏阶段影响很大。最后,接头损坏区域约占整个实用隧道的 15%,纵向连接件的变形区域约占其长度的 16%。
{"title":"Study on the shear mechanical response and failure characteristics of prefabricated double-cabin utility tunnel joints","authors":"Chao Zhang, Zhengrong Zhao, Youjun Xu, Xuzhi Nie","doi":"10.1007/s13349-024-00806-9","DOIUrl":"https://doi.org/10.1007/s13349-024-00806-9","url":null,"abstract":"<p>Longitudinal joints are the most vulnerable parts of prefabricated utility tunnels, susceptible to damage from external forces and foundation settlement. Currently, the shear mechanical properties of prefabricated double-cabin utility tunnel joints are unclear, preventing the evaluation of the structural or joint safety of utility tunnels. The shear mechanical response and failure characteristics of the joints of prefabricated double-cabin utility tunnels are investigated by combining model testing with numerical simulation. The results indicate that the shear deformation of utility tunnel joints can be categorized into elastic, crack propagation, and damage stages. In the course of joint-shear deformation, the middle utility tunnel sustains centrosymmetric failure. The degree of deformation of the large cabin is greater than that of the small cabin, while the damage to the small cabin is more severe. When the utility tunnel is subjected to the same load, the joint dislocation under the gravelly sand foundation is the smallest, but the damage range is the largest and the cracks are the most. Local strengthening and protection are needed at the chamfer, near the bolt hole, and the top and bottom. The stratum conditions have little effect on the shear stiffness of the joint during the elastic stage, but they have a significant impact during the crack propagation and damage stages. Finally, the joint damage area is approximately 15% of the total utility tunnel, and the deformation region of the longitudinal connectors is approximately 16% of its length.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the dynamic behaviour of historic buildings using experimental data: application to a Baroque church 利用实验数据改善历史建筑的动态性能:应用于巴洛克式教堂
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-25 DOI: 10.1007/s13349-024-00804-x
Rosario Ceravolo, E. Lenticchia, G. Miraglia, L. Scussolini
{"title":"Improving the dynamic behaviour of historic buildings using experimental data: application to a Baroque church","authors":"Rosario Ceravolo, E. Lenticchia, G. Miraglia, L. Scussolini","doi":"10.1007/s13349-024-00804-x","DOIUrl":"https://doi.org/10.1007/s13349-024-00804-x","url":null,"abstract":"","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back analysis using the univariate search method for estimating hanger cable tension 使用单变量搜索法估算悬挂索拉力的回溯分析
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-23 DOI: 10.1007/s13349-024-00792-y
Sung-Wan Kim, D. Park, Jin-Soo Kim, Jae-Bong Park
{"title":"Back analysis using the univariate search method for estimating hanger cable tension","authors":"Sung-Wan Kim, D. Park, Jin-Soo Kim, Jae-Bong Park","doi":"10.1007/s13349-024-00792-y","DOIUrl":"https://doi.org/10.1007/s13349-024-00792-y","url":null,"abstract":"","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex background segmentation for noncontact cable vibration frequency estimation using semantic segmentation and complexity pursuit algorithm 利用语义分割和复杂性追求算法进行复杂背景分割,以估算非接触式电缆振动频率
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-18 DOI: 10.1007/s13349-024-00798-6
Tianyong Jiang, Chunjun Hu, Lingyun Li

This paper proposes a new complex background segmentation method based on the modified fully convolutional network semantic segmentation for noncontact cable vibration frequency estimation. The estimation of frequency from video data is challenged by the presence of background object motion, which directly impacts the accuracy of the video-based method. To address this issue, image tests were carried out among the existing model (U2-Net) to explore the effect of the efficient channel attention (ECA) and convolutional block attention module (CBAM) on cable segmentation performance. As a result, a relative optimal model was identified. This modified model was then used to remove the complex background, while retaining the vibration signals specific to the cable. Subsequently, phase matrices encoding cable vibration were calculated using a phase-based motion estimation algorithm at various cable locations. The modal response of the cable vibration was estimated using the complexity pursuit (CP) algorithm from the segmented video. Finally, the vibration frequency of the cable was estimated. The proposed method was validated on a small-scale cable model. The results are in good agreement with the values sampled by the accelerometer, with an average relative error of 4.50%. This estimation shows the significant potential of the proposed method in structural health monitoring.

