Pub Date : 2024-09-28DOI: 10.1186/s40517-024-00314-5
Octavio Castillo-Reyes, Rosa María Prol-Ledesma, Fernando Corbo-Camargo, Otilio Rojas
The global priority for sustainable societies drives the transition to green energy, with geothermal power as a promising alternative. Latin-American countries benefit from the active volcanism along the Pacific Rim, which fuels their significant geothermal potential. Geothermal electricity production in the region is steadily growing and currently represents approximately (11%) of global output (16 GW). This paper provides details on the installed capacity of electrical generation in the most geothermally significant Latin-American countries, as well as the estimated potential production from existing prospects in the region. We also discuss the multiple challenges that limit the widespread development and exploitation of this valuable resource in Latin-America. As México stands as the top electricity producer in the region and ranks sixth worldwide, we offer an overview of its geothermal potential, the use of electromagnetic imaging technologies to enhance Mexican geothermal resource exploration, and the challenges and limitations associated with traditional exploration techniques. Additionally, we present recent case studies on the combined use of these technologies in México, highlighting best practices and lessons learned. The paper identifies open questions and outlines future research directions, particularly in México, to unlock the geothermal potential of the entire region.
{"title":"Geothermal resources in Latin-America and their exploration using electromagnetic methods","authors":"Octavio Castillo-Reyes, Rosa María Prol-Ledesma, Fernando Corbo-Camargo, Otilio Rojas","doi":"10.1186/s40517-024-00314-5","DOIUrl":"10.1186/s40517-024-00314-5","url":null,"abstract":"<div><p>The global priority for sustainable societies drives the transition to green energy, with geothermal power as a promising alternative. Latin-American countries benefit from the active volcanism along the Pacific Rim, which fuels their significant geothermal potential. Geothermal electricity production in the region is steadily growing and currently represents approximately <span>(11%)</span> of global output (16 GW). This paper provides details on the installed capacity of electrical generation in the most geothermally significant Latin-American countries, as well as the estimated potential production from existing prospects in the region. We also discuss the multiple challenges that limit the widespread development and exploitation of this valuable resource in Latin-America. As México stands as the top electricity producer in the region and ranks sixth worldwide, we offer an overview of its geothermal potential, the use of electromagnetic imaging technologies to enhance Mexican geothermal resource exploration, and the challenges and limitations associated with traditional exploration techniques. Additionally, we present recent case studies on the combined use of these technologies in México, highlighting best practices and lessons learned. The paper identifies open questions and outlines future research directions, particularly in México, to unlock the geothermal potential of the entire region.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00314-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s40517-024-00315-4
Nora Koltzer, Johannes Schoenherr, Maximilian Sporleder, Jan Niederau, Florian Wellmann
This study investigates the feasibility to repurpose wells from gas production for geothermal closed-loop application in the North German Basin (NGB). The objective for this research topic is to extend the value-added chain of idle wells by re-completion as coaxial deep borehole heat exchangers as an efficient way to produce green energy without drilling new wells by saving the carbon emission and costs of building a new geothermal well. With numerical models of two typical geological settings of the NGB and two different completion schemes, it is possible to simulate the thermal performance over a lifetime of 30 years. The calculated heat extraction rates range from 200 to 400 kW, with maximum values of up to 600 kW. Sensitivity analyses demonstrate that re-completion depth and injection temperature are the most sensitive parameters of thermal output determination. The heat demand around the boreholes is mapped, and heat generation costs are calculated with heating network simulations. The initial production costs for heat are comparable to other renewable energy resources like biomass and competitive against gas prices in 2022. This study highlights available geothermal resources’ environmental and economic potential in already installed wells. The application has almost no geological and no drilling risks and may be installed at any idle well location.
