Shengpeng Zheng, Xiaoping Xiao, Xin Ma, Zisheng Li, Yitao Liu, J. Li, Dongyu Wang, Xiang Li
This study investigates the sealing performance of a combined sealing structure under extremely high and low temperature conditions, considering potential issues like high-temperature aging and low-temperature brittle fracture, which can lead to sealing failure. EPDM rubber underwent uniaxial compression tests at high, low, and normal temperatures, then the sealing performance under extreme working conditions was compared with that under normal temperature conditions. Additionally, the influences of gasket parameters and gas pressure on the sealing performance were analyzed. The result shows that compared with the normal temperature conditions, the maximum von Mises stress is reduced by 65% and the effective sealing length and the maximum contact pressure is reduced by 40% under the high temperature conditions, while the maximum von Mises stress is increased by 7 times and the maximum contact pressure is increased by a remarkable 7 times under the low temperature conditions. In the range of 10–100 MPa, the increase in gas pressure aggravates the O-ring stress concentration and improves the sealing performance relatively. When the thickness of gasket is 0.85–1.05 mm, the stress concentration of the O-ring is lighter and the sealing performance is better.
{"title":"Research on Dynamic Sealing Performance of Combined Sealing Structure under Extreme Working Conditions","authors":"Shengpeng Zheng, Xiaoping Xiao, Xin Ma, Zisheng Li, Yitao Liu, J. Li, Dongyu Wang, Xiang Li","doi":"10.3390/app131810100","DOIUrl":"https://doi.org/10.3390/app131810100","url":null,"abstract":"This study investigates the sealing performance of a combined sealing structure under extremely high and low temperature conditions, considering potential issues like high-temperature aging and low-temperature brittle fracture, which can lead to sealing failure. EPDM rubber underwent uniaxial compression tests at high, low, and normal temperatures, then the sealing performance under extreme working conditions was compared with that under normal temperature conditions. Additionally, the influences of gasket parameters and gas pressure on the sealing performance were analyzed. The result shows that compared with the normal temperature conditions, the maximum von Mises stress is reduced by 65% and the effective sealing length and the maximum contact pressure is reduced by 40% under the high temperature conditions, while the maximum von Mises stress is increased by 7 times and the maximum contact pressure is increased by a remarkable 7 times under the low temperature conditions. In the range of 10–100 MPa, the increase in gas pressure aggravates the O-ring stress concentration and improves the sealing performance relatively. When the thickness of gasket is 0.85–1.05 mm, the stress concentration of the O-ring is lighter and the sealing performance is better.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43934302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Huang, Shaolei Xu, Xingyu Gao, Chuannen Wei, Yang Zhang, Mingfeng Li
An intelligent, vision-guided welding robot is highly desired in machinery manufacturing, the ship industry, and vehicle engineering. The performance of the system greatly depends on the effective identification of weld seam features and the three-dimensional (3D) reconstruction of the weld seam position in a complex industrial environment. In this paper, a 3D visual sensing system with a structured laser projector and CCD camera is developed to obtain the geometry information of fillet weld seams in robot welding. By accounting for the inclination characteristics of the laser stripe in fillet welding, a Gaussian-weighted PCA-based laser center line extraction method is proposed. Smoother laser centerlines can be obtained at large, inclined angles. Furthermore, an improved chord-to-point distance accumulation (CPDA) method with polygon approximation is proposed to identify the feature corner location in center line images. The proposed method is validated numerically with simulated piece-wise linear laser stripes and experimentally with automated robot welding. By comparing this method with the grayscale gravity method, Hessian-matrix-based method, and conventional CPDA method, the proposed improved CPDA method with PCA center extraction is shown to have high accuracy and robustness in noisy welding environments. The proposed method meets the need for vision-aided automated welding robots by achieving greater than 95% accuracy in corner feature point identification in fillet welding.
