Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.12.001
Xuyang Chen , Daquan Feng , Qi He , Yao Sun , Gaojie Chen , Xiang-Gen Xia
Semantic Communication (SemCom) can significantly reduce the transmitted data volume and keep robustness. Task-oriented SemCom of images aims to convey the implicit meaning of source messages correctly, rather than achieving precise bit-by-bit reconstruction. Existing image SemCom systems directly perform semantic encoding and decoding on the entire image, which has not considered the correlation between image content and downstream tasks or the adaptability to channel noise. To this end, we propose a content-aware robust SemCom framework for image transmission based on Generative Adversarial Networks (GANs). Specifically, the accurate semantics of the image are extracted by the semantic encoder, and divided into two parts for different downstream tasks: Regions of Interest (ROI) and Regions of Non-Interest (RONI). By reducing the quantization accuracy of RONI, the amount of transmitted data volume is reduced significantly. During the transmission process of semantics, a Signal-to-Noise Ratio (SNR) is randomly initialized, enabling the model to learn the average noise distribution. The experimental results demonstrate that by reducing the quantization level of RONI, transmitted data volume is reduced up to 60.53% compared to using globally consistent quantization while maintaining comparable performance to existing methods in downstream semantic segmentation tasks. Moreover, our model exhibits increased robustness with variable SNRs.
{"title":"Content-aware robust semantic transmission of images over wireless channels with GANs","authors":"Xuyang Chen , Daquan Feng , Qi He , Yao Sun , Gaojie Chen , Xiang-Gen Xia","doi":"10.1016/j.dcan.2024.12.001","DOIUrl":"10.1016/j.dcan.2024.12.001","url":null,"abstract":"<div><div>Semantic Communication (SemCom) can significantly reduce the transmitted data volume and keep robustness. Task-oriented SemCom of images aims to convey the implicit meaning of source messages correctly, rather than achieving precise bit-by-bit reconstruction. Existing image SemCom systems directly perform semantic encoding and decoding on the entire image, which has not considered the correlation between image content and downstream tasks or the adaptability to channel noise. To this end, we propose a content-aware robust SemCom framework for image transmission based on Generative Adversarial Networks (GANs). Specifically, the accurate semantics of the image are extracted by the semantic encoder, and divided into two parts for different downstream tasks: Regions of Interest (ROI) and Regions of Non-Interest (RONI). By reducing the quantization accuracy of RONI, the amount of transmitted data volume is reduced significantly. During the transmission process of semantics, a Signal-to-Noise Ratio (SNR) is randomly initialized, enabling the model to learn the average noise distribution. The experimental results demonstrate that by reducing the quantization level of RONI, transmitted data volume is reduced up to 60.53% compared to using globally consistent quantization while maintaining comparable performance to existing methods in downstream semantic segmentation tasks. Moreover, our model exhibits increased robustness with variable SNRs.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1205-1213"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.12.004
Aditya Kumar, Satish Narayana Srirama
Federated Learning (FL) has become a popular training paradigm in recent years. However, stragglers are critical bottlenecks in an Internet of Things (IoT) network while training. These nodes produce stale updates to the server, which slow down the convergence. In this paper, we studied the impact of the stale updates on the global model, which is observed to be significant. To address this, we propose a weighted averaging scheme, FedStrag, that optimizes the training with stale updates. The work is focused on training a model in an IoT network that has multiple challenges, such as resource constraints, stragglers, network issues, device heterogeneity, etc. To this end, we developed a time-bounded asynchronous FL paradigm that can train a model on the continuous inflow of data in the edge-fog-cloud continuum. To test the FedStrag approach, a model is trained with multiple stragglers scenarios on both Independent and Identically Distributed (IID) and non-IID datasets on Raspberry Pis. The experiment results suggest that the FedStrag outperforms the baseline FedAvg in all possible cases.