{"title":"Repurposing idle wells in the North German Basin as deep borehole heat exchangers","authors":"Nora Koltzer, Johannes Schoenherr, Maximilian Sporleder, Jan Niederau, Florian Wellmann","doi":"10.1186/s40517-024-00315-4","DOIUrl":"10.1186/s40517-024-00315-4","url":null,"abstract":"<div><p>This study investigates the feasibility to repurpose wells from gas production for geothermal closed-loop application in the North German Basin (NGB). The objective for this research topic is to extend the value-added chain of idle wells by re-completion as coaxial deep borehole heat exchangers as an efficient way to produce green energy without drilling new wells by saving the carbon emission and costs of building a new geothermal well. With numerical models of two typical geological settings of the NGB and two different completion schemes, it is possible to simulate the thermal performance over a lifetime of 30 years. The calculated heat extraction rates range from 200 to 400 kW, with maximum values of up to 600 kW. Sensitivity analyses demonstrate that re-completion depth and injection temperature are the most sensitive parameters of thermal output determination. The heat demand around the boreholes is mapped, and heat generation costs are calculated with heating network simulations. The initial production costs for heat are comparable to other renewable energy resources like biomass and competitive against gas prices in 2022. This study highlights available geothermal resources’ environmental and economic potential in already installed wells. The application has almost no geological and no drilling risks and may be installed at any idle well location.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00315-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s40517-024-00316-3
Anna Albers, Petra Huttenloch, Roman Zorn, Hagen Steger, Philipp Blum
Thermal properties of grouting materials for borehole heat exchangers (BHE) are currently analysed with varying measurement methods and analysis procedures, resulting in difficulties when comparing values of different studies. This study therefore provides the first comprehensive investigation of different analysis procedures by systematically comparing the influence of the measurement method and the sample preparation on the determination of the thermal conductivity and the volumetric heat capacity. Seven dissimilar grouting materials with varying water–solid ratios (W/S) and compositions are analysed. The thermal conductivities of the materials range between 0.9 and 1.8 W m−1 K−1 (transient plane source method, TPS). The volumetric heat capacities range between 3.01 and 3.63 MJ m−3 K−1 (differential scanning calorimetry, DSC). From the findings of this study, a standardised analysis of grouting materials is provided which suggests mixing of the grouting material at a high mixing speed and sample curing under water for 28 days at room temperature. The benefits of calculating the volumetric heat capacities of grouting materials from the specific heat capacities of dry samples measured with the DSC, the water content and the bulk density are demonstrated. Furthermore, an estimation procedure of volumetric heat capacity from the W/S and suspension density with an uncertainty of smaller ± 5% is provided. Finally, this study contributes to consistency and comparability between existing and future studies on the thermal properties of grouting materials.
{"title":"Determination of thermal properties of grouting materials for borehole heat exchangers (BHE)","authors":"Anna Albers, Petra Huttenloch, Roman Zorn, Hagen Steger, Philipp Blum","doi":"10.1186/s40517-024-00316-3","DOIUrl":"10.1186/s40517-024-00316-3","url":null,"abstract":"<div><p>Thermal properties of grouting materials for borehole heat exchangers (BHE) are currently analysed with varying measurement methods and analysis procedures, resulting in difficulties when comparing values of different studies. This study therefore provides the first comprehensive investigation of different analysis procedures by systematically comparing the influence of the measurement method and the sample preparation on the determination of the thermal conductivity and the volumetric heat capacity. Seven dissimilar grouting materials with varying water–solid ratios (W/S) and compositions are analysed. The thermal conductivities of the materials range between 0.9 and 1.8 W m<sup>−1</sup> K<sup>−1</sup> (transient plane source method, TPS). The volumetric heat capacities range between 3.01 and 3.63 MJ m<sup>−3</sup> K<sup>−1</sup> (differential scanning calorimetry, DSC). From the findings of this study, a standardised analysis of grouting materials is provided which suggests mixing of the grouting material at a high mixing speed and sample curing under water for 28 days at room temperature. The benefits of calculating the volumetric heat capacities of grouting materials from the specific heat capacities of dry samples measured with the DSC, the water content and the bulk density are demonstrated. Furthermore, an estimation procedure of volumetric heat capacity from the W/S and suspension density with an uncertainty of smaller ± 5% is provided. Finally, this study contributes to consistency and comparability between existing and future studies on the thermal properties of grouting materials.