Pub Date : 2024-02-15DOI: 10.1186/s40517-024-00281-x
Yi Yang, Jie Zhang, Xingchun Wang, Mingxing Liang, Dewei Li, Meng Liang, Yang Ou, Dingyu Jia, Xianchun Tang, Xufeng Li
In order to better understand the crustal shortening and orogenic uplift in the northeastern margin of the Tibetan Plateau, as well as the geothermal resource effects formed during this process, we used ModEM software to perform 3D MT imaging on broadband magnetotelluric survey points deployed at 710 points in the Gonghe Basin and its surrounding areas. The resistivity model suggests that the Gonghe Basin exhibits a low–high–low overall electrical structure, with high conductivity widely distributed in the middle and lower crust. The resistivity model also reveals a significant discontinuity between high and low resistivity blocks at various depths in the upper and middle crust. These discontinuities are align with the faults observed on the surface related to strong crustal fluctuations, which are connected to high conductors in the middle and upper crust. Using empirical formulas for high-temperature and high-pressure testing of granite, it is estimated that the melting volume of these high conductors ranges from 3 to 43%, demonstrating good "plasticity". These high conductors can act as detachment layers for crustal shortening and deformation during the expansion of the Tibetan Plateau towards the northeast edge and can continuously conduct heat energy upwards, creating a high thermal background in the Gonghe Basin.
{"title":"Deep structure and geothermal resource effects of the Gonghe basin revealed by 3D magnetotelluric","authors":"Yi Yang, Jie Zhang, Xingchun Wang, Mingxing Liang, Dewei Li, Meng Liang, Yang Ou, Dingyu Jia, Xianchun Tang, Xufeng Li","doi":"10.1186/s40517-024-00281-x","DOIUrl":"10.1186/s40517-024-00281-x","url":null,"abstract":"<div><p>In order to better understand the crustal shortening and orogenic uplift in the northeastern margin of the Tibetan Plateau, as well as the geothermal resource effects formed during this process, we used ModEM software to perform 3D MT imaging on broadband magnetotelluric survey points deployed at 710 points in the Gonghe Basin and its surrounding areas. The resistivity model suggests that the Gonghe Basin exhibits a low–high–low overall electrical structure, with high conductivity widely distributed in the middle and lower crust. The resistivity model also reveals a significant discontinuity between high and low resistivity blocks at various depths in the upper and middle crust. These discontinuities are align with the faults observed on the surface related to strong crustal fluctuations, which are connected to high conductors in the middle and upper crust. Using empirical formulas for high-temperature and high-pressure testing of granite, it is estimated that the melting volume of these high conductors ranges from 3 to 43%, demonstrating good \"plasticity\". These high conductors can act as detachment layers for crustal shortening and deformation during the expansion of the Tibetan Plateau towards the northeast edge and can continuously conduct heat energy upwards, creating a high thermal background in the Gonghe Basin.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00281-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.1186/s40517-024-00284-8
Arjan Marelis, Fred Beekman, Jan-Diederik van Wees
Accurate and efficient predictions of three-dimensional subsurface stress changes are required for the assessment of geothermal operations with respect to fault stability and the potential risk for induced seismicity. This work extends the model capabilities of Mechanical Analysis of Complex Reservoirs for Induced Seismicity (MACRIS) to account for high-resolution thermo-elastic stress evaluations in structurally complex (i.e. faulted) and matrix permeability dominated geothermal systems. By adopting a mesh-free approach suitable to industry standard flow simulation models, MACRIS is capable of preserving the complex 3D hydraulic development of the injected cold-water volume and the 3D geometrical complexities of the reservoir model. The workflow has been applied to three-dimensional models with clastic reservoir characteristics representative for low enthalpy geothermal exploitation in the Netherlands. The models are marked by a single fault, subject to no and normal offset. Comparison of simulated stress evolutions in MACRIS with alternative analytical solutions highlight the effects of stress arching involved in the poro- and thermo-elastic stress developments on complex faults intersected by or in direct contact with the cold-water volume. Results are in agreement with previous studies and show the effect of thermal stressing to be dominant, arching of stresses to occur at the rim of the cold-water volume, and in cooling reservoirs, the intersection area of the cold-water volume in direct contact with the fault plane to be the main driver for fault reactivation and subsequent seismic potential. Moreover, results show the effects of stress arching (i) to be enhanced in the case of reservoir throw and flow compartmentalization, and (ii) to be reduced by a relative increase in conductive heat transfer between the reservoir and surrounding formations.