{"title":"FedStrag: Straggler-aware federated learning for low resource devices","authors":"Aditya Kumar, Satish Narayana Srirama","doi":"10.1016/j.dcan.2024.12.004","DOIUrl":"10.1016/j.dcan.2024.12.004","url":null,"abstract":"<div><div>Federated Learning (FL) has become a popular training paradigm in recent years. However, stragglers are critical bottlenecks in an Internet of Things (IoT) network while training. These nodes produce stale updates to the server, which slow down the convergence. In this paper, we studied the impact of the stale updates on the global model, which is observed to be significant. To address this, we propose a weighted averaging scheme, FedStrag, that optimizes the training with stale updates. The work is focused on training a model in an IoT network that has multiple challenges, such as resource constraints, stragglers, network issues, device heterogeneity, etc. To this end, we developed a time-bounded asynchronous FL paradigm that can train a model on the continuous inflow of data in the edge-fog-cloud continuum. To test the FedStrag approach, a model is trained with multiple stragglers scenarios on both Independent and Identically Distributed (IID) and non-IID datasets on Raspberry Pis. The experiment results suggest that the FedStrag outperforms the baseline FedAvg in all possible cases.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1214-1224"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.10.008
Sai Li , Liang Yang , Yusheng Sun , Qianfen Jiao
This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication (MIMO-RF/UOWC), aiming to establish sea-based heterogeneous networks. In this setup, the RF links obey κ-μ fading, while the UOWC links undergo the generalized Gamma fading with the pointing error impairments. The relay operates under an Amplify-and-Forward (AF) protocol. Additionally, the attenuation caused by the Absorption and Scattering (AaS) is considered in UOWC links. The work yields precise results for the Average Channel Capacity (ACC), Outage Probability (OP), and average Bit Error Rate (BER). Furthermore, to reveal deeper insights, bounds on the ACC and asymptotic results for the OP and average BER are derived. The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output (SISO)-RF/UOWC AF systems. Various factors affecting the Diversity Gain (DG) of the MIMO-RF/UOWC AF system include the number of antennas/apertures, fading parameters of both links, and pointing error parameters. Moreover, while an increase in the AaS effect can result in significant attenuation, it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.
{"title":"Heterogeneous radio frequency/underwater optical wireless communication relaying systems with MIMO scheme","authors":"Sai Li , Liang Yang , Yusheng Sun , Qianfen Jiao","doi":"10.1016/j.dcan.2024.10.008","DOIUrl":"10.1016/j.dcan.2024.10.008","url":null,"abstract":"<div><div>This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication (MIMO-RF/UOWC), aiming to establish sea-based heterogeneous networks. In this setup, the RF links obey <em>κ</em>-<em>μ</em> fading, while the UOWC links undergo the generalized Gamma fading with the pointing error impairments. The relay operates under an Amplify-and-Forward (AF) protocol. Additionally, the attenuation caused by the Absorption and Scattering (AaS) is considered in UOWC links. The work yields precise results for the Average Channel Capacity (ACC), Outage Probability (OP), and average Bit Error Rate (BER). Furthermore, to reveal deeper insights, bounds on the ACC and asymptotic results for the OP and average BER are derived. The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output (SISO)-RF/UOWC AF systems. Various factors affecting the Diversity Gain (DG) of the MIMO-RF/UOWC AF system include the number of antennas/apertures, fading parameters of both links, and pointing error parameters. Moreover, while an increase in the AaS effect can result in significant attenuation, it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1018-1028"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.10.019
Zhijun Han , Yiqing Zhou , Yu Zhang , Tong-Xing Zheng , Ling Liu , Jinglin Shi
In covert communications, joint jammer selection and power optimization are important to improve performance. However, existing schemes usually assume a warden with a known location and perfect Channel State Information (CSI), which is difficult to achieve in practice. To be more practical, it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI, which makes it difficult for legitimate transceivers to estimate the detection probability of the warden. First, the uncertainty caused by the unknown warden location must be removed, and the Optimal Detection Position (OPTDP) of the warden is derived which can provide the best detection performance (i.e., the worst case for a covert communication). Then, to further avoid the impractical assumption of perfect CSI, the covert throughput is maximized using only the channel distribution information. Given this OPTDP based worst case for covert communications, the jammer selection, the jamming power, the transmission power, and the transmission rate are jointly optimized to maximize the covert throughput (OPTDP-JP). To solve this coupling problem, a Heuristic algorithm based on Maximum Distance Ratio (H-MAXDR) is proposed to provide a sub-optimal solution. First, according to the analysis of the covert throughput, the node with the maximum distance ratio (i.e., the ratio of the distances from the jammer to the receiver and that to the warden) is selected as the friendly jammer (MAXDR). Then, the optimal transmission and jamming power can be derived, followed by the optimal transmission rate obtained via the bisection method. In numerical and simulation results, it is shown that although the location of the warden is unknown, by assuming the OPTDP of the warden, the proposed OPTDP-JP can always satisfy the covertness constraint. In addition, with an uncertain warden and imperfect CSI, the covert throughput provided by OPTDP-JP is 80% higher than the existing schemes when the covertness constraint is 0.9, showing the effectiveness of OPTDP-JP.