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00316-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerous geothermal systems are hosted by extensional rifts that transect the Himalayas and Lhasa block in the Himalayan–Tibetan orogen. However, the relationships between hydrogeological processes and geothermal fluid circulation in different tectonic units remain unclear. Here, we report an integrated dataset of chemical and isotopic compositions (including major and trace elements, δD, δ18O, and 87Sr/86Sr) of thermal spring water from the Tingri-Tangra Yumco rift to assess their origins and circulation processes. δ18O (− 21.3 to − 17.0‰) and δD (− 166 to − 135‰) values of thermal springs indicate dominant recharge of meteoric waters from areas with elevation of > 6000 m and minor addition of magmatic fluids. Meteoric water could infiltrate to depths of about 1700–2900 m along the faults, whereby it is influenced by geothermal gradient and/or conductive heat transfer of magmatic fluids. The thermal spring waters are mainly Na-HCO3 type and are controlled by dissolution of silicate and carbonate minerals and mixing with deep fluids. The results of chemical and multicomponent geothermometers indicate reservoir temperatures of 115 − 195 ℃, corresponding to a convection heat flux of 3.96 × 105 J/s to 1.78 × 107 J/s from geothermal systems, which are comparable to that of the low-enthalpy geothermal systems in southern Italy. Geochemical modeling is conducted to assess the water–mineral equilibria in the reservoir. Trace elements and 87Sr/86Sr data suggest spatially variable controlling factors for the rift-related geothermal systems: (1) interaction with granitoid and carbonate in the Himalayas; (2) cold groundwater mixing with that leaching from granite and volcanic rocks in the Lhasa block; (3) the input of vapors from magmatic degassing. The geochemistry of thermal springs associated with extensional rift is largely induced by the interaction between fluid and different reservoir rocks in the Himalayas and Lhasa block. Based on these findings, a genetic model is proposed for exploration and development of geothermal resources in the Tingri-Tangra Yumco rift.
{"title":"Chemical and isotopic constraints on fluid origin and genesis of geothermal systems in the Tingri-Tangra Yumco rift, southern Tibetan Plateau","authors":"Wei Liu, Maoliang Zhang, Yi Liu, Lifeng Cui, Yuji Sano, Sheng Xu","doi":"10.1186/s40517-024-00311-8","DOIUrl":"10.1186/s40517-024-00311-8","url":null,"abstract":"<div><p>Numerous geothermal systems are hosted by extensional rifts that transect the Himalayas and Lhasa block in the Himalayan–Tibetan orogen. However, the relationships between hydrogeological processes and geothermal fluid circulation in different tectonic units remain unclear. Here, we report an integrated dataset of chemical and isotopic compositions (including major and trace elements, δD, δ<sup>18</sup>O, and <sup>87</sup>Sr/<sup>86</sup>Sr) of thermal spring water from the Tingri-Tangra Yumco rift to assess their origins and circulation processes. δ<sup>18</sup>O (− 21.3 to − 17.0‰) and δD (− 166 to − 135‰) values of thermal springs indicate dominant recharge of meteoric waters from areas with elevation of > 6000 m and minor addition of magmatic fluids. Meteoric water could infiltrate to depths of about 1700–2900 m along the faults, whereby it is influenced by geothermal gradient and/or conductive heat transfer of magmatic fluids. The thermal spring waters are mainly Na-HCO<sub>3</sub> type and are controlled by dissolution of silicate and carbonate minerals and mixing with deep fluids. The results of chemical and multicomponent geothermometers indicate reservoir temperatures of 115 − 195 ℃, corresponding to a convection heat flux of 3.96 × 10<sup>5</sup> J/s to 1.78 × 10<sup>7</sup> J/s from geothermal systems, which are comparable to that of the low-enthalpy geothermal systems in southern Italy. Geochemical modeling is conducted to assess the water–mineral equilibria in the reservoir. Trace elements and <sup>87</sup>Sr/<sup>86</sup>Sr data suggest spatially variable controlling factors for the rift-related geothermal systems: (1) interaction with granitoid and carbonate in the Himalayas; (2) cold groundwater mixing with that leaching from granite and volcanic rocks in the Lhasa block; (3) the input of vapors from magmatic degassing. The geochemistry of thermal springs associated with extensional rift is largely induced by the interaction between fluid and different reservoir rocks in the Himalayas and Lhasa block. Based on these findings, a genetic model is proposed for exploration and development of geothermal resources in the Tingri-Tangra Yumco rift.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00311-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1186/s40517-024-00309-2
