As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.
{"title":"Study on permeability evolution and damage mechanism along the EGS fracture in heat mining stage under thermal stress/cracking","authors":"Wei Zhang, Dong Wang, Zenglin Wang, Tiankui Guo, Chunguang Wang, Jiayuan He, Le Zhang, Peng Zheng, Zhanqing Qu","doi":"10.1186/s40517-023-00274-2","DOIUrl":"10.1186/s40517-023-00274-2","url":null,"abstract":"<div><p>As main heat exchange channel in enhanced geothermal system, the evolution of hydraulic conductivity in fracture is significance for efficient heat mining. For the thermal stress or thermal cracking spontaneously induced by the temperature difference between low-temperature fluid and hot rock in heat mining stage, it is necessary to explore the damage mechanism along EGS fracture and the corresponding permeability evolution. Firstly, the long-term permeability tests under high temperature (50–200 ℃) were conducted by the self-developed high temperature seepage experimental device. Then, a coupled THM-D model was constructed to describe the damage distribution along fracture. Combined with experimental and simulation results, relationship between the thermal stress/cracking and the evolution of fracture permeability is revealed. The results indicate that during high-temperature (200 ℃) experiments, the fracture permeability first increases rapidly under the low-temperature induced thermal stress/cracking, then decreases due to the blockage effect induced by the debris particles generated in thermal cracking along fracture. The enhancement of injection velocity and heterogeneity are all conducive to the emergence of thermal cracking in matrix along fracture. Simultaneously, high confining pressure has a negative effect on the migration of debris particles of thermal cracking, which contribute to prevent the blockage of debris particles.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00274-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134878275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1186/s40517-023-00272-4
Jérôme Azzola, Katja Thiemann, Emmanuel Gaucher
To accelerate the energy transition, the exploitation of deep geothermal reservoirs is becoming a priority to supply district heating networks in areas with high potential for geothermal applications. However, the sustainable development of the resource exploitation implies minimizing the associated risks, in particular related to induced seismicity, while optimizing operational processes. Besides, the growth of this energy sector, often supported by financial aid programs, provides resources to the industry that were not available in the past to implement advanced monitoring strategies. In this context, we present a monitoring system establishing Distributed Acoustic Sensing (DAS) as an effective component of the seismic network used for the monitoring of the geothermal field of Schäftlarnstraße (Munich, Germany). We also investigate its potential for real-time seismic monitoring in an urban environment and for risk mitigation. The monitoring system is based on a data management system linking the on-site acquisition infrastructure, including the fiber optic cable deployed in an injection well and the associated DAS interrogator, to a cloud Internet-of-Things (IoT) platform. The latter is designed to deliver both a secure storage environment for the DAS recordings and optimized computing resources for their processing. The proposed solution has been tested over a six-month period under operating conditions of the geothermal field. The survey proves the feasibility of efficiently acquiring and processing the large flow of continuous DAS data. The processing outcomes, emphasized by two detected local seismic events, demonstrate the suitability of DAS, cemented behind the casing of a flowing well, for (micro-) seismic monitoring of the geothermal site. The processing applied to the data takes advantage of the high spatial density of the acquisitions for their de-noising and for the detection of events. We find that the DAS monitoring system is capable of successfully detecting an event that could not be detected by the standard surface or shallow-borehole 3C-seismometers, despite noisy conditions associated with the urban environment and the field operation. The six-month test period demonstrates the potential of DAS to be integrated as a routine seismic monitoring component of an operating geothermal field. In addition, it highlights its advantageous role as a complement to surface seismometer-based networks, particularly in urban environments.