{"title":"3D mechanical analysis of geothermal reservoir operations in faulted sedimentary aquifers using MACRIS","authors":"Arjan Marelis, Fred Beekman, Jan-Diederik van Wees","doi":"10.1186/s40517-024-00284-8","DOIUrl":"10.1186/s40517-024-00284-8","url":null,"abstract":"<div><p>Accurate and efficient predictions of three-dimensional subsurface stress changes are required for the assessment of geothermal operations with respect to fault stability and the potential risk for induced seismicity. This work extends the model capabilities of <b>M</b>echanical <b>A</b>nalysis of <b>C</b>omplex <b>R</b>eservoirs for <b>I</b>nduced <b>S</b>eismicity (MACRIS) to account for high-resolution thermo-elastic stress evaluations in structurally complex (i.e. faulted) and matrix permeability dominated geothermal systems. By adopting a mesh-free approach suitable to industry standard flow simulation models, MACRIS is capable of preserving the complex 3D hydraulic development of the injected cold-water volume and the 3D geometrical complexities of the reservoir model. The workflow has been applied to three-dimensional models with clastic reservoir characteristics representative for low enthalpy geothermal exploitation in the Netherlands. The models are marked by a single fault, subject to no and normal offset. Comparison of simulated stress evolutions in MACRIS with alternative analytical solutions highlight the effects of stress arching involved in the poro- and thermo-elastic stress developments on complex faults intersected by or in direct contact with the cold-water volume. Results are in agreement with previous studies and show the effect of thermal stressing to be dominant, arching of stresses to occur at the rim of the cold-water volume, and in cooling reservoirs, the intersection area of the cold-water volume in direct contact with the fault plane to be the main driver for fault reactivation and subsequent seismic potential. Moreover, results show the effects of stress arching (i) to be enhanced in the case of reservoir throw and flow compartmentalization, and (ii) to be reduced by a relative increase in conductive heat transfer between the reservoir and surrounding formations.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00284-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1186/s40517-024-00283-9
Kai Stricker, Robert Egert, Eva Schill, Thomas Kohl
High-temperature aquifer thermal energy storage (HT-ATES) systems are designed for seasonal storage of large amounts of thermal energy to meet the demand of industrial processes or district heating systems at high temperatures (> 100 °C). The resulting high injection temperatures or pressures induce thermo- and poroelastic stress changes around the injection well. This study estimates the impact of stress changes in the reservoir on ground surface deformation and evaluates the corresponding risk. Using a simplified coupled thermo-hydraulic-mechanical (THM) model of the planned DeepStor demonstrator in the depleted Leopoldshafen oil field (Upper Rhine Graben, Germany), we show that reservoir heating is associated with stress changes of up to 6 MPa, which can cause vertical displacements at reservoir depth in the order of 10–3 m in the immediate vicinity of the hot injection well. Both the stress changes and the resulting displacements in the reservoir are dominated by thermoelasticity, which is responsible for up to 90% of the latter. Uplift at the surface, on the contrary, is primarily controlled by poroelasticity with by two orders of magnitude attenuated displacements of << 10–3 m. Our calculations further show that the reservoir depth, elastic modulus, and injection/production rates are the dominant controlling parameters for the uplift, showing variations of up to two order of magnitudes between shallower reservoirs with low elastic moduli and deeper and more competent reservoirs. In addition, our findings demonstrate that the cyclic operation of HT-ATES systems reduces the potential for uplift compared to the continuous injection and production of conventional geothermal doublets, hydrocarbon production, or CO2 storage. Consequently, at realistic production and injection rates and targeting reservoirs at depths of at least several hundred meters, the risk of ground surface movement associated with HT-ATES operations in depleted oil fields in, e.g., the Upper Rhine Graben is negligible.