Lioba Virchow, Christian Siever-Wenzlaff, Guido Blöcher, Armando Alibrandi, Jens Kallmeyer, Martin Zimmer, Thomas Wiersberg, Christoph Thielke, Anja Schleicher, Simona Regenspurg
The geological formation of the Muschelkalk is widespread in the center of the North German Basin (NGB) and is increasingly attracting interest for application of geothermal energy extraction or high-temperature aquifer thermal energy storage (HT-ATES). This study investigates the Middle Triassic “Rüdersdorfer Schaumkalk”, which was the former injection horizon of the natural gas storage facility in Berlin, Germany. For the first time, detailed chemical and microbiological analyses of formation water of this Lower Muschelkalk limestone formation were conducted and hydrogeochemically characterized. In addition, a hydrogeochemical model was developed to quantify the potential reactions during HT-ATES focusing on calcite dissolution and precipitation. The main objectives of this study are: (1) to determine the origin of the water from the three wells targeting the Muschelkalk aquifer, (2) to understand changes in hydrochemistry after system operation, and (3) to evaluate the long-term sustainability of a potential HT-ATES system with increasing temperature. The target formation is encountered by several wells at about 525 m below the surface with an average thickness of 30 m. Two hydraulic lifting tests including physical, chemical, and microbial groundwater as well as gas monitoring were carried out. In addition, several downhole samples of formation fluid were collected from the aquifer at in situ pressure and temperature conditions. Fluid analysis of the saline formation water indicate a seawater origin within the Muschelkalk with subsequent evaporation and various water–rock interactions with anhydrite/gypsum, dolomite, and calcite. With a salinity of 130 g/L, dominated by Na–Cl, a slightly acidic pH between 6 and 7, and a low gas content of 3%, the formation water fits to other saline deep formation waters of the NGB. Gas concentrations and microbial communities like sulfate-reducing bacteria and methanogenic archaea in the produced water indicate several geochemical alterations and microbial processes like corrosion and the forming of biogenic methane. Geochemical simulations of calcite equilibrium over 10 HT-ATES cycles indicated a pronounced propensity for calcite precipitation up to 31 mg/kgw, within the heat exchanger. At the same time, these models predicted a significant potential for calcite dissolution, with rates up to 21 mg/kgw, in both the cold and hot reservoirs. The results from the carbonate aquifer characterized in this study can be transferred to other sites in the NGB affected by salt tectonics and have provided information on the microbiological-chemical processes to be expected during the initial use of old wells.
{"title":"Hydrogeochemical and microbial characterization of a Middle Triassic carbonate aquifer (Muschelkalk) in Berlin and geochemical simulation of its use as a high-temperature aquifer thermal energy storage","authors":"Lioba Virchow, Christian Siever-Wenzlaff, Guido Blöcher, Armando Alibrandi, Jens Kallmeyer, Martin Zimmer, Thomas Wiersberg, Christoph Thielke, Anja Schleicher, Simona Regenspurg","doi":"10.1186/s40517-024-00309-2","DOIUrl":"10.1186/s40517-024-00309-2","url":null,"abstract":"<div><p>The geological formation of the Muschelkalk is widespread in the center of the North German Basin (NGB) and is increasingly attracting interest for application of geothermal energy extraction or high-temperature aquifer thermal energy storage (HT-ATES). This study investigates the Middle Triassic <i>“Rüdersdorfer Schaumkalk”</i>, which was the former injection horizon of the natural gas storage facility in Berlin, Germany. For the first time, detailed chemical and microbiological analyses of formation water of this Lower Muschelkalk limestone formation were conducted and hydrogeochemically characterized. In addition, a hydrogeochemical model was developed to quantify the potential reactions during HT-ATES focusing on calcite dissolution and precipitation. The main objectives of this study are: (1) to determine the origin of the water from