{"title":"Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field","authors":"Jérôme Azzola, Katja Thiemann, Emmanuel Gaucher","doi":"10.1186/s40517-023-00272-4","DOIUrl":"10.1186/s40517-023-00272-4","url":null,"abstract":"<div><p>To accelerate the energy transition, the exploitation of deep geothermal reservoirs is becoming a priority to supply district heating networks in areas with high potential for geothermal applications. However, the sustainable development of the resource exploitation implies minimizing the associated risks, in particular related to induced seismicity, while optimizing operational processes. Besides, the growth of this energy sector, often supported by financial aid programs, provides resources to the industry that were not available in the past to implement advanced monitoring strategies. In this context, we present a monitoring system establishing Distributed Acoustic Sensing (DAS) as an effective component of the seismic network used for the monitoring of the geothermal field of Schäftlarnstraße (Munich, Germany). We also investigate its potential for real-time seismic monitoring in an urban environment and for risk mitigation. The monitoring system is based on a data management system linking the on-site acquisition infrastructure, including the fiber optic cable deployed in an injection well and the associated DAS interrogator, to a cloud Internet-of-Things (IoT) platform. The latter is designed to deliver both a secure storage environment for the DAS recordings and optimized computing resources for their processing. The proposed solution has been tested over a six-month period under operating conditions of the geothermal field. The survey proves the feasibility of efficiently acquiring and processing the large flow of continuous DAS data. The processing outcomes, emphasized by two detected local seismic events, demonstrate the suitability of DAS, cemented behind the casing of a flowing well, for (micro-) seismic monitoring of the geothermal site. The processing applied to the data takes advantage of the high spatial density of the acquisitions for their de-noising and for the detection of events. We find that the DAS monitoring system is capable of successfully detecting an event that could not be detected by the standard surface or shallow-borehole 3C-seismometers, despite noisy conditions associated with the urban environment and the field operation. The six-month test period demonstrates the potential of DAS to be integrated as a routine seismic monitoring component of an operating geothermal field. In addition, it highlights its advantageous role as a complement to surface seismometer-based networks, particularly in urban environments.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00272-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1186/s40517-023-00273-3
Muhammad Anees, Jonas Kley, Bernd Leiss, David Hindle, Ali Abbas Wajid, Bianca Wagner, Mumtaz M. Shah, Elco Luijendijk
The Himalaya, Kohistan, and Karakoram ranges comprise Proterozoic to Cenozoic crystalline complexes exposed in northern Pakistan. Numerous hot springs in the area indicate high subsurface temperatures, prompting a need to evaluate the local contribution of radiogenic heat to the general orogenic-related elevated geothermal gradients. The current study employed a portable gamma spectrometer to estimate the in-situ radiogenic heat production in the Nanga Parbat Massif, Kohistan–Ladakh batholith, and the Karakoram batholith. Heat production in the Nanga Parbat Massif is high, with a range from 0.2 to 10.8 µWm−3 and mean values of 4.6 ± 2.5 and 5.9 ± 1.9 µWm−3 for gneisses and granites, respectively. By contrast, the heat production is low in the Kohistan–Ladakh batholith, ranging from 0.1 to 3.1 µWm−3, with the highest mean of 2.0 ± 0.5 µWm−3 in granites. The Karakoram batholith shows a large variation in heat production, with values ranging from 0.4 to 20.3 µWm−3 and the highest mean of 8.4 ± 8.3 µWm−3 in granites. The in-situ radiogenic heat production values vary in different ranges and represent considerably higher values than those previously used for the thermal modeling of Himalaya. A conductive 1D thermal model suggests 93–108 °C hotter geotherms, respectively, at 10 and 20 km depths due to the thick heat-producing layer in the upper crust, resulting in a surface heat flow of 103 mWm−2. The present study provides first-order radiogenic heat production constraints for developing a thermal model for geothermal assessment.