{"title":"Feature Point Identification in Fillet Weld Joints Using an Improved CPDA Method","authors":"Yang Huang, Shaolei Xu, Xingyu Gao, Chuannen Wei, Yang Zhang, Mingfeng Li","doi":"10.3390/app131810108","DOIUrl":"https://doi.org/10.3390/app131810108","url":null,"abstract":"An intelligent, vision-guided welding robot is highly desired in machinery manufacturing, the ship industry, and vehicle engineering. The performance of the system greatly depends on the effective identification of weld seam features and the three-dimensional (3D) reconstruction of the weld seam position in a complex industrial environment. In this paper, a 3D visual sensing system with a structured laser projector and CCD camera is developed to obtain the geometry information of fillet weld seams in robot welding. By accounting for the inclination characteristics of the laser stripe in fillet welding, a Gaussian-weighted PCA-based laser center line extraction method is proposed. Smoother laser centerlines can be obtained at large, inclined angles. Furthermore, an improved chord-to-point distance accumulation (CPDA) method with polygon approximation is proposed to identify the feature corner location in center line images. The proposed method is validated numerically with simulated piece-wise linear laser stripes and experimentally with automated robot welding. By comparing this method with the grayscale gravity method, Hessian-matrix-based method, and conventional CPDA method, the proposed improved CPDA method with PCA center extraction is shown to have high accuracy and robustness in noisy welding environments. The proposed method meets the need for vision-aided automated welding robots by achieving greater than 95% accuracy in corner feature point identification in fillet welding.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42880815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Lu, Wenchang Li, Jian Liu, Gang Chen, Zhigang Li
Spiking neural networks inspired by biological models are gaining popularity in artificial intelligence due to their ability to solve diverse problems while reducing energy consumption. As a result of the trade-off between the need to transmit large amounts of data and the power consumption of hardware deployment, artificial vision systems are particularly well-suited to construction using spiking neural networks (SNNs). How to communicate with the neuromorphic network effectively is one of the challenges associated with building systems that utilize SNN systems. It is necessary to convert the data to spike form before they can be processed by an SNN as input, unless neuromorphic or event-triggered sensing systems are employed. We present a configurable circuit based on a focal plane array (FPA) capable of providing spike-encoded readout data at the pixel level. With this type of circuit, the current signal of the photoelectric sensor can be encoded into two spike encodings with different precision, which are sent for processing to SNNs. This provides image information at two different scales for the artificial vision system based on SNNs. With this feature, we can use this circuit and different SNN structures to build an artificial target recognition system that is closer to the biological visual system.
{"title":"Design of a Configurable Spike-Encoding Circuit Based on Focal Plane Array","authors":"Di Lu, Wenchang Li, Jian Liu, Gang Chen, Zhigang Li","doi":"10.3390/app131810092","DOIUrl":"https://doi.org/10.3390/app131810092","url":null,"abstract":"Spiking neural networks inspired by biological models are gaining popularity in artificial intelligence due to their ability to solve diverse problems while reducing energy consumption. As a result of the trade-off between the need to transmit large amounts of data and the power consumption of hardware deployment, artificial vision systems are particularly well-suited to construction using spiking neural networks (SNNs). How to communicate with the neuromorphic network effectively is one of the challenges associated with building systems that utilize SNN systems. It is necessary to convert the data to spike form before they can be processed by an SNN as input, unless neuromorphic or event-triggered sensing systems are employed. We present a configurable circuit based on a focal plane array (FPA) capable of providing spike-encoded readout data at the pixel level. With this type of circuit, the current signal of the photoelectric sensor can be encoded into two spike encodings with different precision, which are sent for processing to SNNs. This provides image information at two different scales for the artificial vision system based on SNNs. With this feature, we can use this circuit and different SNN structures to build an artificial target recognition system that is closer to the biological visual system.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49211788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aristi Tsokani, Theodoros Dimopoulos, E. Vourazanis, N. Strimpakos, E. Billis, G. Pepera, E. Kapreli
Background: Exercise has indisputable advantages for people with chronic conditions. Engaging in physical activity within natural environments, known as green exercise, contributes to both physical and mental well-being. The aim of this study was to investigate the perceptions of people with chronic conditions and health professionals and the perceived facilitators and barriers to therapeutic green exercise. Methods: This was a qualitative study based on two focus groups. Ethical approval was received, and a thematic analysis was used to analyze the discussions. Results: Seven patients and eight health professionals participated in the study. The thematic analysis yielded thirteen main themes. Safety concerns and inadequate infrastructures were key barriers. Core facilitators were socialization, and multisensory exposure. Conclusions: Patients with chronic conditions and health professionals believe that green exercise improves physical activity engagement, and it would be beneficial if incorporated in the rehabilitation process. There are challenges to overcome to make therapeutic green exercise for people with chronic conditions more accessible.