the three wells targeting the Muschelkalk aquifer, (2) to understand changes in hydrochemistry after system operation, and (3) to evaluate the long-term sustainability of a potential HT-ATES system with increasing temperature. The target formation is encountered by several wells at about 525 m below the surface with an average thickness of 30 m. Two hydraulic lifting tests including physical, chemical, and microbial groundwater as well as gas monitoring were carried out. In addition, several downhole samples of formation fluid were collected from the aquifer at in situ pressure and temperature conditions. Fluid analysis of the saline formation water indicate a seawater origin within the Muschelkalk with subsequent evaporation and various water–rock interactions with anhydrite/gypsum, dolomite, and calcite. With a salinity of 130 g/L, dominated by Na–Cl, a slightly acidic pH between 6 and 7, and a low gas content of 3%, the formation water fits to other saline deep formation waters of the NGB. Gas concentrations and microbial communities like sulfate-reducing bacteria and methanogenic archaea in the produced water indicate several geochemical alterations and microbial processes like corrosion and the forming of biogenic methane. Geochemical simulations of calcite equilibrium over 10 HT-ATES cycles indicated a pronounced propensity for calcite precipitation up to 31 mg/kgw, within the heat exchanger. At the same time, these models predicted a significant potential for calcite dissolution, with rates up to 21 mg/kgw, in both the cold and hot reservoirs. The results from the carbonate aquifer characterized in this study can be transferred to other sites in the NGB affected by salt tectonics and have provided information on the microbiological-chemical processes to be expected during the initial use of old wells.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00309-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1186/s40517-024-00310-9
Saghar Sarshar, Kobra Gharali, Meghdad Saffaripour, Jatin Nathwani, Maurice B. Dusseault
Multi-objective optimization and CFD simulation are conducted to optimize the design of a multi-borehole ground heat exchanger (GHE) system and assess its long-time performance. The multi-objective optimization is performed to minimize the entropy generation number (EGN) and total cost rate by using various evolutionary algorithms, including NSGA-II, GDE-3, MOEA/D, PESA-II, SPEA-II, and SMPSO. NSGA-II and GDE-3 algorithms perform best in obtaining Pareto optimal solutions. Three prominent points on the NSGA-II Pareto frontier, representing the results of single-objective thermodynamic, single-objective economic, and multi-objective optimizations, are simulated in three dimensions over three months. The trends of EGN variations extracted from the transient CFD simulation agree well with those from the steady analytical model. The EGN obtained from multi-objective optimization is 58.8% lower than the EGN obtained using single-objective economic optimization and 1.9 times higher than that calculated from single-objective thermodynamic optimization. Likewise, the total cost rate obtained from multi-objective optimization is 64.4% lower than the value obtained from single-objective thermodynamic optimization and four times higher than that calculated using single-objective economic optimization. The proposed optimization approach can be reliably applied to improve the design of multi-borehole GHE systems.
{"title":"Multi-objective optimization and long-time simulation of a multi-borehole ground heat exchanger system","authors":"Saghar Sarshar, Kobra Gharali, Meghdad Saffaripour, Jatin Nathwani, Maurice B. Dusseault","doi":"10.1186/s40517-024-00310-9","DOIUrl":"10.1186/s40517-024-00310-9","url":null,"abstract":"<div><p>Multi-objective optimization and CFD simulation are conducted to optimize the design of a multi-borehole ground heat exchanger (GHE) system and assess its long-time performance. The multi-objective optimization is performed to minimize the entropy generation number (EGN) and total cost rate by using various evolutionary algorithms, including NSGA-II, GDE-3, MOEA/D, PESA-II, SPEA-II, and SMPSO. NSGA-II and GDE-3 algorithms perform best in obtaining Pareto optimal solutions. Three prominent points on the NSGA-II Pareto frontier, representing the results of single-objective thermodynamic, single-objective economic, and multi-objective optimizations, are simulated in three dimensions over three months. The trends of EGN variations extracted from the transient CFD simulation agree well with those from the steady analytical model. The EGN obtained from multi-objective optimization is 58.8% lower than the EGN obtained using single-objective economic optimization and 1.9 times higher than that calculated from single-objective thermodynamic optimization. Likewise, the total cost rate obtained from multi-objective optimization is 64.4% lower than the value obtained from single-objective thermodynamic optimization and four times higher than that calculated using single-objective economic optimization. The proposed optimization approach can be reliably applied to improve the design of multi-borehole GHE systems.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00310-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1186/s40517-024-00301-w