{"title":"Application of in-situ gamma spectrometry for radiogenic heat production estimation in the Western Himalaya, Kohistan, and Karakoram in northern Pakistan","authors":"Muhammad Anees, Jonas Kley, Bernd Leiss, David Hindle, Ali Abbas Wajid, Bianca Wagner, Mumtaz M. Shah, Elco Luijendijk","doi":"10.1186/s40517-023-00273-3","DOIUrl":"10.1186/s40517-023-00273-3","url":null,"abstract":"<div><p>The Himalaya, Kohistan, and Karakoram ranges comprise Proterozoic to Cenozoic crystalline complexes exposed in northern Pakistan. Numerous hot springs in the area indicate high subsurface temperatures, prompting a need to evaluate the local contribution of radiogenic heat to the general orogenic-related elevated geothermal gradients. The current study employed a portable gamma spectrometer to estimate the in-situ radiogenic heat production in the Nanga Parbat Massif, Kohistan–Ladakh batholith, and the Karakoram batholith. Heat production in the Nanga Parbat Massif is high, with a range from 0.2 to 10.8 µWm<sup>−3</sup> and mean values of 4.6 ± 2.5 and 5.9 ± 1.9 µWm<sup>−3</sup> for gneisses and granites, respectively. By contrast, the heat production is low in the Kohistan–Ladakh batholith, ranging from 0.1 to 3.1 µWm<sup>−3</sup>, with the highest mean of 2.0 ± 0.5 µWm<sup>−3</sup> in granites. The Karakoram batholith shows a large variation in heat production, with values ranging from 0.4 to 20.3 µWm<sup>−3</sup> and the highest mean of 8.4 ± 8.3 µWm<sup>−3</sup> in granites. The in-situ radiogenic heat production values vary in different ranges and represent considerably higher values than those previously used for the thermal modeling of Himalaya. A conductive 1D thermal model suggests 93–108 °C hotter geotherms, respectively, at 10 and 20 km depths due to the thick heat-producing layer in the upper crust, resulting in a surface heat flow of 103 mWm<sup>−2</sup>. The present study provides first-order radiogenic heat production constraints for developing a thermal model for geothermal assessment.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00273-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1186/s40517-023-00269-z
Danaé Bregnard, Alessio Leins, Guillaume Cailleau, Andrea Vieth-Hillebrand, Florian Eichinger, Joy Ianotta, Richard Hoffmann, Joerg Uhde, Saskia Bindschedler, Simona Regenspurg, Pilar Junier
Extreme environments on Earth host a large diversity of microbial life. Bacteria, archaea, and fungi are able to survive under one or several extreme conditions including extreme ranges of temperature, pressure, pH or salinity. Despite extensive research on extremophilic microorganisms, a relatively unexplored frontier within the study of the deep biosphere is the survey of the diversity of microorganisms inhabiting deep geothermal reservoirs used for energy production. These sites offer unique access to investigate life in the deep biosphere. The conditions in these reservoirs are often within the range of the known limits of life, which makes them a suitable habitat for various extremophilic microorganisms. Moreover, microbial-driven processes such as microbially induced scaling or corrosion can decrease the efficacy of geothermal power plant systems. The present review summarizes the current knowledge and uncertainties surrounding microbial life in deep geothermal reservoirs. As the knowledge in deep geothermal fluids is still scarce, the microbial diversity in analogous environments, such as surface geothermal springs, deep-sea hydrothermal vents or deep subsurface environments, is also summarized here. The high diversity of microorganisms inhabiting these analogous environments suggests that deep geothermal fluids may host an unsuspected microbial diversity. Moreover, the challenges associated to the study of microorganisms in geothermal fluids are reviewed. These include notably challenges linked to sampling, DNA extraction from low biomass samples, DNA amplification and sequencing of unknown communities, and biases induced by comparison of the sequences obtained to reference databases. Such biases are even stronger concerning fungi and archaea, as specific databases are less extensive than those for bacteria. A broader knowledge on microorganisms in deep geothermal fluids may not only allow to reduce the negative impact of microbial activity in geothermal power plants, but could also provide new insights into the evolution of microorganisms and their survival in extreme environments.