{"title":"Joint jammer selection and power optimization in covert communications against a warden with uncertain locations","authors":"Zhijun Han , Yiqing Zhou , Yu Zhang , Tong-Xing Zheng , Ling Liu , Jinglin Shi","doi":"10.1016/j.dcan.2024.10.019","DOIUrl":"10.1016/j.dcan.2024.10.019","url":null,"abstract":"<div><div>In covert communications, joint jammer selection and power optimization are important to improve performance. However, existing schemes usually assume a warden with a known location and perfect Channel State Information (CSI), which is difficult to achieve in practice. To be more practical, it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI, which makes it difficult for legitimate transceivers to estimate the detection probability of the warden. First, the uncertainty caused by the unknown warden location must be removed, and the Optimal Detection Position (OPTDP) of the warden is derived which can provide the best detection performance (i.e., the worst case for a covert communication). Then, to further avoid the impractical assumption of perfect CSI, the covert throughput is maximized using only the channel distribution information. Given this OPTDP based worst case for covert communications, the jammer selection, the jamming power, the transmission power, and the transmission rate are jointly optimized to maximize the covert throughput (OPTDP-JP). To solve this coupling problem, a Heuristic algorithm based on Maximum Distance Ratio (H-MAXDR) is proposed to provide a sub-optimal solution. First, according to the analysis of the covert throughput, the node with the maximum distance ratio (i.e., the ratio of the distances from the jammer to the receiver and that to the warden) is selected as the friendly jammer (MAXDR). Then, the optimal transmission and jamming power can be derived, followed by the optimal transmission rate obtained via the bisection method. In numerical and simulation results, it is shown that although the location of the warden is unknown, by assuming the OPTDP of the warden, the proposed OPTDP-JP can always satisfy the covertness constraint. In addition, with an uncertain warden and imperfect CSI, the covert throughput provided by OPTDP-JP is 80% higher than the existing schemes when the covertness constraint is 0.9, showing the effectiveness of OPTDP-JP.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1114-1124"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.10.020
Mohamed S. Sayed , Hatem M. Zakaria , Abdelhady M. Abdelhady
A Mixed Numerology OFDM (MN-OFDM) system is essential in 6G and beyond. However, it encounters challenges due to Inter-Numerology Interference (INI). The upcoming 6G technology aims to support innovative applications with high data rates, low latency, and reliability. Therefore, effective handling of INI is crucial to meet the diverse requirements of these applications. To address INI in MN-OFDM systems, this paper proposes a User-Based Numerology and Waveform (UBNW) approach that uses various OFDM-based waveforms and their parameters to mitigate INI. By assigning a specific waveform and numerology to each user, UBNW mitigates INI, optimizes service characteristics, and addresses user demands efficiently. The required Guard Bands (GB), expressed as a ratio of user bandwidth, vary significantly across different waveforms at an SIR of 25 dB. For instance, OFDM-FOFDM needs only 2.5%, while OFDM-UFMC, OFDM-WOLA, and conventional OFDM require 7.5%, 24%, and 40%, respectively. The time-frequency efficiency also varies between the waveforms. FOFDM achieves 85.6%, UFMC achieves 81.6%, WOLA achieves 70.7%, and conventional OFDM achieves 66.8%. The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.