Tobias Blanke, Holger Born, Bernd Döring, Joachim Göttsche, Ulf Herrmann, Jérôme Frisch, Christoph van Treeck
This paper introduces three novel approaches to size geothermal energy piles in a MILP, offering fresh perspectives and potential solutions. The research overlooks MILP models that incorporate the sizing of a geothermal borefield. Therefore, this paper presents a new model utilizing a g-function model to regulate the power limits. Geothermal energy is an essential renewable source, particularly for heating and cooling. Complex energy systems, with their diverse sources of heating and cooling and intricate interactions, are crucial for a climate-neutral energy system. This work significantly contributes to the integration of geothermal energy as a vital energy source into the modelling of such complex systems. Borehole heat exchangers help generate heat in low-temperature energy systems. However, optimizing these exchangers using mixed-integer-linear programming (MILP), which only allows for linear equations, is complex. The current research only uses R-C, reservoir, or g-function models for pre-sized borefields. As a result, borehole heat exchangers are often represented by linear factors such as 50 W/m for extraction or injection limits. A breakthrough in the accuracy of borehole heat exchanger sizing has been achieved with the development of a new model, which has been rigorously compared to two simpler models. The geothermal system was configured for three energy systems with varying ground and bore field parameters. The results were then compared with existing geothermal system tools. The new model provides more accurate depth sizing with an error of less than 5 % compared to simpler models with an error higher than 50 %, although it requires more calculation time. The new model can lead to more accurate borefield sizing in MILP applications to optimize energy systems. This new model is especially beneficial for large-scale projects that are highly dependent on borefield size.
本文介绍了在 MILP 中确定地热能桩规模的三种新方法,提供了全新的视角和潜在的解决方案。研究忽略了包含地热井田规模的 MILP 模型。因此,本文提出了一个利用 g 函数模型来调节功率限制的新模型。地热能是一种重要的可再生能源,尤其适用于供暖和制冷。复杂的能源系统具有不同的供热和制冷来源以及错综复杂的相互作用,对于实现气候中和的能源系统至关重要。这项工作大大有助于将地热能这一重要能源纳入此类复杂系统的建模中。井孔热交换器有助于在低温能源系统中产生热量。然而,使用混合整数线性编程(MILP)来优化这些热交换器非常复杂,因为它只允许使用线性方程。目前的研究仅使用 R-C、储层或 g 函数模型来预设钻孔尺寸。因此,井眼热交换器通常用线性系数表示,如抽取或注入极限为 50 W/m。随着新模型的开发,井眼热交换器尺寸确定的准确性取得了突破性进展,并与两个更简单的模型进行了严格比较。地热系统是为三种能源系统配置的,其地面和井田参数各不相同。然后将结果与现有的地热系统工具进行比较。与误差高于 50% 的简单模型相比,新模型提供了更精确的深度尺寸,误差小于 5%,尽管它需要更多的计算时间。在优化能源系统的 MILP 应用中,新模型可实现更精确的井田选型。这种新模型尤其适用于高度依赖井田规模的大型项目。
{"title":"Model for dimensioning borehole heat exchanger applied to mixed-integer-linear-problem (MILP) energy system optimization","authors":"Tobias Blanke, Holger Born, Bernd Döring, Joachim Göttsche, Ulf Herrmann, Jérôme Frisch, Christoph van Treeck","doi":"10.1186/s40517-024-00301-w","DOIUrl":"10.1186/s40517-024-00301-w","url":null,"abstract":"<div><p>This paper introduces three novel approaches to size geothermal energy piles in a MILP, offering fresh perspectives and potential solutions. The research overlooks MILP models that incorporate the sizing of a geothermal borefield. Therefore, this paper presents a new model utilizing a g-function model to regulate the power limits. Geothermal energy is an essential renewable source, particularly for heating and cooling. Complex energy systems, with their diverse sources of heating and cooling and intricate interactions, are crucial for a climate-neutral energy system. This work significantly contributes to the integration of geothermal energy as a vital energy source into the modelling of such complex systems. Borehole heat exchangers help generate heat in low-temperature energy systems. However, optimizing these exchangers using mixed-integer-linear programming (MILP), which only allows for linear equations, is complex. The current research only uses R-C, reservoir, or g-function models for pre-sized borefields. As a result, borehole heat exchangers are often represented by linear factors such as 50 W/m for extraction or injection limits. A breakthrough in the accuracy of borehole heat exchanger sizing has been achieved with the development of a new model, which has been rigorously compared to two simpler models. The geothermal system was configured for three energy systems with varying ground and bore field parameters. The results were then compared with existing geothermal system tools. The new model provides more accurate depth sizing with an error of less than 5 % compared to simpler models with an error higher than 50 %, although it requires more calculation time. The new model can lead to more accurate borefield sizing in MILP applications to optimize energy systems. This new model is especially beneficial for large-scale projects that are highly dependent on borefield size.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00301-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1186/s40517-024-00308-3