{"title":"Risk of surface movements and reservoir deformation for high-temperature aquifer thermal energy storage (HT-ATES)","authors":"Kai Stricker, Robert Egert, Eva Schill, Thomas Kohl","doi":"10.1186/s40517-024-00283-9","DOIUrl":"10.1186/s40517-024-00283-9","url":null,"abstract":"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems are designed for seasonal storage of large amounts of thermal energy to meet the demand of industrial processes or district heating systems at high temperatures (> 100 °C). The resulting high injection temperatures or pressures induce thermo- and poroelastic stress changes around the injection well. This study estimates the impact of stress changes in the reservoir on ground surface deformation and evaluates the corresponding risk. Using a simplified coupled thermo-hydraulic-mechanical (THM) model of the planned DeepStor demonstrator in the depleted Leopoldshafen oil field (Upper Rhine Graben, Germany), we show that reservoir heating is associated with stress changes of up to 6 MPa, which can cause vertical displacements at reservoir depth in the order of 10<sup>–3</sup> m in the immediate vicinity of the hot injection well. Both the stress changes and the resulting displacements in the reservoir are dominated by thermoelasticity, which is responsible for up to 90% of the latter. Uplift at the surface, on the contrary, is primarily controlled by poroelasticity with by two orders of magnitude attenuated displacements of << 10<sup>–3</sup> m. Our calculations further show that the reservoir depth, elastic modulus, and injection/production rates are the dominant controlling parameters for the uplift, showing variations of up to two order of magnitudes between shallower reservoirs with low elastic moduli and deeper and more competent reservoirs. In addition, our findings demonstrate that the cyclic operation of HT-ATES systems reduces the potential for uplift compared to the continuous injection and production of conventional geothermal doublets, hydrocarbon production, or CO<sub>2</sub> storage. Consequently, at realistic production and injection rates and targeting reservoirs at depths of at least several hundred meters, the risk of ground surface movement associated with HT-ATES operations in depleted oil fields in, e.g., the Upper Rhine Graben is negligible.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00283-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-28DOI: 10.1186/s40517-024-00282-w
Yu Yang, Bo Li, Lulu Che, Menghua Li, Ye Luo, Hang Han
The use of cement-based composites (CBC) with high thermal conductivity for geothermal well cementing is extremely important for the efficient development and use of geothermal energy. Accurate prediction of thermal conductivity can save a lot of experimental costs and time. At present, there is no specific calculation model for the thermal conductivity of CBC. In this study, the microstructure, thermal conductivity model and influencing factors of CBC were investigated by experimental tests, theoretical analysis and numerical simulation. The results showed that the cement-based material could be simplified into a two-layer structure of hydrated and unhydrated layers. Mathematical and numerical models based on the coupled Series model and the Maxwell–Eucken model were established to calculate the thermal conductivity for CBC. The mathematical and numerical models were found to be more accurate by comparison with the conventional models and experimental test results. The cubic packing was more favorable than the spherical packing to improve the thermal conductivity of CBC. The plate material had significant anisotropy. The thermal conductivity of CBC showed a rapid decrease followed by a slow decrease, a decrease followed by a slow increase and finally a rapid decrease, a rapid increase followed by an up and down fluctuation and finally a plateau, respectively, with the increase of filler particle diameter, spacing and curing temperature. Based on these results, the effective methods and future research directions were proposed to maximize the thermal conductivity of geothermal well cementing materials in actual engineering applications. The research findings can provide some technical references for the efficient development of geothermal energy and research on CBC with high thermal conductivity.
{"title":"Calculation model and influence factors of thermal conductivity of composite cement-based materials for geothermal well","authors":"Yu Yang, Bo Li, Lulu Che, Menghua Li, Ye Luo, Hang Han","doi":"10.1186/s40517-024-00282-w","DOIUrl":"10.1186/s40517-024-00282-w","url":null,"abstract":"<div><p>The use of cement-based composites (CBC) with high thermal conductivity for geothermal well cementing is extremely important for the efficient development and use of geothermal energy. Accurate prediction of thermal conductivity can save a lot of experimental costs and time. At present, there is no specific calculation model for the thermal conductivity of CBC. In this study, the microstructure, thermal conductivity model and influencing factors of CBC were investigated by experimental tests, theoretical analysis and numerical simulation. The results showed that the cement-based material could be simplified into a two-layer structure of hydrated and unhydrated layers. Mathematical and numerical models based on the coupled Series model and the Maxwell–Eucken model were established to calculate the thermal conductivity for CBC. The mathematical and numerical models were found to be more accurate by comparison with the conventional models and experimental test results. The cubic packing was more favorable than the spherical packing to improve the thermal conductivity of CBC. The plate material had significant anisotropy. The thermal conductivity of CBC showed a rapid decrease followed by a slow decrease, a decrease followed by a slow increase and finally a rapid decrease, a rapid increase followed by an up and down fluctuation and finally a plateau, respectively, with the increase of filler particle diameter, spacing and curing temperature. Based on these results, the effective methods and future research directions were proposed to maximize the thermal conductivity of geothermal well cementing materials in actual engineering applications. The research findings can provide some technical references for the efficient development of geothermal energy and research on CBC with high thermal conductivity.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00282-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139583463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1186/s40517-023-00279-x