{"title":"Enhancing flexibility and system performance in 6G and beyond: A user-based numerology and waveform approach","authors":"Mohamed S. Sayed , Hatem M. Zakaria , Abdelhady M. Abdelhady","doi":"10.1016/j.dcan.2024.10.020","DOIUrl":"10.1016/j.dcan.2024.10.020","url":null,"abstract":"<div><div>A Mixed Numerology OFDM (MN-OFDM) system is essential in 6G and beyond. However, it encounters challenges due to Inter-Numerology Interference (INI). The upcoming 6G technology aims to support innovative applications with high data rates, low latency, and reliability. Therefore, effective handling of INI is crucial to meet the diverse requirements of these applications. To address INI in MN-OFDM systems, this paper proposes a User-Based Numerology and Waveform (UBNW) approach that uses various OFDM-based waveforms and their parameters to mitigate INI. By assigning a specific waveform and numerology to each user, UBNW mitigates INI, optimizes service characteristics, and addresses user demands efficiently. The required Guard Bands (GB), expressed as a ratio of user bandwidth, vary significantly across different waveforms at an SIR of 25 dB. For instance, OFDM-FOFDM needs only 2.5%, while OFDM-UFMC, OFDM-WOLA, and conventional OFDM require 7.5%, 24%, and 40%, respectively. The time-frequency efficiency also varies between the waveforms. FOFDM achieves 85.6%, UFMC achieves 81.6%, WOLA achieves 70.7%, and conventional OFDM achieves 66.8%. The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 975-991"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.11.007
Lijun Wang , Huajie Hao , Chun Wang , Xianzhou Han
Efficient and safe information exchange between vehicles can reduce the probability of road accidents, thereby improving the driving experience of vehicles in Vehicular Ad Hoc Networks (VANETs). This paper proposes a group management algorithm with trust and mobility evaluation to address the enormous pressure on VANETs topology caused by high-speed vehicle movement and dynamic changes in the direction of travel. This algorithm utilizes historical interactive data to mine the fusion trust between vehicles. Then, combined with fusion mobility, the selection of center members and information maintenance of group members is achieved. Furthermore, based on bilinear pairing, an encryption protocol is designed to solve the problem of key management and update when the group structure changes rapidly, ensuring the safe forwarding of messages within and between groups. Numerical analysis shows that the algorithm in the paper ensures group stability and improves performance such as average message delivery rate and interaction delay.
{"title":"VANETs group message secure forwarding with trust evaluation","authors":"Lijun Wang , Huajie Hao , Chun Wang , Xianzhou Han","doi":"10.1016/j.dcan.2024.11.007","DOIUrl":"10.1016/j.dcan.2024.11.007","url":null,"abstract":"<div><div>Efficient and safe information exchange between vehicles can reduce the probability of road accidents, thereby improving the driving experience of vehicles in Vehicular Ad Hoc Networks (VANETs). This paper proposes a group management algorithm with trust and mobility evaluation to address the enormous pressure on VANETs topology caused by high-speed vehicle movement and dynamic changes in the direction of travel. This algorithm utilizes historical interactive data to mine the fusion trust between vehicles. Then, combined with fusion mobility, the selection of center members and information maintenance of group members is achieved. Furthermore, based on bilinear pairing, an encryption protocol is designed to solve the problem of key management and update when the group structure changes rapidly, ensuring the safe forwarding of messages within and between groups. Numerical analysis shows that the algorithm in the paper ensures group stability and improves performance such as average message delivery rate and interaction delay.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1150-1157"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.12.007
Somia Sahraoui , Abdelmalik Bachir
The Internet of Things (IoT) has gained substantial attention in both academic research and real-world applications. The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services. However, this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats. Consequently, innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed. Recently, the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions, commonly referred to as the Internet of Blockchained Things (IoBT). Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments. Within this context, consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems. The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential. This paper presents a comprehensive examination of lightweight, constraint-aware consensus algorithms tailored for IoBT. The study categorizes these consensus mechanisms based on their core operations, the security of the block validation process, the incorporation of AI techniques, and the specific applications they are designed to support.