本文提出了一种基于修正的全卷积网络语义分割的新型复杂背景分割方法,用于非接触式电缆振动频率估算。从视频数据中估算频率面临着背景物体运动的挑战,这直接影响了基于视频方法的准确性。为解决这一问题,我们对现有模型(U2-Net)进行了图像测试,以探索高效通道注意(ECA)和卷积块注意模块(CBAM)对电缆分割性能的影响。结果,确定了一个相对最优的模型。修改后的模型用于去除复杂背景,同时保留电缆特有的振动信号。随后,使用基于相位的运动估算算法计算了不同电缆位置的电缆振动编码相位矩阵。使用复杂性追寻 (CP) 算法从分割的视频中估算出电缆振动的模态响应。最后,估算出电缆的振动频率。所提出的方法在一个小型电缆模型上进行了验证。结果与加速度计的采样值十分吻合,平均相对误差为 4.50%。这一估算结果表明,所提出的方法在结构健康监测方面具有巨大潜力。
{"title":"Complex background segmentation for noncontact cable vibration frequency estimation using semantic segmentation and complexity pursuit algorithm","authors":"Tianyong Jiang, Chunjun Hu, Lingyun Li","doi":"10.1007/s13349-024-00798-6","DOIUrl":"https://doi.org/10.1007/s13349-024-00798-6","url":null,"abstract":"<p>This paper proposes a new complex background segmentation method based on the modified fully convolutional network semantic segmentation for noncontact cable vibration frequency estimation. The estimation of frequency from video data is challenged by the presence of background object motion, which directly impacts the accuracy of the video-based method. To address this issue, image tests were carried out among the existing model (U2-Net) to explore the effect of the efficient channel attention (ECA) and convolutional block attention module (CBAM) on cable segmentation performance. As a result, a relative optimal model was identified. This modified model was then used to remove the complex background, while retaining the vibration signals specific to the cable. Subsequently, phase matrices encoding cable vibration were calculated using a phase-based motion estimation algorithm at various cable locations. The modal response of the cable vibration was estimated using the complexity pursuit (CP) algorithm from the segmented video. Finally, the vibration frequency of the cable was estimated. The proposed method was validated on a small-scale cable model. The results are in good agreement with the values sampled by the accelerometer, with an average relative error of 4.50%. This estimation shows the significant potential of the proposed method in structural health monitoring.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of future creep and seismic behaviors of dams using 3D analyses validated by long-term levelling measurements 利用经长期水准测量验证的三维分析确定大坝未来的蠕变和地震行为
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-16 DOI: 10.1007/s13349-024-00799-5
Murat Cavuslu, Samed Inyurt

This study aims to assess the future structural performance of the Kozlu-Ulutan clay core rockfill (CCR) dam, one of the most significant water structures in the Black Sea region of Turkey, by utilizing 35 years of levelling measurements and 3D finite-difference analyses. Settlement measurements were obtained from five different points on the dam surface every 6 months. Subsequently, a three-dimensional (3D) model of the dam was created using the finite-difference method. Time-dependent creep analyses and seismic analyses were conducted sequentially, employing the Burger-Creep and Mohr–Coulomb material models, respectively. Non-reflecting boundary conditions were defined for the boundaries of the dam model. The 3D numerical analysis results were found to be highly compatible with the 35 years of levelling measurements. Additionally, the future seepage and settlement behaviors of the dam over a 100-year period (2023–2123) were analyzed, considering special time functions. Current and future seismic analyses were performed, taking into account the settlement results of the dam in 2023 and 2123. For seismic analyses, data from ten various earthquakes that occurred in Kahramanmaraş, Hatay, Malatya, and Gaziantep in Turkey in 2023 were utilized. The seismic analysis results provided significant information about the future seismic behavior of the Kozlu-Ulutan Dam, revealing notable differences between the current and future earthquake behaviors of the dam. Moreover, it was concluded that the clay core is the most crucial section concerning the current and future seismic behaviors of CCR dams. The study results emphasized the importance of continuous monitoring and periodic seismic evaluations for the safe operation of CCR dams.