Ruben Stemmle, Haegyeong Lee, Philipp Blum, Kathrin Menberg
Sustainable and climate-friendly space heating and cooling is of great importance for the energy transition. Compared to conventional energy sources, Aquifer Thermal Energy Storage (ATES) systems can significantly reduce greenhouse gas emissions from space heating and cooling. Hence, the objective of this study is to quantify the technical potential of shallow low-temperature ATES systems in terms of reclaimable energy in the city of Freiburg im Breisgau, Germany. Based on 3D heat transport modeling, heating and cooling power densities are determined for different ATES configurations located in an unconsolidated gravel aquifer of varying hydrogeological subsurface characteristics. High groundwater flow velocities of up to 13 m d−1 cause high storage energy loss and thus limit power densities to a maximum of 3.2 W m−2. Nevertheless, comparison of these power densities with the existing thermal energy demands shows that ATES systems can achieve substantial heating and cooling supply rates. This is especially true for the cooling demand, for which a full supply by ATES is determined for 92% of all residential buildings in the study area. For ATES heating alone, potential greenhouse gas emission savings of up to about 70,000 tCO2eq a−1 are calculated, which equals about 40% of the current greenhouse gas emissions caused by space and water heating in the study areas’ residential building stock. The modeling approach proposed in this study can also be applied in other regions with similar hydrogeological conditions to obtain estimations of local ATES supply rates and support city-scale energy planning.
{"title":"City-scale heating and cooling with aquifer thermal energy storage (ATES)","authors":"Ruben Stemmle, Haegyeong Lee, Philipp Blum, Kathrin Menberg","doi":"10.1186/s40517-023-00279-x","DOIUrl":"10.1186/s40517-023-00279-x","url":null,"abstract":"<div><p>Sustainable and climate-friendly space heating and cooling is of great importance for the energy transition. Compared to conventional energy sources, Aquifer Thermal Energy Storage (ATES) systems can significantly reduce greenhouse gas emissions from space heating and cooling. Hence, the objective of this study is to quantify the technical potential of shallow low-temperature ATES systems in terms of reclaimable energy in the city of Freiburg im Breisgau, Germany. Based on 3D heat transport modeling, heating and cooling power densities are determined for different ATES configurations located in an unconsolidated gravel aquifer of varying hydrogeological subsurface characteristics. High groundwater flow velocities of up to 13 m d<sup>−1</sup> cause high storage energy loss and thus limit power densities to a maximum of 3.2 W m<sup>−2</sup>. Nevertheless, comparison of these power densities with the existing thermal energy demands shows that ATES systems can achieve substantial heating and cooling supply rates. This is especially true for the cooling demand, for which a full supply by ATES is determined for 92% of all residential buildings in the study area. For ATES heating alone, potential greenhouse gas emission savings of up to about 70,000 tCO<sub>2</sub>eq a<sup>−1</sup> are calculated, which equals about 40% of the current greenhouse gas emissions caused by space and water heating in the study areas’ residential building stock. The modeling approach proposed in this study can also be applied in other regions with similar hydrogeological conditions to obtain estimations of local ATES supply rates and support city-scale energy planning.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00279-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1186/s40517-023-00278-y
Anna Albers, Hagen Steger, Roman Zorn, Philipp Blum
Enhanced thermal response tests (ETRT) enable the evaluation of depth-specific effective thermal conductivities. Groundwater flow can significantly influence the interpretation of ETRT results. Hence, this study aims to critically evaluate an ETRT with high groundwater flow (> 0.2 m d−1). Different approaches in determining the specific heat load of an ETRT are compared. The results show that assuming constant electrical resistance of the heating cable with time can account for an inaccuracy of 12% in the determination of effective thermal conductivities. Adjusting the specific heat loads along the borehole heat exchanger (BHE) depth, the specific heat loads vary within 3%. Applying the infinite line source model (ILS) and Péclet number analysis, a depth–average hydraulic conductivity is estimated to be 3.1 × 10–3 m s−1, thereby, confirming the results of a pumping test of a previous study. For high Darcy velocities (> 0.6 m d−1), the uncertainty is higher due to experimental limitations in ensuring a sufficient temperature increase for the evaluation (ΔT > 0.6 K). In these depths, the convergence criterion of Δλeff/λeff < 0.05/20 h for the ILS sequential forward evaluation cannot be achieved. Thus, it can be concluded that time-averaging of the heat load by monitoring voltage and current during ETRT is essential. Therefore, the specific heat load adjustment along the heating cable is recommended. To improve the estimation of depth-specific effective conductivities with high groundwater flow and to reduce the sensitivity towards temperature fluctuations (ΔT ~ 0.1 K), measures for applying higher specific heat loads during the ETRT are essential, such as actions against overheating of the cable outside the BHE.