Nicholas Fry, Philip Adebayo, Rick Tian, Roman Shor, Aggrey Mwesigye
Renewable energies, such as solar and wind, traditionally suffer from temporal incongruity. Society’s energy demand peaks occur at different times of day than the electricity generation potential of a photovoltaic panel or, often, a wind turbine. Heat demand, in particular, is subject to a significant mismatch between the availability of heat (in the summer) and the need for heat (in the winter). Thus, a future energy system design should incorporate underground thermal energy storage (UTES) to avoid this temporal mismatch and emphasize thermal applications. Such a basis of design would introduce new methods of energy arbitrage, encourage the adoption of geothermal systems, and decrease the carbon intensity of society. UTES techniques are becoming increasingly sophisticated. These methods of storage can range from simple seasonal storage for residential structures in a grouted borehole array (BTES), to aquifer thermal energy storage (ATES), deep reservoir storage (RTES) in basins, among others. The method that each of these techniques shares is the use of the earth as a storage medium. UTES can also be characterized for electricity production, but this work largely explores applications in heating and cooling, further limited in scope to sensible heat storage (SHS). Heating and cooling processes—residential, commercial, and industrial—make up large fractions of energy demand in North America. This is also true of other locales. With the increasing concerns of climate change, exacerbated by anthropogenic greenhouse gas emissions, developers and municipal planners are strategizing to decarbonize building heating and cooling at district scales. This review covers the integration of UTES techniques with thermal energy network (TEN) technology across large districts. Though storage has long been in use for conventional district heating networks, designs are rapidly innovating, indicating broader applications of UTES integration with a TEN is advantageous from both an efficiency and economic perspective. This rapid innovation indicates the need for the integrated review offered in this paper.
{"title":"A review of district energy technology with subsurface thermal storage integration","authors":"Nicholas Fry, Philip Adebayo, Rick Tian, Roman Shor, Aggrey Mwesigye","doi":"10.1186/s40517-024-00308-3","DOIUrl":"10.1186/s40517-024-00308-3","url":null,"abstract":"<div><p>Renewable energies, such as solar and wind, traditionally suffer from temporal incongruity. Society’s energy demand peaks occur at different times of day than the electricity generation potential of a photovoltaic panel or, often, a wind turbine. Heat demand, in particular, is subject to a significant mismatch between the availability of heat (in the summer) and the need for heat (in the winter). Thus, a future energy system design should incorporate underground thermal energy storage (UTES) to avoid this temporal mismatch and emphasize thermal applications. Such a basis of design would introduce new methods of energy arbitrage, encourage the adoption of geothermal systems, and decrease the carbon intensity of society. UTES techniques are becoming increasingly sophisticated. These methods of storage can range from simple seasonal storage for residential structures in a grouted borehole array (BTES), to aquifer thermal energy storage (ATES), deep reservoir storage (RTES) in basins, among others. The method that each of these techniques shares is the use of the earth as a storage medium. UTES can also be characterized for electricity production, but this work largely explores applications in heating and cooling, further limited in scope to sensible heat storage (SHS). Heating and cooling processes—residential, commercial, and industrial—make up large fractions of energy demand in North America. This is also true of other locales. With the increasing concerns of climate change, exacerbated by anthropogenic greenhouse gas emissions, developers and municipal planners are strategizing to decarbonize building heating and cooling at district scales. This review covers the integration of UTES techniques with thermal energy network (TEN) technology across large districts. Though storage has long been in use for conventional district heating networks, designs are rapidly innovating, indicating broader applications of UTES integration with a TEN is advantageous from both an efficiency and economic perspective. This rapid innovation indicates the need for the integrated review offered in this paper.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00308-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s40517-024-00306-5