该研究旨在利用 35 年的水准测量和三维有限差分分析,评估土耳其黑海地区最重要的水利工程之一--科兹鲁-乌卢坦粘土岩心填筑(CCR)大坝未来的结构性能。每 6 个月对大坝表面的 5 个不同点进行一次沉降测量。随后,使用有限差分法创建了大坝的三维(3D)模型。分别采用 Burger-Creep 和 Mohr-Coulomb 材料模型,依次进行了随时间变化的蠕变分析和地震分析。为大坝模型的边界定义了非反射边界条件。三维数值分析结果与 35 年的水准测量结果高度吻合。此外,考虑到特殊的时间函数,还对大坝未来 100 年(2023-2123 年)的渗流和沉降行为进行了分析。考虑到大坝在 2023 年和 2123 年的沉降结果,还进行了当前和未来的地震分析。地震分析采用了 2023 年在土耳其卡赫拉曼马拉什、哈塔伊、马拉蒂亚和加济安泰普发生的 10 次不同地震的数据。地震分析结果为 Kozlu-Ulutan 大坝未来的地震行为提供了重要信息,揭示了大坝当前地震行为与未来地震行为之间的显著差异。此外,研究还得出结论,粘土心是影响 CCR 大坝当前和未来地震行为的最关键部分。研究结果强调了持续监测和定期地震评估对 CCR 大坝安全运行的重要性。
{"title":"Determination of future creep and seismic behaviors of dams using 3D analyses validated by long-term levelling measurements","authors":"Murat Cavuslu, Samed Inyurt","doi":"10.1007/s13349-024-00799-5","DOIUrl":"https://doi.org/10.1007/s13349-024-00799-5","url":null,"abstract":"<p>This study aims to assess the future structural performance of the Kozlu-Ulutan clay core rockfill (CCR) dam, one of the most significant water structures in the Black Sea region of Turkey, by utilizing 35 years of levelling measurements and 3D finite-difference analyses. Settlement measurements were obtained from five different points on the dam surface every 6 months. Subsequently, a three-dimensional (3D) model of the dam was created using the finite-difference method. Time-dependent creep analyses and seismic analyses were conducted sequentially, employing the Burger-Creep and Mohr–Coulomb material models, respectively. Non-reflecting boundary conditions were defined for the boundaries of the dam model. The 3D numerical analysis results were found to be highly compatible with the 35 years of levelling measurements. Additionally, the future seepage and settlement behaviors of the dam over a 100-year period (2023–2123) were analyzed, considering special time functions. Current and future seismic analyses were performed, taking into account the settlement results of the dam in 2023 and 2123. For seismic analyses, data from ten various earthquakes that occurred in Kahramanmaraş, Hatay, Malatya, and Gaziantep in Turkey in 2023 were utilized. The seismic analysis results provided significant information about the future seismic behavior of the Kozlu-Ulutan Dam, revealing notable differences between the current and future earthquake behaviors of the dam. Moreover, it was concluded that the clay core is the most crucial section concerning the current and future seismic behaviors of CCR dams. The study results emphasized the importance of continuous monitoring and periodic seismic evaluations for the safe operation of CCR dams.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised transfer learning for structural health monitoring of urban pedestrian bridges 用于城市人行天桥结构健康监测的无监督迁移学习
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-14 DOI: 10.1007/s13349-024-00786-w
Giulia Marasco, Ionut Moldovan, Eloi Figueiredo, Bernardino Chiaia

Bridge authorities have been reticent to integrate structural health monitoring into their bridge management systems, as they do not have the financial and technical resources to collect long-term monitoring data from every bridge. As bridge authorities normally own huge amount of similar bridges, like the pedestrian ones, the ability to transfer knowledge from one or a small group of well-known bridges to help make more effective decisions in new bridges and environments has gained relevance. In that sense, transfer learning, a subfield of machine learning, offers a novel solution to periodically evaluate the structural condition of all pedestrian bridges using long-term monitoring data from one or more pedestrian bridges. In this paper, the applicability of unsupervised transfer learning is firstly shown on data from numerical models and then on data from two similar pedestrian prestressed concrete bridges. Two domain adaptation techniques are used for transfer learning, where a classifier has access to unlabeled training data (source domain) from a reference bridge (or a small set of reference bridges) and unlabeled monitoring test data (target domain) from another bridge, assuming that both domains are from similar but statistically different distributions. This type of mapping is expected to improve the classification accuracy for the target domain compared to a procedure that does not implement domain adaptation, as a result of reducing distributions mismatch between source and target domains.