强化热响应测试(ETRT)可以评估特定深度的有效热传导率。地下水流会对 ETRT 结果的解释产生重大影响。因此,本研究旨在对地下水流量较大(0.2 m d-1)的 ETRT 进行严格评估。比较了确定 ETRT 比热负荷的不同方法。结果表明,假设加热电缆的电阻随时间变化保持不变,则在确定有效导热系数时会产生 12% 的误差。沿钻孔热交换器(BHE)深度调整比热负荷,比热负荷的变化在 3% 以内。应用无限线源模型(ILS)和贝克莱特数分析,深度平均水力传导率估计为 3.1 × 10-3 m s-1,从而证实了先前研究的抽水试验结果。在达西速度较高(0.6 m d-1)的情况下,由于实验的限制,无法确保在评估时有足够的温度升高(ΔT 0.6 K),因此不确定性较高。在这些深度,ILS 顺序前向评估的收敛标准 Δλeff/λeff < 0.05/20 h 无法达到。因此,可以得出结论,在 ETRT 期间通过监控电压和电流对热负荷进行时间平均化是至关重要的。因此,建议沿加热电缆进行特定热负荷调整。为了改进高地下水流量下特定深度有效电导率的估算,并降低对温度波动(ΔT ~ 0.1 K)的敏感性,在 ETRT 期间采用更高比热负荷的措施至关重要,例如防止 BHE 外部电缆过热的措施。
{"title":"Evaluating an enhanced thermal response test (ETRT) with high groundwater flow","authors":"Anna Albers, Hagen Steger, Roman Zorn, Philipp Blum","doi":"10.1186/s40517-023-00278-y","DOIUrl":"10.1186/s40517-023-00278-y","url":null,"abstract":"<div><p>Enhanced thermal response tests (ETRT) enable the evaluation of depth-specific effective thermal conductivities. Groundwater flow can significantly influence the interpretation of ETRT results. Hence, this study aims to critically evaluate an ETRT with high groundwater flow (> 0.2 m d<sup>−1</sup>). Different approaches in determining the specific heat load of an ETRT are compared. The results show that assuming constant electrical resistance of the heating cable with time can account for an inaccuracy of 12% in the determination of effective thermal conductivities. Adjusting the specific heat loads along the borehole heat exchanger (BHE) depth, the specific heat loads vary within 3%. Applying the infinite line source model (ILS) and Péclet number analysis, a depth–average hydraulic conductivity is estimated to be 3.1 × 10<sup>–3</sup> m s<sup>−1</sup>, thereby, confirming the results of a pumping test of a previous study. For high Darcy velocities (> 0.6 m d<sup>−1</sup>), the uncertainty is higher due to experimental limitations in ensuring a sufficient temperature increase for the evaluation (ΔT > 0.6 K). In these depths, the convergence criterion of Δ<i>λ</i><sub>eff</sub>/<i>λ</i><sub>eff</sub> < 0.05/20 h for the ILS sequential forward evaluation cannot be achieved. Thus, it can be concluded that time-averaging of the heat load by monitoring voltage and current during ETRT is essential. Therefore, the specific heat load adjustment along the heating cable is recommended. To improve the estimation of depth-specific effective conductivities with high groundwater flow and to reduce the sensitivity towards temperature fluctuations (<i>ΔT</i> ~ 0.1 K), measures for applying higher specific heat loads during the ETRT are essential, such as actions against overheating of the cable outside the BHE.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00278-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To study the evolution rules and behaviors of heat transport in a sandstone geothermal reservoir caused by cooled water reinjection, this research focuses on the quantitative relationship among reinjection parameters and the thermal breakthrough time of production wells. The permeation, tracer, and reinjection tests were conducted in a simulation model using a large sand tank in conjunction with the numerical simulation method based on COMSOL Multiphysics. Subsequently, sensitivity analysis and nonlinear fitting were performed to investigate the effects of fluid viscosity and density on the reinjection process, and to analyze the impact of reinjection parameters on the thermal breakthrough time of production wells, along with their underlying mechanisms and law. The results indicate that the migration velocity of reinjection water is greater in coarse sand layer compared to that in medium sand layer, and the thermal breakthrough time t is linearly correlated with reinjection rate (Q) raised to the power of − 0.85, temperature difference (ΔT) raised to the power of − 0.21, and spacing between the production and reinjection wells (R) raised to the power of 1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection ΔT is more than 30 ℃, the influence of ΔT on the thermal breakthrough time of production well becomes weak, because ΔT exerts an effect on the thermal breakthrough time of production well t by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region. The error in reinjecting high-temperature fluid into low-temperature fluid may be corrected by introducing a viscosity correction coefficient αμ.