Pan Li, Hongxue Zhang, Yu Wu
Characterizing the evolution of mechanical properties of hot dry rock (HDR) after supercritical CO2 (CO2(sc)) injection is crucial for assessing the heat extraction rate and reservoir security of CO2 based enhanced geothermal systems. This study designed the experiments of triaxial seepage and mechanical properties considering no CO2(sc) injection, CO2(sc) injection, and alternating injection of water-CO2(sc) (AIWC) in granite at 150–300 ℃. The experiments can reveal the mechanical properties of HDR in single-phase CO2 zone, CO2-water two-phase zone and dissolved CO2 liquid phase zone in HDR reservoir. The results indicate that the failure mode of the rock samples primarily exhibits sudden instability after no CO2(sc) injection and AIWC, whereas it predominantly manifests progressive instability after CO2(sc) injection. Compared with 25 ℃, the uniaxial compressive strength (UCS) after no CO2(sc) injection at 150–300 ℃ decreased by 13.86%–32.92%. After CO2(sc) injection, the UCS decreased by 40.79%–59.60%. After AIWC, the UCS decreased by 27.74–40.48%. This shows that the strength of rock mass in the single-phase CO2 zone is lower than that in the other two zones, and this weakening phenomenon increases with the increase of temperature difference. At the same temperature, the elasticity modulus after AIWC was greater than that after no CO2(sc) injection and CO2(sc) injection. With no CO2(sc) injection, when the temperature was increased to 200 ℃ and 300 ℃, intergranular cracks and transgranular appeared respectively. After AIWC, mineral crystals such as calcite were precipitated on the surfaces of the connected large cracks, accompanied by kaolinite clay minerals. This increases the frictional contact of the mineral particles and enhances the stability of the HDR reservoir.
{"title":"Study on the evolution of mechanical properties of hot dry rocks after supercritical CO2 injection","authors":"Pan Li, Hongxue Zhang, Yu Wu","doi":"10.1186/s40517-024-00306-5","DOIUrl":"10.1186/s40517-024-00306-5","url":null,"abstract":"<div><p>Characterizing the evolution of mechanical properties of hot dry rock (HDR) after supercritical CO<sub>2</sub> (CO<sub>2</sub>(sc)) injection is crucial for assessing the heat extraction rate and reservoir security of CO<sub>2</sub> based enhanced geothermal systems. This study designed the experiments of triaxial seepage and mechanical properties considering no CO<sub>2</sub>(sc) injection, CO<sub>2</sub>(sc) injection, and alternating injection of water-CO<sub>2</sub>(sc) (AIWC) in granite at 150–300 ℃. The experiments can reveal the mechanical properties of HDR in single-phase CO<sub>2</sub> zone, CO<sub>2</sub>-water two-phase zone and dissolved CO<sub>2</sub> liquid phase zone in HDR reservoir. The results indicate that the failure mode of the rock samples primarily exhibits sudden instability after no CO<sub>2</sub>(sc) injection and AIWC, whereas it predominantly manifests progressive instability after CO<sub>2</sub>(sc) injection. Compared with 25 ℃, the uniaxial compressive strength (UCS) after no CO<sub>2</sub>(sc) injection at 150–300 ℃ decreased by 13.86%–32.92%. After CO<sub>2</sub>(sc) injection, the UCS decreased by 40.79%–59.60%. After AIWC, the UCS decreased by 27.74–40.48%. This shows that the strength of rock mass in the single-phase CO<sub>2</sub> zone is lower than that in the other two zones, and this weakening phenomenon increases with the increase of temperature difference. At the same temperature, the elasticity modulus after AIWC was greater than that after no CO<sub>2</sub>(sc) injection and CO<sub>2</sub>(sc) injection. With no CO<sub>2</sub>(sc) injection, when the temperature was increased to 200 ℃ and 300 ℃, intergranular cracks and transgranular appeared respectively. After AIWC, mineral crystals such as calcite were precipitated on the surfaces of the connected large cracks, accompanied by kaolinite clay minerals. This increases the frictional contact of the mineral particles and enhances the stability of the HDR reservoir.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00306-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}