{"title":"Barriers and Facilitators for Therapeutic Green Exercise in Patients with Chronic Conditions: A Qualitative Focus Group Study","authors":"Aristi Tsokani, Theodoros Dimopoulos, E. Vourazanis, N. Strimpakos, E. Billis, G. Pepera, E. Kapreli","doi":"10.3390/app131810077","DOIUrl":"https://doi.org/10.3390/app131810077","url":null,"abstract":"Background: Exercise has indisputable advantages for people with chronic conditions. Engaging in physical activity within natural environments, known as green exercise, contributes to both physical and mental well-being. The aim of this study was to investigate the perceptions of people with chronic conditions and health professionals and the perceived facilitators and barriers to therapeutic green exercise. Methods: This was a qualitative study based on two focus groups. Ethical approval was received, and a thematic analysis was used to analyze the discussions. Results: Seven patients and eight health professionals participated in the study. The thematic analysis yielded thirteen main themes. Safety concerns and inadequate infrastructures were key barriers. Core facilitators were socialization, and multisensory exposure. Conclusions: Patients with chronic conditions and health professionals believe that green exercise improves physical activity engagement, and it would be beneficial if incorporated in the rehabilitation process. There are challenges to overcome to make therapeutic green exercise for people with chronic conditions more accessible.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45403027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Lou, Shenglong Zhu, Jinjin Ding, Taiyun Zhu, Ming Wang, Licheng Sun, Feili Zhong, Xiaodong Yang
Demand–response (DR) can provide the economic flexibility required to adapt a high proportion of renewable energy in the context of a smart grid. This paper proposes a transactive DR framework to enable the multi-time-scale proactive participation of demand-side flexible multi-energy resources. In this framework, the distribution system operator distributes the real-time DR request and the high renewable penetrated multi-energy prosumer aggregators provide the ancillary services based on their adjustable potential. To facilitate such multi-time-scale prosumer–operator interactions, a flexibility potential evaluation method is developed for the quantification and pricing of prosumer flexibility. The positive and negative flexibility potential of the demand-side prosumer aggregators are defined as deviations from the optimal pre-dispatch operation, which are further quantified using the aspects of flexible time and power. Based on the introduction of a flexibility pricing mechanism to identify the economically optimal ancillary service requirements, each prosumer aggregator performs an optimal real-time DR scheduling. Case studies over several DR schemes are performed to confirm the effectiveness and superiority of the proposed method on the economy and flexibility of the system.
{"title":"Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid","authors":"Wei Lou, Shenglong Zhu, Jinjin Ding, Taiyun Zhu, Ming Wang, Licheng Sun, Feili Zhong, Xiaodong Yang","doi":"10.3390/app131810083","DOIUrl":"https://doi.org/10.3390/app131810083","url":null,"abstract":"Demand–response (DR) can provide the economic flexibility required to adapt a high proportion of renewable energy in the context of a smart grid. This paper proposes a transactive DR framework to enable the multi-time-scale proactive participation of demand-side flexible multi-energy resources. In this framework, the distribution system operator distributes the real-time DR request and the high renewable penetrated multi-energy prosumer aggregators provide the ancillary services based on their adjustable potential. To facilitate such multi-time-scale prosumer–operator interactions, a flexibility potential evaluation method is developed for the quantification and pricing of prosumer flexibility. The positive and negative flexibility potential of the demand-side prosumer aggregators are defined as deviations from the optimal pre-dispatch operation, which are further quantified using the aspects of flexible time and power. Based on the introduction of a flexibility pricing mechanism to identify the economically optimal ancillary service requirements, each prosumer aggregator performs an optimal real-time DR scheduling. Case studies over several DR schemes are performed to confirm the effectiveness and superiority of the proposed method on the economy and flexibility of the system.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43762395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kateryna Czerniachowska, Radosław Wichniarek, Krzysztof Żywicki
The necessity for undertaking this research is driven by the prevailing challenges encountered in logistic centers. This study addresses a logistic order-picking issue involving unidirectional conveyors and buffers, which are assigned to racks and pickers with the objective of minimizing the makespan. Subsequently, two variations of a two-step matheuristic approach are proposed as solution methodologies. These matheuristics entail decomposing the primary order-picking problem into two subproblems. In the initial step, the problem of minimizing the free time for pickers/buffers is solved, followed by an investigation into minimizing order picking makespan. An experimentation phase is carried out across three versions of a distribution center layout, wherein one or more pickers are allocated to one or more buffers, spanning 120 test instances. The research findings indicate that employing a mathematical programming-based technique holds promise for yielding solutions within reasonable computational timeframes, particularly when distributing products to consumers with limited product variety within the order. Furthermore, the proposed technique offers the advantages of expediency and simplicity, rendering it suitable for adoption in the process of designing and selecting order-picking systems.