{"title":"Unveiling microbial diversity in deep geothermal fluids, from current knowledge and analogous environments","authors":"Danaé Bregnard, Alessio Leins, Guillaume Cailleau, Andrea Vieth-Hillebrand, Florian Eichinger, Joy Ianotta, Richard Hoffmann, Joerg Uhde, Saskia Bindschedler, Simona Regenspurg, Pilar Junier","doi":"10.1186/s40517-023-00269-z","DOIUrl":"10.1186/s40517-023-00269-z","url":null,"abstract":"<div><p>Extreme environments on Earth host a large diversity of microbial life. Bacteria, archaea, and fungi are able to survive under one or several extreme conditions including extreme ranges of temperature, pressure, pH or salinity. Despite extensive research on extremophilic microorganisms, a relatively unexplored frontier within the study of the deep biosphere is the survey of the diversity of microorganisms inhabiting deep geothermal reservoirs used for energy production. These sites offer unique access to investigate life in the deep biosphere. The conditions in these reservoirs are often within the range of the known limits of life, which makes them a suitable habitat for various extremophilic microorganisms. Moreover, microbial-driven processes such as microbially induced scaling or corrosion can decrease the efficacy of geothermal power plant systems. The present review summarizes the current knowledge and uncertainties surrounding microbial life in deep geothermal reservoirs. As the knowledge in deep geothermal fluids is still scarce, the microbial diversity in analogous environments, such as surface geothermal springs, deep-sea hydrothermal vents or deep subsurface environments, is also summarized here. The high diversity of microorganisms inhabiting these analogous environments suggests that deep geothermal fluids may host an unsuspected microbial diversity. Moreover, the challenges associated to the study of microorganisms in geothermal fluids are reviewed. These include notably challenges linked to sampling, DNA extraction from low biomass samples, DNA amplification and sequencing of unknown communities, and biases induced by comparison of the sequences obtained to reference databases. Such biases are even stronger concerning fungi and archaea, as specific databases are less extensive than those for bacteria. A broader knowledge on microorganisms in deep geothermal fluids may not only allow to reduce the negative impact of microbial activity in geothermal power plants, but could also provide new insights into the evolution of microorganisms and their survival in extreme environments.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00269-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1186/s40517-023-00270-6
Ingrid Stober, Jens Grimmer, Michael Kraml
Highly saline lithium-rich hydrothermal fluids (measured chloride concentration up to 44 g kg−1, lithium concentration up to 162 mg kg−1) occur in the deep calcareous Muschelkalk aquifer beneath the northern Alpine foreland (Molasse) basin. We have combined geologic, hydraulic, hydrochemical, and stress field data of the Triassic Muschelkalk aquifer beneath younger sediments of Triassic–Jurassic successions and the Cenozoic Molasse basin of SW-Germany for a synthesis to constrain the origin and development of these brines. In contrast to the regional southeast plunge of Jurassic and Cenozoic strata, low-gradient groundwater flow in the Upper Muschelkalk aquifer is to the north, induced by regional recharge from west, south, and east. The investigated area is seismically active and north trending maximum horizontal stress likely fosters development of necessary fracture permeability for northward flow in the competent carbonates of the Upper Muschelkalk aquifer. The highest lithium concentrations and total dissolved solids (TDS) can be found in the southern parts of the Muschelkalk aquifer. Here, the Muschelkalk Group overlays directly a crystalline basement swell separating two ENE-trending Permocarboniferous troughs. We argue that the highly saline lithium-rich fluids originate from fluid–rock interaction of meteoric water with Variscan crystalline basement rocks and entered the Muschelkalk aquifer on top of the basement swell by permeable faults and fractures. The marginal calcareous sand-rich facies of the Muschelkalk enables the inflow of brines from crystalline basement faults and fractures into the aquifer. We thus argue for an external origin of these brines into the aquifer and further intra-reservoir development by dilution with meteoric water.