{"title":"Geo-temperature response to reinjection in sandstone geothermal reservoirs","authors":"Jialong Li, Fengxin Kang, Tong Bai, Zhenhan Li, Qiang Zhao, Pingping Zhang, Tingting Zheng, Haibo Sui","doi":"10.1186/s40517-023-00277-z","DOIUrl":"10.1186/s40517-023-00277-z","url":null,"abstract":"<div><p>To study the evolution rules and behaviors of heat transport in a sandstone geothermal reservoir caused by cooled water reinjection, this research focuses on the quantitative relationship among reinjection parameters and the thermal breakthrough time of production wells. The permeation, tracer, and reinjection tests were conducted in a simulation model using a large sand tank in conjunction with the numerical simulation method based on COMSOL Multiphysics. Subsequently, sensitivity analysis and nonlinear fitting were performed to investigate the effects of fluid viscosity and density on the reinjection process, and to analyze the impact of reinjection parameters on the thermal breakthrough time of production wells, along with their underlying mechanisms and law. The results indicate that the migration velocity of reinjection water is greater in coarse sand layer compared to that in medium sand layer, and the thermal breakthrough time <i>t</i> is linearly correlated with reinjection rate (<i>Q</i>) raised to the power of − 0.85, temperature difference (<i>ΔT</i>) raised to the power of − 0.21, and spacing between the production and reinjection wells (<i>R</i>) raised to the power of 1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection <i>ΔT</i> is more than 30 ℃, the influence of <i>ΔT</i> on the thermal breakthrough time of production well becomes weak, because <i>ΔT</i> exerts an effect on the thermal breakthrough time of production well <i>t</i> by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region. The error in reinjecting high-temperature fluid into low-temperature fluid may be corrected by introducing a viscosity correction coefficient <i>α</i><sub>μ</sub>.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00277-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1186/s40517-023-00275-1
Ingrid Stober, Martin Jägle, Thomas Kohl
Based on a newly developed geological 3D reservoir model for the demonstration site of the ‘Freiburger Bucht’ in the Upper Rhine Graben (SW Germany), geothermal development and realization concepts of an aquifer thermal energy storage (ATES) in the Buntsandstein aquifer were elaborated and energetically evaluated by numerical modeling. The thermal–hydraulic coupled modeling was performed with the FE-software OpenGeoSys and COMSOL. For this purpose, the geological model was converted into a numerical model and calibrated by local and regional, hydrogeological and geothermal measured values. A detailed study based on two-phase storage-heating cycles per year with constant injection temperature on the ‘hot side’ of the ATES, different volumetric flow rates, and temperature spreads was performed to quantify possible storage capacities, energies, and efficiencies. The calculated efficiency of the cyclic storage operation in this study, averaged over 10 storage heating cycles, are between 50 and 85%, depending on flow rate and temperature spread. The efficiency of the individual storage heating cycles increases from year to year in all scenarios considered, as the ‘hot side’ of the storage heats up in the long term. To increase ATES’ efficiency, also horizontal wells were integrated into the numerical model and the results were compared with those of inclined wells.