{"title":"A Two-Step Matheuristics for Order-Picking Process Problems with One-Directional Material Flow and Buffers","authors":"Kateryna Czerniachowska, Radosław Wichniarek, Krzysztof Żywicki","doi":"10.3390/app131810099","DOIUrl":"https://doi.org/10.3390/app131810099","url":null,"abstract":"The necessity for undertaking this research is driven by the prevailing challenges encountered in logistic centers. This study addresses a logistic order-picking issue involving unidirectional conveyors and buffers, which are assigned to racks and pickers with the objective of minimizing the makespan. Subsequently, two variations of a two-step matheuristic approach are proposed as solution methodologies. These matheuristics entail decomposing the primary order-picking problem into two subproblems. In the initial step, the problem of minimizing the free time for pickers/buffers is solved, followed by an investigation into minimizing order picking makespan. An experimentation phase is carried out across three versions of a distribution center layout, wherein one or more pickers are allocated to one or more buffers, spanning 120 test instances. The research findings indicate that employing a mathematical programming-based technique holds promise for yielding solutions within reasonable computational timeframes, particularly when distributing products to consumers with limited product variety within the order. Furthermore, the proposed technique offers the advantages of expediency and simplicity, rendering it suitable for adoption in the process of designing and selecting order-picking systems.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47509018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenxin Zhao, Hongzhao Dong, Kai Wang, Jianwen Shao, Cunbin Zhao
Intermittent bus lanes (IBLs) can alleviate the contradiction between bus priority and the urgent demand of general vehicles for road resources. However, existing IBL strategies seldom pay attention to the setting method of the dynamic bus lanes at intersections, which leads to the still serious delay of buses at intersections in the traffic congestion environment. To tackle this issue, this research explores a novel method of setting the intermittent bus approach (IBA) of intersections for lane sharing and bus priority at intersections. In particular, a time slice division strategy with an intersection signal coordination model is developed to fully and reasonably allocate the idle time of bus lanes at intersections. Besides, considering the lane-changing demands of general vehicles at intersections, the parameters of the IBA lane system are modeled and optimized. For testing and verifying the feasibility of the proposed method, comparative experiments are conducted through microscopic traffic simulation. Results show that the proposed IBA setting method can effectively solve the problem of bus priority failure at intersections. It can maintain the continuity of vehicle running on intersection sections, which better exerts the operational benefits of dynamic bus lanes.