桥梁管理部门一直不愿将结构健康监测纳入其桥梁管理系统,因为他们没有财力和技术资源来收集每座桥梁的长期监测数据。由于桥梁管理部门通常拥有大量类似的桥梁(如人行天桥),因此从一座或一小部分知名桥梁中迁移知识,以帮助在新桥梁和新环境中做出更有效决策的能力已变得越来越重要。从这个意义上说,机器学习的一个子领域--迁移学习提供了一种新颖的解决方案,即利用一座或多座人行天桥的长期监测数据,定期评估所有人行天桥的结构状况。本文首先在数值模型数据上展示了无监督迁移学习的适用性,然后在两座类似的预应力混凝土人行天桥数据上展示了无监督迁移学习的适用性。迁移学习使用了两种域适应技术,其中分类器可以访问来自参考桥梁(或一小组参考桥梁)的无标记训练数据(源域)和来自另一座桥梁的无标记监测测试数据(目标域),假设这两个域来自相似但统计上不同的分布。与不实施域适应的程序相比,这种映射方式可减少源域和目标域之间的分布不匹配,从而提高目标域的分类准确性。
{"title":"Unsupervised transfer learning for structural health monitoring of urban pedestrian bridges","authors":"Giulia Marasco, Ionut Moldovan, Eloi Figueiredo, Bernardino Chiaia","doi":"10.1007/s13349-024-00786-w","DOIUrl":"https://doi.org/10.1007/s13349-024-00786-w","url":null,"abstract":"<p>Bridge authorities have been reticent to integrate structural health monitoring into their bridge management systems, as they do not have the financial and technical resources to collect long-term monitoring data from every bridge. As bridge authorities normally own huge amount of similar bridges, like the pedestrian ones, the ability to transfer knowledge from one or a small group of well-known bridges to help make more effective decisions in new bridges and environments has gained relevance. In that sense, transfer learning, a subfield of machine learning, offers a novel solution to periodically evaluate the structural condition of all pedestrian bridges using long-term monitoring data from one or more pedestrian bridges. In this paper, the applicability of unsupervised transfer learning is firstly shown on data from numerical models and then on data from two similar pedestrian prestressed concrete bridges. Two domain adaptation techniques are used for transfer learning, where a classifier has access to unlabeled training data (source domain) from a reference bridge (or a small set of reference bridges) and unlabeled monitoring test data (target domain) from another bridge, assuming that both domains are from similar but statistically different distributions. This type of mapping is expected to improve the classification accuracy for the target domain compared to a procedure that does not implement domain adaptation, as a result of reducing distributions mismatch between source and target domains.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field monitoring of the movements and deformations of two subway tunnels during the construction of an overcrossing tunnel: a case study 在修建过街隧道期间对两条地铁隧道的移动和变形进行实地监测:案例研究
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-13 DOI: 10.1007/s13349-024-00801-0
Huangsong Pan, Tong Qiu, Liyuan Tong

During the construction of a new tunnel overcrossing existing tunnels at close proximity, the existing tunnels should be protected by protective structures and/or ground improvement measures. However, the construction of these structures and ground improvement may cause movement or deformation to the existing tunnels, potentially jeopardizing their operational safety, particularly under soft soil and sensitive ground conditions. This study presents the results of a year-long field monitoring program focusing on the movement of two underlying subway tunnels during different construction phases of an overcrossing cut-and-cover tunnel. Protective structures/measures for the existing subway tunnels included the construction of H-pile walls, deep soil mixing, cast-in-situ bored piles, and staged excavation for the new tunnel. In terms of construction-induced movement to the existing subway tunnels, it was found that the construction of H-pile walls induced the largest vertical settlement, the deep soil mixing operations induced the largest horizontal displacements, and the staged excavation induced the largest uplift. Although the maximum horizontal displacement at the springline of a subway tunnel near the center of the construction area slightly exceeded the alarm value, the implemented protective structures/measures were effective in reducing the total horizontal and vertical displacements of the existing tunnels.