{"title":"Optimizing scenarios of a deep geothermal aquifer storage in the southern Upper Rhine Graben","authors":"Ingrid Stober, Martin Jägle, Thomas Kohl","doi":"10.1186/s40517-023-00275-1","DOIUrl":"10.1186/s40517-023-00275-1","url":null,"abstract":"<div><p>Based on a newly developed geological 3D reservoir model for the demonstration site of the ‘Freiburger Bucht’ in the Upper Rhine Graben (SW Germany), geothermal development and realization concepts of an aquifer thermal energy storage (ATES) in the Buntsandstein aquifer were elaborated and energetically evaluated by numerical modeling. The thermal–hydraulic coupled modeling was performed with the FE-software OpenGeoSys and COMSOL. For this purpose, the geological model was converted into a numerical model and calibrated by local and regional, hydrogeological and geothermal measured values. A detailed study based on two-phase storage-heating cycles per year with constant injection temperature on the ‘hot side’ of the ATES, different volumetric flow rates, and temperature spreads was performed to quantify possible storage capacities, energies, and efficiencies. The calculated efficiency of the cyclic storage operation in this study, averaged over 10 storage heating cycles, are between 50 and 85%, depending on flow rate and temperature spread. The efficiency of the individual storage heating cycles increases from year to year in all scenarios considered, as the ‘hot side’ of the storage heats up in the long term. To increase ATES’ efficiency, also horizontal wells were integrated into the numerical model and the results were compared with those of inclined wells.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00275-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138475585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1186/s40517-023-00276-0
Pascal Schlagermann, Kurt M. Reinicke
Germany desires to become climate-neutral in its heat supply by 2045. From 2024 onward communities are legally required to develop a plan documenting how the objective will be achieved. Geothermal resources can be a major building block to reach the aspirational target if they can be developed at competitive costs. To evaluate the economic potential of geothermal resources is time and money consuming. Questions which need to be addressed in the context of such evaluations are: how can an economic recovery of geothermal heat be achieved, how can subsurface risks associated with an exploration be managed, and how competitive is a deep geothermal energy recovery compared to other options of heat supply? These questions are key to a development of deep geothermal heat, especially if the geothermal conditions are not as prominent as in already realized projects, but less favorable as in the deep clastic sediments of the North German Basin. With this contribution a procedure is presented and used to determine net present values and the associated levelized costs for deep hydrothermal heat recovery systems. It consists of modelling the geothermal cycle, sizing all necessary components, costing them, and calculating net present value and levelized cost. The thermal model is verified by comparing the modelled state variables pressure and temperature at relevant state points of the thermal cycle with actual data of a geothermal project. The cost model is validated with biding results and cost information from actual projects and modified as appropriate. In applying the model to a setting in the Hannover–Celle area with temperatures of around 70 °C, conditions are determined, which lead to positive net present values. The degree of their influence is determined in sensitivity analyses allowing a systemic optimization. The results show that for a coupled heat plant with geothermal heat supplied at baseload conditions, levelized costs of approx. 8 cents/kWh are achievable. The presented thermodynamic and cost models are considered helpful instruments for developing preliminary conceptual estimates, strategies for optimization, and portfolio management.
{"title":"Modeling and economic evaluation of deep geothermal heat supply systems using the example of the Wealden near Hannover, Germany","authors":"Pascal Schlagermann, Kurt M. Reinicke","doi":"10.1186/s40517-023-00276-0","DOIUrl":"10.1186/s40517-023-00276-0","url":null,"abstract":"<div><p>Germany desires to become climate-neutral in its heat supply by 2045. From 2024 onward communities are legally required to develop a plan documenting how the objective will be achieved. Geothermal resources can be a major building block to reach the aspirational target if they can be developed at competitive costs. To evaluate the economic potential of geothermal resources is time and money consuming. Questions which need to be addressed in the context of such evaluations are: how can an economic recovery of geothermal heat be achieved, how can subsurface risks associated with an exploration be managed, and how competitive is a deep geothermal energy recovery compared to other options of heat supply? These questions are key to a development of deep geothermal heat, especially if the geothermal conditions are not as prominent as in already realized projects, but less favorable as in the deep clastic sediments of the North German Basin. With this contribution a procedure is presented and used to determine net present values and the associated levelized costs for deep hydrothermal heat recovery systems. It consists of modelling the geothermal cycle, sizing all necessary components, costing them, and calculating net present value and levelized cost. The thermal model is verified by comparing the modelled state variables pressure and temperature at relevant state points of the thermal cycle with actual data of a geothermal project. The cost model is validated with biding results and cost information from actual projects and modified as appropriate. In applying the model to a setting in the Hannover–Celle area with temperatures of around 70 °C, conditions are determined, which lead to positive net present values. The degree of their influence is determined in sensitivity analyses allowing a systemic optimization. The results show that for a coupled heat plant with geothermal heat supplied at baseload conditions, levelized costs of approx. 