在北部阿尔卑斯前陆(Molasse)盆地下方的Muschelkalk深层钙质含水层中存在高盐富锂热液(测量氯浓度高达44 g kg - 1,锂浓度高达162 mg kg - 1)。我们将三叠纪Muschelkalk含水层的地质、水力、水化学和应力场数据结合起来,结合德国西南部新生代Molasse盆地和三叠纪-侏罗纪较年轻沉积层下的Muschelkalk含水层,对这些盐水的起源和发展进行了综合研究。上Muschelkalk含水层受西、南、东三方向区域补给的影响,低梯度地下水向北流动,与侏罗系和新生代地层的区域性东南倾缩相反。研究区地震活跃,北向的最大水平应力可能促进上部Muschelkalk含水层碳酸盐岩向北流动所需的裂缝渗透率的发展。最高的锂浓度和总溶解固体(TDS)可以在Muschelkalk含水层的南部发现。在这里,Muschelkalk群直接覆盖在一个结晶基底膨胀上,将两个ene走向的二叠纪石炭纪槽分开。本文认为,高盐富锂流体起源于大气降水与Variscan结晶基底岩的流体-岩石相互作用,并通过渗透性断裂和裂缝进入基底膨胀顶部的Muschelkalk含水层。Muschelkalk的边缘钙质富砂相使得盐水从结晶基底断层和裂缝流入含水层。因此,我们认为这些盐水的外部来源是进入含水层的,并通过大气水的稀释进一步在储层内发展。
{"title":"The Muschelkalk aquifer of the Molasse basin in SW-Germany: implications on the origin and development of highly saline lithium-rich brines in calcareous hydrothermal reservoirs","authors":"Ingrid Stober, Jens Grimmer, Michael Kraml","doi":"10.1186/s40517-023-00270-6","DOIUrl":"10.1186/s40517-023-00270-6","url":null,"abstract":"<div><p>Highly saline lithium-rich hydrothermal fluids (measured chloride concentration up to 44 g kg<sup>−1</sup>, lithium concentration up to 162 mg kg<sup>−1</sup>) occur in the deep calcareous Muschelkalk aquifer beneath the northern Alpine foreland (Molasse) basin. We have combined geologic, hydraulic, hydrochemical, and stress field data of the Triassic Muschelkalk aquifer beneath younger sediments of Triassic–Jurassic successions and the Cenozoic Molasse basin of SW-Germany for a synthesis to constrain the origin and development of these brines. In contrast to the regional southeast plunge of Jurassic and Cenozoic strata, low-gradient groundwater flow in the Upper Muschelkalk aquifer is to the north, induced by regional recharge from west, south, and east. The investigated area is seismically active and north trending maximum horizontal stress likely fosters development of necessary fracture permeability for northward flow in the competent carbonates of the Upper Muschelkalk aquifer. The highest lithium concentrations and total dissolved solids (TDS) can be found in the southern parts of the Muschelkalk aquifer. Here, the Muschelkalk Group overlays directly a crystalline basement swell separating two ENE-trending Permocarboniferous troughs. We argue that the highly saline lithium-rich fluids originate from fluid–rock interaction of meteoric water with Variscan crystalline basement rocks and entered the Muschelkalk aquifer on top of the basement swell by permeable faults and fractures. The marginal calcareous sand-rich facies of the Muschelkalk enables the inflow of brines from crystalline basement faults and fractures into the aquifer. We thus argue for an external origin of these brines into the aquifer and further intra-reservoir development by dilution with meteoric water.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00270-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1186/s40517-023-00268-0
J. Vidal, P. Patrier, D. Beaufort, S. Maza, G. Rivera, G. Volpi, D. Morata
{"title":"Correction: Structural control of the graben fault on hydrothermal alteration in the Cerro Pabellón geothermal system (Andean Cordillera, Northern Chile)","authors":"J. Vidal, P. Patrier, D. Beaufort, S. Maza, G. Rivera, G. Volpi, D. Morata","doi":"10.1186/s40517-023-00268-0","DOIUrl":"10.1186/s40517-023-00268-0","url":null,"abstract":"","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00268-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45070520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The energy replenishment and heat convection induced by fracture water flowing through the rock mass impact the shallow geothermal energy occurrence, transfer and storage mechanisms in it. In this article, a suitability evaluation and categorization system is proposed by including judgement indexes that are more closely aligned with the actual hydrogeological conditions in fracture developed regions; an assessment approach of regional shallow geothermal energy is proposed by coupling the influences of fracture water into the calculation methods of geothermal capacity, thermal balance and heat transfer rate. Finally, by taking two typical fracture aperture distributions as examples, the impacts of fracture water on the investigation and evaluation of shallow geothermal energy are quantitatively analyzed. Although the fracture apertures only share 1.68% and 0.98% of the total length of a borehole, respectively, in the two examples, the fracture water convection contributes up to 11.01% and 6.81% of the total heat transfer rate; and the energy replenishment potential brought by the fracture water is equivalent to the total heat extraction of 262 boreholes. A single wide aperture fracture can dominate the aforementioned impacts. The research results can support more accurate evaluation and efficient recovery of shallow geothermal energy in fracture developed regions.