{"title":"Setting the Intermittent Bus Approach of Intersections: A Novel Lane Multiplexing-Based Method with an Intersection Signal Coordination Model","authors":"Chenxin Zhao, Hongzhao Dong, Kai Wang, Jianwen Shao, Cunbin Zhao","doi":"10.3390/app131810098","DOIUrl":"https://doi.org/10.3390/app131810098","url":null,"abstract":"Intermittent bus lanes (IBLs) can alleviate the contradiction between bus priority and the urgent demand of general vehicles for road resources. However, existing IBL strategies seldom pay attention to the setting method of the dynamic bus lanes at intersections, which leads to the still serious delay of buses at intersections in the traffic congestion environment. To tackle this issue, this research explores a novel method of setting the intermittent bus approach (IBA) of intersections for lane sharing and bus priority at intersections. In particular, a time slice division strategy with an intersection signal coordination model is developed to fully and reasonably allocate the idle time of bus lanes at intersections. Besides, considering the lane-changing demands of general vehicles at intersections, the parameters of the IBA lane system are modeled and optimized. For testing and verifying the feasibility of the proposed method, comparative experiments are conducted through microscopic traffic simulation. Results show that the proposed IBA setting method can effectively solve the problem of bus priority failure at intersections. It can maintain the continuity of vehicle running on intersection sections, which better exerts the operational benefits of dynamic bus lanes.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47616429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to take into account the influence of both system structure and diagnosis algorithm in the diagnosability design of the system, a diagnosability-integrated design method based on graph theory was proposed in this paper. Firstly, based on the diagnosability evaluation results, the difficulty of fault diagnosis was qualitatively analyzed using the K-means method, and the diagnosis plot of measurement point was drawn based on the analysis results. Secondly, the Bron–Kerbosch algorithm was used to extract the maximal cliques from the diagnosis plot of measurement point and determine the set of maximal cliques that can diagnose faults in the system based on the hypergraph edge coverage theorem. Finally, a cascade classifier was set on the maximal clique set to classify and identify faults in the system, and the performance of the diagnosis scheme was evaluated using the posterior probabilities of the classifier outputs combined with the Shannon entropy. At the same time, the method incorporated a measurement point update mechanism, which can decide whether to add additional measurement point according to the evaluation results of Shannon entropy to ensure better diagnosis effect. The results of simulation experiments showed that the fault diagnosis scheme designed by the method of this paper improved the correct rate of diagnosis results by 3.25 percentage points compared with other diagnosis schemes due to the simultaneous consideration of the structure of the system and the diagnosis method, and the diagnosis results of this paper were relatively stable in repeated experiments, which proved the practicality and effectiveness of the method of this paper.
{"title":"A Diagnosability-Integrated Design Approach Based on Graph Theory","authors":"Jiapeng Lv, Xianjun Shi","doi":"10.3390/app131810080","DOIUrl":"https://doi.org/10.3390/app131810080","url":null,"abstract":"In order to take into account the influence of both system structure and diagnosis algorithm in the diagnosability design of the system, a diagnosability-integrated design method based on graph theory was proposed in this paper. Firstly, based on the diagnosability evaluation results, the difficulty of fault diagnosis was qualitatively analyzed using the K-means method, and the diagnosis plot of measurement point was drawn based on the analysis results. Secondly, the Bron–Kerbosch algorithm was used to extract the maximal cliques from the diagnosis plot of measurement point and determine the set of maximal cliques that can diagnose faults in the system based on the hypergraph edge coverage theorem. Finally, a cascade classifier was set on the maximal clique set to classify and identify faults in the system, and the performance of the diagnosis scheme was evaluated using the posterior probabilities of the classifier outputs combined with the Shannon entropy. At the same time, the method incorporated a measurement point update mechanism, which can decide whether to add additional measurement point according to the evaluation results of Shannon entropy to ensure better diagnosis effect. The results of simulation experiments showed that the fault diagnosis scheme designed by the method of this paper improved the correct rate of diagnosis results by 3.25 percentage points compared with other diagnosis schemes due to the simultaneous consideration of the structure of the system and the diagnosis method, and the diagnosis results of this paper were relatively stable in repeated experiments, which proved the practicality and effectiveness of the method of this paper.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48032203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongbin Hu, Yongbin Wang, Guohui Song, Weijian Fan, Chenming Liu
As a new factor of production, data element has profoundly changed our mode of production, lifestyle and social governance style. The sharing of a data element in the convergence media ecology can greatly improve the circulation of a data element and enhance the value of a data element; however, it may face problems such as insufficient sharing willingness, incomplete sharing circulation mechanism and inadequate implementation of the incentive mechanism. To solve these problems, this paper introduced the evolutionary game theory in the convergence media ecology and established the data-sharing model according to the characteristics of nodes. We analyzed the ecological node evolution path, evolutionary stable strategy and the corresponding state conditions in the model. Furthermore, we carried out the sampling experiment simulation, which verified the effectiveness of the research content in this paper. At the end of the article, we summarize and give some key factors to increase the willingness to participate in sharing in convergence media ecology. This paper enriched the research field of data element sharing in convergence media and explored the willingness and tendency of the participants. The research results can provide targeted suggestions for promoting the sharing of data elements in convergence media ecology.