8 cents/kWh are achievable. The presented thermodynamic and cost models are considered helpful instruments for developing preliminary conceptual estimates, strategies for optimization, and portfolio management.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00276-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138431472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.1186/s40517-023-00271-5
Alexandra R. L. Kushnir, Michael J. Heap, Patrick Baud, Thierry Reuschlé, Jean Schmittbuhl
Hydraulic stimulation of enhanced deep geothermal reservoirs commonly targets pre-existing joint networks with the goal of increasing reservoir permeability. Here, we study the permeability and strength of joint-free and jointed Buntsandstein sandstones from the EPS-1 exploratory borehole at the Soultz-sous-Forêts geothermal site (France). The studied jointed samples contain naturally formed fractures that are variably filled with secondary mineralisation. We find that the permeability of these rocks is more sensitive to the presence and orientation of bedding than to the presence of joints at the scale of the samples: permeability is lowest in samples where bedding is oriented perpendicular to the direction of fluid flow. While well-sealed joints can act as barriers to fluid flow, partially filled joints neither inhibit nor promote fluid flow with respect to their joint-free counterparts. These samples were then deformed under triaxial conditions to assess (1) whether deformation reactivates pre-existing joints, and (2) how permeability changes as a result of deformation. We find that the mechanical response of the rocks depends on the extent to which joints are sealed. Well-sealed joints locally increase rock strength and experimentally induced fractures do not exploit pre-existing joint surfaces; partially sealed joints, by contrast, act as planes of weakness that localise strain. Although the permeability of all samples increased during deformation, permeability increase was largest in samples with poorly filled joints. We conclude that hydraulic stimulation operations must carefully consider the extent to which targeted joint networks are filled. Partially sealed joints are ideal targets for stimulation: these features act as planes of weakness within the rock mass and their reactivation can result in significant increases in permeability. By contrast, well-sealed joints may increase rock strength locally and may never reactivate during stimulation, making them poor targets for permeability enhancement.
{"title":"Reactivation of variably sealed joints and permeability enhancement in geothermal reservoir rocks","authors":"Alexandra R. L. Kushnir, Michael J. Heap, Patrick Baud, Thierry Reuschlé, Jean Schmittbuhl","doi":"10.1186/s40517-023-00271-5","DOIUrl":"10.1186/s40517-023-00271-5","url":null,"abstract":"<div><p>Hydraulic stimulation of enhanced deep geothermal reservoirs commonly targets pre-existing joint networks with the goal of increasing reservoir permeability. Here, we study the permeability and strength of joint-free and jointed Buntsandstein sandstones from the EPS-1 exploratory borehole at the Soultz-sous-Forêts geothermal site (France). The studied jointed samples contain naturally formed fractures that are variably filled with secondary mineralisation. We find that the permeability of these rocks is more sensitive to the presence and orientation of bedding than to the presence of joints at the scale of the samples: permeability is lowest in samples where bedding is oriented perpendicular to the direction of fluid flow. While well-sealed joints can act as barriers to fluid flow, partially filled joints neither inhibit nor promote fluid flow with respect to their joint-free counterparts. These samples were then deformed under triaxial conditions to assess (1) whether deformation reactivates pre-existing joints, and (2) how permeability changes as a result of deformation. We find that the mechanical response of the rocks depends on the extent to which joints are sealed. Well-sealed joints locally increase rock strength and experimentally induced fractures do not exploit pre-existing joint surfaces; partially sealed joints, by contrast, act as planes of weakness that localise strain. Although the permeability of all samples increased during deformation, permeability increase was largest in samples with poorly filled joints. We conclude that hydraulic stimulation operations must carefully consider the extent to which targeted joint networks are filled. Partially sealed joints are ideal targets for stimulation: these features act as planes of weakness within the rock mass and their reactivation can result in significant increases in permeability. By contrast, well-sealed joints may increase rock strength locally and may never reactivate during stimulation, making them poor targets for permeability enhancement.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00271-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}