在興建新隧道橫跨現有隧道時,現有隧道應受到保護構築物及/或地面改善措施的保護。然而,这些结构和地面改善措施的建设可能会导致现有隧道的移动或变形,从而可能危及其运营安全,尤其是在软土和敏感的地面条件下。本研究介绍了一项为期一年的实地监测项目的结果,重点关注两条地下隧道在明挖回填隧道不同施工阶段的移动情况。现有地铁隧道的保护结构/措施包括建造 H 型桩墙、深层土壤搅拌、现浇钻孔桩,以及分阶段挖掘新隧道。在施工对现有地铁隧道造成的移动方面,发现建造工字桩墙引起的垂直沉降最大,深层土壤搅拌作业引起的水平位移最大,而分阶段开挖引起的隆起最大。虽然靠近施工区中心的地铁隧道弹线处的最大水平位移略微超过了警戒值,但已实施的保护结构/措施有效地减少了现有隧道的总水平和垂直位移。
{"title":"Field monitoring of the movements and deformations of two subway tunnels during the construction of an overcrossing tunnel: a case study","authors":"Huangsong Pan, Tong Qiu, Liyuan Tong","doi":"10.1007/s13349-024-00801-0","DOIUrl":"https://doi.org/10.1007/s13349-024-00801-0","url":null,"abstract":"<p>During the construction of a new tunnel overcrossing existing tunnels at close proximity, the existing tunnels should be protected by protective structures and/or ground improvement measures. However, the construction of these structures and ground improvement may cause movement or deformation to the existing tunnels, potentially jeopardizing their operational safety, particularly under soft soil and sensitive ground conditions. This study presents the results of a year-long field monitoring program focusing on the movement of two underlying subway tunnels during different construction phases of an overcrossing cut-and-cover tunnel. Protective structures/measures for the existing subway tunnels included the construction of H-pile walls, deep soil mixing, cast-in-situ bored piles, and staged excavation for the new tunnel. In terms of construction-induced movement to the existing subway tunnels, it was found that the construction of H-pile walls induced the largest vertical settlement, the deep soil mixing operations induced the largest horizontal displacements, and the staged excavation induced the largest uplift. Although the maximum horizontal displacement at the springline of a subway tunnel near the center of the construction area slightly exceeded the alarm value, the implemented protective structures/measures were effective in reducing the total horizontal and vertical displacements of the existing tunnels.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-correlation difference matrix based structural damage detection approach for building structures 基于交叉相关差矩阵的建筑结构损伤检测方法
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-12 DOI: 10.1007/s13349-024-00781-1
Soraj Kumar Panigrahi, Chandrabhan Patel, Ajay Chourasia, Ravindra Singh Bisht

Damages to various building structures often occur over their service life and can occasionally lead to severe structural failures, threatening the lives of its residents. In recent years, special attention has been paid to investigating various damages in buildings at the early stage to avoid failures and thereby minimize maintenance. Structural health monitoring can be used as a tool for damage quantification using vibration measurements. The application of various sensors for measuring accelerations, velocity and displacement in civil infrastructure monitoring has a long history in vibration-based approaches. These types of sensors reveal dynamic characteristics which are global in nature and ineffective in case of minor damage identification. In a practical application, the available damage detection approaches are not fully capable of quickly sensing and accurately identifying the realistic damage in structures. Research on damage identification from strain data is an interesting topic in recent days. Some work on the cross-correlation approach is now a centre of attraction and strictly confined to bridge or symmetric structures. The present paper uses strain data to validate the cross-correlation approach for detecting damage to building structures. The effectiveness of the methodology has been illustrated firstly on a simply supported beam, then on a 5-storey steel frame and a 6-storey scaled-down reinforced concrete shear building and lastly on a frame structure with moving load as a special case. The results show that this approach has the potential to identify damages in different kinds of civil infrastructure.