{"title":"Lightweight consensus mechanisms in the Internet of Blockchained Things: Thorough analysis and research directions","authors":"Somia Sahraoui , Abdelmalik Bachir","doi":"10.1016/j.dcan.2024.12.007","DOIUrl":"10.1016/j.dcan.2024.12.007","url":null,"abstract":"<div><div>The Internet of Things (IoT) has gained substantial attention in both academic research and real-world applications. The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services. However, this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats. Consequently, innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed. Recently, the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions, commonly referred to as the Internet of Blockchained Things (IoBT). Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments. Within this context, consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems. The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential. This paper presents a comprehensive examination of lightweight, constraint-aware consensus algorithms tailored for IoBT. The study categorizes these consensus mechanisms based on their core operations, the security of the block validation process, the incorporation of AI techniques, and the specific applications they are designed to support.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1246-1261"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.10.011
Pengzhan Jiang , Long Shi , Bin Cao , Taotao Wang , Baofeng Ji , Jun Li
Traditional Internet of Things (IoT) architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage. To address this issue, blockchain has been advocated for decentralized data management in a tamper-resistance, traceable, and transparent manner. However, a major issue that hinders the integration of blockchain and IoT lies in that, it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work (PoW). Furthermore, the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation. Nevertheless, this eventually leads to the formation of computing power alliances, and significantly compromises the decentralization and security of BlockChain-aided IoT (BC-IoT) networks. To cope with these issues, we propose a lightweight consensus protocol for BC-IoT, called Proof-of-Trusted-Work (PoTW). The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus. First, we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes' reputations based on their contributions of computing power to the blockchain consensus, and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations. Second, we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain. Additionally, we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization (i.e., centralization suppression). Furthermore, we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW. Finally, simulation results demonstrate the consistency of the analytical results in terms of block throughput. In particular, the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW, while simultaneously improving that of individual lightweight nodes. This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree. Moreover, as the levels of block generation difficulty in PoTW increase, its centralization suppression capability strengthens.
{"title":"Proof-of-trusted-work: A lightweight blockchain consensus for decentralized IoT networks","authors":"Pengzhan Jiang , Long Shi , Bin Cao , Taotao Wang , Baofeng Ji , Jun Li","doi":"10.1016/j.dcan.2024.10.011","DOIUrl":"10.1016/j.dcan.2024.10.011","url":null,"abstract":"<div><div>Traditional Internet of Things (IoT) architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage. To address this issue, blockchain has been advocated for decentralized data management in a tamper-resistance, traceable, and transparent manner. However, a major issue that hinders the integration of blockchain and IoT lies in that, it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work (PoW). Furthermore, the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation. Nevertheless, this eventually leads to the formation of computing power alliances, and significantly compromises the decentralization and security of BlockChain-aided IoT (BC-IoT) networks. To cope with these issues, we propose a lightweight consensus protocol for BC-IoT, called Proof-of-Trusted-Work (PoTW). The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus. First, we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes' reputations based on their contributions of computing power to the blockchain consensus, and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations. Second, we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain. Additionally, we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization (i.e., centralization suppression). Furthermore, we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW. Finally, simulation results demonstrate the consistency of the analytical results in terms of block throughput. In particular, the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW, while simultaneously improving that of individual lightweight nodes. This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree. Moreover, as the levels of block generation difficulty in PoTW increase, its centralization suppression capability strengthens.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1055-1066"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.10.016
Xiangdong Huang , Yimin Wang , Yanping Li , Xiaolei Wang
Due to the neglect of the retrieval of communication parameters (including the symbol rate, the symbol timing offset, and the carrier frequency), the existing non-cooperative communication mode recognizers suffer from the generality ability degradation and severe difficulty in distinguishing a large number of modulation modes, etc. To overcome these drawbacks, this paper proposes an efficient communication mode recognizer consisting of communication parameter estimation, the constellation diagram retrieval, and a classification network. In particular, we define a 2-D symbol synchronization metric to retrieve both the symbol rate and the symbol timing offset, whereas a constellation dispersity annealing procedure is devised to correct the carrier frequency accurately. Owing to the accurate estimation of these crucial parameters, high-regularity constellation maps can be retrieved and thus simplify the subsequent classification work. Numerical results show that the proposed communication mode recognizer acquires higher classification accuracy, stronger anti-noise robustness, and higher applicability of distinguishing multiple types, which presents the proposed scheme with vast applicable potentials in non-cooperative scenarios.