{"title":"Investigation and evaluation methods of shallow geothermal energy considering the influences of fracture water flow","authors":"Fengqiang Deng, Peng Pei, Yonglin Ren, Tingting Luo, Yixia Chen","doi":"10.1186/s40517-023-00267-1","DOIUrl":"10.1186/s40517-023-00267-1","url":null,"abstract":"<div><p>The energy replenishment and heat convection induced by fracture water flowing through the rock mass impact the shallow geothermal energy occurrence, transfer and storage mechanisms in it. In this article, a suitability evaluation and categorization system is proposed by including judgement indexes that are more closely aligned with the actual hydrogeological conditions in fracture developed regions; an assessment approach of regional shallow geothermal energy is proposed by coupling the influences of fracture water into the calculation methods of geothermal capacity, thermal balance and heat transfer rate. Finally, by taking two typical fracture aperture distributions as examples, the impacts of fracture water on the investigation and evaluation of shallow geothermal energy are quantitatively analyzed. Although the fracture apertures only share 1.68% and 0.98% of the total length of a borehole, respectively, in the two examples, the fracture water convection contributes up to 11.01% and 6.81% of the total heat transfer rate; and the energy replenishment potential brought by the fracture water is equivalent to the total heat extraction of 262 boreholes. A single wide aperture fracture can dominate the aforementioned impacts. The research results can support more accurate evaluation and efficient recovery of shallow geothermal energy in fracture developed regions.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00267-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41356893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1186/s40517-023-00266-2
Pan Li, Yang Hao, Yu Wu, Ayal Wanniarachchi, Hongxue Zhang, Zhili Cui
A CO2-based Enhanced Geothermal System (CO2-EGS) has dual benefits of heat extraction and CO2 storage. Mineralization storage of CO2 may reduce reservoir permeability, thereby affecting heat extraction. Solutions require further research to optimize and balance these two benefits. In this study, CO2 storage and heat extraction were simulated by alternating cyclic injection of water and supercritical CO2 into fractured granite. By analyzing the changes of ion composition in water samples and the minerals of fracture surface, the mechanisms controlling the fracture permeability with and without proppant were obtained. The results suggest that monticellite and vaterite were formed besides montmorillonite, calcite and illite after increasing the injection cycles. This promotes mineralization storage of CO2 but reduces reservoir permeability. Without proppant, the permeability decreased in three stages and the reduction rate exhibited a sharp-slow–fast–slow trend. While the use of proppant caused an increase of two orders of magnitude in permeability. Therefore, increasing the non-contact area of the main fracture and the CO2 flow velocity can avoid a large decrease in permeability, which will increase the heat extraction and mineralization storage of CO2. The findings provide solutions for the CO2 emission reduction and the efficient exploitation of hot dry rock.