各种建筑结构在使用过程中经常会发生损坏,有时会导致严重的结构故障,威胁居民的生命安全。近年来,人们特别重视在早期阶段调查建筑物的各种损坏情况,以避免出现故障,从而最大限度地减少维护工作。结构健康监测可作为一种利用振动测量进行损坏量化的工具。在土木基础设施监测中应用各种传感器测量加速度、速度和位移,这种基于振动的方法由来已久。这些类型的传感器揭示的动态特性具有全局性,对于轻微损坏的识别无效。在实际应用中,现有的损伤检测方法并不完全能够快速感应和准确识别结构中的实际损伤。从应变数据中进行损伤识别的研究是近年来一个有趣的话题。目前,交叉相关方法的一些研究工作已成为关注的焦点,但仅限于桥梁或对称结构。本文利用应变数据来验证检测建筑结构损坏的交叉相关方法。首先在简单支撑梁上说明了该方法的有效性,然后在 5 层钢结构框架和 6 层按比例缩小的钢筋混凝土剪力墙建筑上进行了说明,最后作为特例在带移动荷载的框架结构上进行了说明。结果表明,这种方法具有识别不同类型民用基础设施损坏的潜力。
{"title":"Cross-correlation difference matrix based structural damage detection approach for building structures","authors":"Soraj Kumar Panigrahi, Chandrabhan Patel, Ajay Chourasia, Ravindra Singh Bisht","doi":"10.1007/s13349-024-00781-1","DOIUrl":"https://doi.org/10.1007/s13349-024-00781-1","url":null,"abstract":"<p>Damages to various building structures often occur over their service life and can occasionally lead to severe structural failures, threatening the lives of its residents. In recent years, special attention has been paid to investigating various damages in buildings at the early stage to avoid failures and thereby minimize maintenance. Structural health monitoring can be used as a tool for damage quantification using vibration measurements. The application of various sensors for measuring accelerations, velocity and displacement in civil infrastructure monitoring has a long history in vibration-based approaches. These types of sensors reveal dynamic characteristics which are global in nature and ineffective in case of minor damage identification. In a practical application, the available damage detection approaches are not fully capable of quickly sensing and accurately identifying the realistic damage in structures. Research on damage identification from strain data is an interesting topic in recent days. Some work on the cross-correlation approach is now a centre of attraction and strictly confined to bridge or symmetric structures. The present paper uses strain data to validate the cross-correlation approach for detecting damage to building structures. The effectiveness of the methodology has been illustrated firstly on a simply supported beam, then on a 5-storey steel frame and a 6-storey scaled-down reinforced concrete shear building and lastly on a frame structure with moving load as a special case. The results show that this approach has the potential to identify damages in different kinds of civil infrastructure.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly efficient adaptive geomagnetic signal filtering approach using CEEMDAN and salp swarm algorithm 使用 CEEMDAN 和 salp swarm 算法的高效自适应地磁信号滤波方法
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-12 DOI: 10.1007/s13349-024-00800-1
Zia Ullah, Kong Fah Tee

Convenient and helpful defect information within the magnetic field signals of an energy pipeline is often disrupted by external random noises due to its weak nature. Non-destructive testing methods must be developed to accurately and robustly denoise the multi-dimensional magnetic field data of a buried pipeline. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is an innovative technique for decomposing signals, showcasing excellent noise reduction capabilities. The efficacy of its filtration process depends on two variables, namely the level of additional noise and the number of ensemble trials. To address this issue, this paper introduces an adaptive geomagnetic signal filtering approach by leveraging the capabilities of both CEEMDAN and the salp swarm algorithm (SSA). CEEMDAN generates a sequence of intrinsic mode functions (IMFs) from the measured geomagnetic signal based on its initial parameters. The Hurst exponent is then applied to distinguish signal IMFs and reproduce the primary filtered signal. SSA fitness, representing its peak value (excluding the zero point) in the normalized autocorrelation function, is utilized. Ultimately, optimal parameters that maximize fitness are determined, leading to the acquisition of their corresponding filtered signal. Comparative tests conducted on multiple simulated signal variants, incorporating varied levels of background noise, indicate that the efficacy of the proposed technique surpasses both EMD denoising strategies and conventional CEEMDAN approaches in terms of signal-to-noise ratio (SNR) and root mean square error (RMSE) assessments. Field testing on the buried energy pipeline is performed to showcase the proposed method’s ability to filter geomagnetic signals, evaluated using the detrended fluctuation analysis (DFA).

能源管道磁场信号中方便有用的缺陷信息因其微弱的性质而经常被外部随机噪声干扰。必须开发无损检测方法,以准确、稳健地对埋地管道的多维磁场数据进行去噪。具有自适应噪声的完全集合经验模式分解(CEEMDAN)是一种用于分解信号的创新技术,具有出色的降噪能力。其过滤过程的有效性取决于两个变量,即附加噪声的水平和集合试验的次数。为解决这一问题,本文介绍了一种自适应地磁信号过滤方法,充分利用了 CEEMDAN 和 salp 蜂群算法(SSA)的功能。CEEMDAN 根据地磁信号的初始参数,从测量的地磁信号中生成一系列本征模态函数(IMF)。然后应用赫斯特指数来区分信号 IMF,并重现主滤波信号。SSA 适合度代表归一化自相关函数中的峰值(不包括零点)。最终,确定能使适配度最大化的最佳参数,从而获得相应的滤波信号。对包含不同背景噪声水平的多个模拟信号变体进行的比较测试表明,就信噪比(SNR)和均方根误差(RMSE)评估而言,所提技术的功效超过了 EMD 去噪策略和传统的 CEEMDAN 方法。对埋地能源管道进行了现场测试,以展示拟议方法过滤地磁信号的能力,并使用去趋势波动分析(DFA)进行评估。
{"title":"A highly efficient adaptive geomagnetic signal filtering approach using CEEMDAN and salp swarm algorithm","authors":"Zia Ullah, Kong Fah Tee","doi":"10.1007/s13349-024-00800-1","DOIUrl":"https://doi.org/10.1007/s13349-024-00800-1","url":null,"abstract":"<p>Convenient and helpful defect information within the magnetic field signals of an energy pipeline is often disrupted by external random noises due to its weak nature. Non-destructive testing methods must be developed to accurately and robustly denoise the multi-dimensional magnetic field data of a buried pipeline. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is an innovative technique for decomposing signals, showcasing excellent noise reduction capabilities. The efficacy of its filtration process depends on two variables, namely the level of additional noise and the number of ensemble trials. To address this issue, this paper introduces an adaptive geomagnetic signal filtering approach by leveraging the capabilities of both CEEMDAN and the salp swarm algorithm (SSA). CEEMDAN generates a sequence of intrinsic mode functions (IMFs) from the measured geomagnetic signal based on its initial parameters. The Hurst exponent is then applied to distinguish signal IMFs and reproduce the primary filtered signal. SSA fitness, representing its peak value (excluding the zero point) in the normalized autocorrelation function, is utilized. Ultimately, optimal parameters that maximize fitness are determined, leading to the acquisition of their corresponding filtered signal. Comparative tests conducted on multiple simulated signal variants, incorporating varied levels of background noise, indicate that the efficacy of the proposed technique surpasses both EMD denoising strategies and conventional CEEMDAN approaches in terms of signal-to-noise ratio (SNR) and root mean square error (RMSE) assessments. Field testing on the buried energy pipeline is performed to showcase the proposed method’s ability to filter geomagnetic signals, evaluated using the detrended fluctuation analysis (DFA).</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressive sensing-based construction of high-resolution mode shapes for updating bridge boundary constraints 基于压缩传感技术构建高分辨率模态振型,用于更新桥梁边界约束条件