{"title":"Efficient modulation mode recognition based on joint communication parameter estimation in non-cooperative scenarios","authors":"Xiangdong Huang , Yimin Wang , Yanping Li , Xiaolei Wang","doi":"10.1016/j.dcan.2024.10.016","DOIUrl":"10.1016/j.dcan.2024.10.016","url":null,"abstract":"<div><div>Due to the neglect of the retrieval of communication parameters (including the symbol rate, the symbol timing offset, and the carrier frequency), the existing non-cooperative communication mode recognizers suffer from the generality ability degradation and severe difficulty in distinguishing a large number of modulation modes, etc. To overcome these drawbacks, this paper proposes an efficient communication mode recognizer consisting of communication parameter estimation, the constellation diagram retrieval, and a classification network. In particular, we define a 2-D symbol synchronization metric to retrieve both the symbol rate and the symbol timing offset, whereas a constellation dispersity annealing procedure is devised to correct the carrier frequency accurately. Owing to the accurate estimation of these crucial parameters, high-regularity constellation maps can be retrieved and thus simplify the subsequent classification work. Numerical results show that the proposed communication mode recognizer acquires higher classification accuracy, stronger anti-noise robustness, and higher applicability of distinguishing multiple types, which presents the proposed scheme with vast applicable potentials in non-cooperative scenarios.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1080-1090"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.dcan.2024.11.001
Wenjian Hu , Yao Yu , Xin Hao , Phee Lep Yeoh , Lei Guo , Yonghui Li
We propose a Cross-Chain Mapping Blockchain (CCMB) for scalable data management in massive Internet of Things (IoT) networks. Specifically, CCMB aims to improve the scalability of securely storing, tracing, and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain (BChain) and Reputation Chain (RChain). To improve off-chain IoT data storage scalability, we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources. The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract (MSC) and cross-chain mapping design to perform rapid Reputation-to-Behavior (R2B) traceability queries between BChain and RChain blocks. To maximize off-chain to on-chain throughput, we optimize the CCMB block settings and producers based on a general Poisson Point Process (PPP) network model. The constrained optimization problem is formulated as a Markov Decision Process (MDP), and solved using a dual-network Deep Reinforcement Learning (DRL) algorithm. Simulation results validate CCMB's scalability advantages in storage, traceability, and throughput. In specific massive IoT scenarios, CCMB can reduce the storage footprint by 50% and traceability query time by 90%, while improving system throughput by 55% compared to existing benchmarks.
{"title":"Cross-chain mapping blockchain: Scalable data management in massive IoT networks","authors":"Wenjian Hu , Yao Yu , Xin Hao , Phee Lep Yeoh , Lei Guo , Yonghui Li","doi":"10.1016/j.dcan.2024.11.001","DOIUrl":"10.1016/j.dcan.2024.11.001","url":null,"abstract":"<div><div>We propose a Cross-Chain Mapping Blockchain (CCMB) for scalable data management in massive Internet of Things (IoT) networks. Specifically, CCMB aims to improve the scalability of securely storing, tracing, and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain (BChain) and Reputation Chain (RChain). To improve off-chain IoT data storage scalability, we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources. The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract (MSC) and cross-chain mapping design to perform rapid Reputation-to-Behavior (R2B) traceability queries between BChain and RChain blocks. To maximize off-chain to on-chain throughput, we optimize the CCMB block settings and producers based on a general Poisson Point Process (PPP) network model. The constrained optimization problem is formulated as a Markov Decision Process (MDP), and solved using a dual-network Deep Reinforcement Learning (DRL) algorithm. Simulation results validate CCMB's scalability advantages in storage, traceability, and throughput. In specific massive IoT scenarios, CCMB can reduce the storage footprint by 50% and traceability query time by 90%, while improving system throughput by 55% compared to existing benchmarks.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1125-1140"},"PeriodicalIF":7.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}