{"title":"Experimental study on the effect of CO2 storage on the reservoir permeability in a CO2-based enhanced geothermal system","authors":"Pan Li, Yang Hao, Yu Wu, Ayal Wanniarachchi, Hongxue Zhang, Zhili Cui","doi":"10.1186/s40517-023-00266-2","DOIUrl":"10.1186/s40517-023-00266-2","url":null,"abstract":"<div><p>A CO<sub>2</sub>-based Enhanced Geothermal System (CO<sub>2</sub>-EGS) has dual benefits of heat extraction and CO<sub>2</sub> storage. Mineralization storage of CO<sub>2</sub> may reduce reservoir permeability, thereby affecting heat extraction. Solutions require further research to optimize and balance these two benefits. In this study, CO<sub>2</sub> storage and heat extraction were simulated by alternating cyclic injection of water and supercritical CO<sub>2</sub> into fractured granite. By analyzing the changes of ion composition in water samples and the minerals of fracture surface, the mechanisms controlling the fracture permeability with and without proppant were obtained. The results suggest that monticellite and vaterite were formed besides montmorillonite, calcite and illite after increasing the injection cycles. This promotes mineralization storage of CO<sub>2</sub> but reduces reservoir permeability. Without proppant, the permeability decreased in three stages and the reduction rate exhibited a sharp-slow–fast–slow trend. While the use of proppant caused an increase of two orders of magnitude in permeability. Therefore, increasing the non-contact area of the main fracture and the CO<sub>2</sub> flow velocity can avoid a large decrease in permeability, which will increase the heat extraction and mineralization storage of CO<sub>2</sub>. The findings provide solutions for the CO<sub>2</sub> emission reduction and the efficient exploitation of hot dry rock.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00266-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45257912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan geothermal belt in mainland China. As the largest unit capacity and second stable operating geothermal power station in China, Yangyi is the fracture-controlled type geothermal field in the center of Yadong–Gulu Graben. In this paper, hydrogeological and hydrochemical characteristics, isotope composition (δD and δ18O, 87Sr/86Sr and δ11B) of borehole water, hot springs, and surface river samples were analyzed. From the conservative elements (such as Cl− and Li+) and δD and δ18O values, the geothermal water of the Yangyi high-temperature geothermal field is estimated to be of meteoric origin with the contributions of chemical components of the magmatic fluid, which is provided by partially molten granite as a shallow magmatic heat source. According to logging data, the geothermal gradient and terrestrial heat flow value of the Yangyi high-temperature geothermal field are 6.48 ℃/100 m and 158.37 mW m−2, respectively. Combining the hydrothermal tracer experiment, 87Sr/86Sr and δ11B ratios obtained with gradually decreasing reservoir temperatures from the Bujiemu stream geothermal zone to Qialagai stream geothermal zone, we suggested the deep geothermal waters were mixed with local cold groundwater and then flow northeastward, forming the shallow reservoir within the crushed zone and intersect spot of faults in the Himalayan granitoid. Furthermore, in the process of ascent, the geothermal water is enriched in K+, Na+, and HCO3− during the interaction with underlying Himalayan granitoid and pyroclastic rocks that occur as wall rocks. The detailed description and extensive discussion are of great significance for the further exploitation and utilization of north–south trending geothermal belts in Tibet.
{"title":"Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China","authors":"Rui Cao, Ji Dor, YongQiang Cai, XiaoLin Chen, Xiang Mao, Hui-ren Meng","doi":"10.1186/s40517-023-00263-5","DOIUrl":"10.1186/s40517-023-00263-5","url":null,"abstract":"<div><p>High-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan geothermal belt in mainland China. As the largest unit capacity and second stable operating geothermal power station in China, Yangyi is the fracture-controlled type geothermal field in the center of Yadong–Gulu Graben. In this paper, hydrogeological and hydrochemical characteristics, isotope composition (δD and δ<sup>18</sup>O, <sup>87</sup>Sr/<sup>86</sup>Sr and δ<sup>11</sup>B) of borehole water, hot springs, and surface river samples were analyzed. From the conservative elements (such as Cl<sup>−</sup> and Li<sup>+</sup>) and δD and δ<sup>18</sup>O values, the geothermal water of the Yangyi high-temperature geothermal field is estimated to be of meteoric origin with the contributions of chemical components of the magmatic fluid, which is provided by partially molten granite as a shallow magmatic heat source. According to logging data, the geothermal gradient and terrestrial heat flow value of the Yangyi high-temperature geothermal field are 6.48 ℃/100 m and 158.37 mW m<sup>−2</sup>, respectively. Combining the hydrothermal tracer experiment, <sup>87</sup>Sr/<sup>86</sup>Sr and δ<sup>11</sup>B ratios obtained with gradually decreasing reservoir temperatures from the Bujiemu stream geothermal zone to Qialagai stream geothermal zone, we suggested the deep geothermal waters were mixed with local cold groundwater and then flow northeastward, forming the shallow reservoir within the crushed zone and intersect spot of faults in the Himalayan granitoid. Furthermore, in the process of ascent, the geothermal water is enriched in K<sup>+</sup>, Na<sup>+</sup>, and HCO<sub>3</sub><sup>−</sup> during the interaction with underlying Himalayan granitoid and pyroclastic rocks that occur as wall rocks. The detailed description and extensive discussion are of great significance for the further exploitation and utilization of north–south trending geothermal belts in Tibet.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00263-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44065064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1186/s40517-023-00265-3