IF 4.4 2区 工程技术 Q1 Engineering Pub Date : 2024-04-11 DOI: 10.1007/s13349-024-00791-z
Yi He, Zhipeng Li, Judy P. Yang

In this study, a method of finite element model updating is proposed to quantitatively identify bridge boundary constraints using the high-resolution mode shapes of a bridge. The high-resolution mode shapes are first identified from the responses measured by few randomly distributed sensors using the compressive sensing theory, which is innovatively implemented in the spatial domain with a proposed basis matrix. To speed up finite element updating, the frequency and modal assurance criterion Kriging models are then established to approximate the implicit relation between boundary constraints and bridge modal parameters including frequencies and mode shapes, serving as surrogate models for the bridge finite element model. By adopting the surrogate models in finite element updating, the objective functions of frequencies and mode shape indicators are optimized by a multi-objective genetic algorithm. The numerical examples as well as an actual laboratory experiment have shown that the mode shapes and boundary constraints of a bridge can be identified precisely and efficiently by the proposed method, even for a continuous and variable cross-sectional bridge.

本研究提出了一种有限元模型更新方法,利用桥梁的高分辨率模态振型来定量识别桥梁边界约束。高分辨率模态振型首先是利用压缩传感理论从少数随机分布的传感器测得的响应中识别出来的,并通过提出的基矩阵在空间域中创新性地实现了这一理论。为了加快有限元更新,建立了频率和模态保证准则克里金模型,以近似边界约束与桥梁模态参数(包括频率和模态振型)之间的隐含关系,作为桥梁有限元模型的代用模型。通过在有限元更新中采用代用模型,利用多目标遗传算法对频率和模态振型指标的目标函数进行优化。数值实例和实际实验室实验表明,即使是连续和变截面桥梁,也能通过所提出的方法精确有效地确定桥梁的模态振型和边界约束。
{"title":"Compressive sensing-based construction of high-resolution mode shapes for updating bridge boundary constraints","authors":"Yi He, Zhipeng Li, Judy P. Yang","doi":"10.1007/s13349-024-00791-z","DOIUrl":"https://doi.org/10.1007/s13349-024-00791-z","url":null,"abstract":"<p>In this study, a method of finite element model updating is proposed to quantitatively identify bridge boundary constraints using the high-resolution mode shapes of a bridge. The high-resolution mode shapes are first identified from the responses measured by few randomly distributed sensors using the compressive sensing theory, which is innovatively implemented in the spatial domain with a proposed basis matrix. To speed up finite element updating, the frequency and modal assurance criterion Kriging models are then established to approximate the implicit relation between boundary constraints and bridge modal parameters including frequencies and mode shapes, serving as surrogate models for the bridge finite element model. By adopting the surrogate models in finite element updating, the objective functions of frequencies and mode shape indicators are optimized by a multi-objective genetic algorithm. The numerical examples as well as an actual laboratory experiment have shown that the mode shapes and boundary constraints of a bridge can be identified precisely and efficiently by the proposed method, even for a continuous and variable cross-sectional bridge.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Civil Structural Health Monitoring
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1