{"title":"Data Element Sharing in Convergence Media Ecology Based on Evolutionary Game","authors":"Hongbin Hu, Yongbin Wang, Guohui Song, Weijian Fan, Chenming Liu","doi":"10.3390/app131810089","DOIUrl":"https://doi.org/10.3390/app131810089","url":null,"abstract":"As a new factor of production, data element has profoundly changed our mode of production, lifestyle and social governance style. The sharing of a data element in the convergence media ecology can greatly improve the circulation of a data element and enhance the value of a data element; however, it may face problems such as insufficient sharing willingness, incomplete sharing circulation mechanism and inadequate implementation of the incentive mechanism. To solve these problems, this paper introduced the evolutionary game theory in the convergence media ecology and established the data-sharing model according to the characteristics of nodes. We analyzed the ecological node evolution path, evolutionary stable strategy and the corresponding state conditions in the model. Furthermore, we carried out the sampling experiment simulation, which verified the effectiveness of the research content in this paper. At the end of the article, we summarize and give some key factors to increase the willingness to participate in sharing in convergence media ecology. This paper enriched the research field of data element sharing in convergence media and explored the willingness and tendency of the participants. The research results can provide targeted suggestions for promoting the sharing of data elements in convergence media ecology.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46915971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper investigates the clocking effect in subsonic compressor element stages and the influence of design parameters on the flow mechanism. We focus on the relationship between the wake-induced separation loss and wake mixing loss and the unsteady mechanism in the wake flow process without considering the transition through several steady and unsteady numerical simulations aimed at a series of subsonic compressor element stages. The simulation results indicate that the performance difference at various indexing positions depends on the relationship between wake mixing loss and wake-induced separation loss for different compressor designs and operating conditions. Furthermore, the pressure transport caused by the negative jet of the Stator 0 wake in Rotor 1 creates a local acceleration region called SFAF, and a decrease in its absolute flow angle reduces the Stator 1 separation. Sufficient rim work of the rotor at highly loaded operating conditions is the basis for generating an effective SFAF. Furthermore, the fore-loading blade of Rotor 1 significantly reduces suction surface pressure drop, and a small angle between the stagger angles of Stator 0 and Rotor 1 increases the unsteady rotor load caused by the upstream wake to the total rotor load, both of which enhance SFAF.
{"title":"A New Influence Mechanism of Clocking Effect in Subsonic Compressor","authors":"Han Niu, Jiang Chen, Hang Xiang","doi":"10.3390/app131810094","DOIUrl":"https://doi.org/10.3390/app131810094","url":null,"abstract":"This paper investigates the clocking effect in subsonic compressor element stages and the influence of design parameters on the flow mechanism. We focus on the relationship between the wake-induced separation loss and wake mixing loss and the unsteady mechanism in the wake flow process without considering the transition through several steady and unsteady numerical simulations aimed at a series of subsonic compressor element stages. The simulation results indicate that the performance difference at various indexing positions depends on the relationship between wake mixing loss and wake-induced separation loss for different compressor designs and operating conditions. Furthermore, the pressure transport caused by the negative jet of the Stator 0 wake in Rotor 1 creates a local acceleration region called SFAF, and a decrease in its absolute flow angle reduces the Stator 1 separation. Sufficient rim work of the rotor at highly loaded operating conditions is the basis for generating an effective SFAF. Furthermore, the fore-loading blade of Rotor 1 significantly reduces suction surface pressure drop, and a small angle between the stagger angles of Stator 0 and Rotor 1 increases the unsteady rotor load caused by the upstream wake to the total rotor load, both of which enhance SFAF.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47917330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}