Bing-Cheng Chen, Tito Perdana, Li-Wei Kuo
The northern Central Range of Taiwan is a high-potential geothermal region. Since the formations are mainly tight metasandstone and slate, permeable structures associated with faults are commonly considered as conduits of geothermal fluids. This study determines the characteristics and orientations of the permeable fault zones by analyzing the geophysical logs and microresistivity formation image log (FMI) of the JT-4 well in Jentse, an important geothermal area in the northern Central Range. Between 720 and 1480 m measured depth (MD), the effective porosity of the intact host rock is mostly below 3% calculated by the geophysical log. Zones with porosity greater than 5% are only clustered within a few thin intervals. The FMI interpretations show these porous zones are in the interior of the fractured and faulted intervals. These porous fault zones comprise fault damage zones with a high density of open fracture planes and fault cores with porous fault breccias. There is a highly brecciated fault core in 1334–1339 m MD, which would be the most permeable interval of the well. Additionally, some healed fault zones with sealed fractures are observed. The picked drilling-induced tensile fractures signify that the direction of the present-day maximum horizontal principal stress is N40–50°E, and most of the open fractures also strike parallel to the NE–SW direction. The study results show that the open fractures are concentrated in the four fault zones belonging to one major normal fault system. After integrating the orientations and locations of the fault zones, we propose that the permeable normal fault system is about 200 m wide, trends N50–70°E, and dips 70–80° to the NW. The development of the open fractures and the permeable fault system in the northern Central Range may be controlled by the current rifting of the Okinawa Trough offshore northeastern Taiwan. The study exhibits the characteristics of fractured fluid conduits of the regional geothermal system, which will benefit future geothermal exploration in northeastern Taiwan.
{"title":"Geophysical characteristics of a fault system in the northern Central Range of Taiwan and its applications for geothermal energy exploration","authors":"Bing-Cheng Chen, Tito Perdana, Li-Wei Kuo","doi":"10.1186/s40517-023-00265-3","DOIUrl":"10.1186/s40517-023-00265-3","url":null,"abstract":"<div><p>The northern Central Range of Taiwan is a high-potential geothermal region. Since the formations are mainly tight metasandstone and slate, permeable structures associated with faults are commonly considered as conduits of geothermal fluids. This study determines the characteristics and orientations of the permeable fault zones by analyzing the geophysical logs and microresistivity formation image log (FMI) of the JT-4 well in Jentse, an important geothermal area in the northern Central Range. Between 720 and 1480 m measured depth (MD), the effective porosity of the intact host rock is mostly below 3% calculated by the geophysical log. Zones with porosity greater than 5% are only clustered within a few thin intervals. The FMI interpretations show these porous zones are in the interior of the fractured and faulted intervals. These porous fault zones comprise fault damage zones with a high density of open fracture planes and fault cores with porous fault breccias. There is a highly brecciated fault core in 1334–1339 m MD, which would be the most permeable interval of the well. Additionally, some healed fault zones with sealed fractures are observed. The picked drilling-induced tensile fractures signify that the direction of the present-day maximum horizontal principal stress is N40–50°E, and most of the open fractures also strike parallel to the NE–SW direction. The study results show that the open fractures are concentrated in the four fault zones belonging to one major normal fault system. After integrating the orientations and locations of the fault zones, we propose that the permeable normal fault system is about 200 m wide, trends N50–70°E, and dips 70–80° to the NW. The development of the open fractures and the permeable fault system in the northern Central Range may be controlled by the current rifting of the Okinawa Trough offshore northeastern Taiwan. The study exhibits the characteristics of fractured fluid conduits of the regional geothermal system, which will benefit future geothermal exploration in northeastern Taiwan.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00265-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47344714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}