Xiaoyang Zhu, K. Zhu, Pingzeng Liu, Yan Zhang, Honghua Jiang
In order to accomplish accurate mushroom classification and measurement, it is necessary to optimize the existing classification algorithm and measurement devices, as well as to design a specific robot to improve classification accuracy and measurement efficiency. In order to achieve the above objectives, a research-level verification of mushroom grading using Yolov5 + OpenCV and a mushroom measuring system using a resistance strain gauge sensor was carried out. In the aspect of mushroom grading, a method based on the OpenCV visual library was used to identify the minimum quadrilateral outside the mushroom contour, allowing the size of the mushroom to be measured. The experiment’s results show that the method can assess target objects that are occluded with each other under different illumination conditions with 96% accuracy. In the measurement of mushrooms, the strain of the resistance is converted into an analog signal, and the weight of different grades of mushrooms is converted according to the linear relationship after processing by the detection circuit module. Through this method, the error range is successfully controlled within ±0.02 kg, which meets the requirements of accurate measurement of mushrooms. The results of field experiments show that the proposed accurate grading and measurement method of Lentinula edodes is effective and feasible, and provides technical support for the intelligent grading and measurement of Lentinula edodes in production units.
{"title":"A Special Robot for Precise Grading and Metering of Mushrooms Based on Yolov5","authors":"Xiaoyang Zhu, K. Zhu, Pingzeng Liu, Yan Zhang, Honghua Jiang","doi":"10.3390/app131810104","DOIUrl":"https://doi.org/10.3390/app131810104","url":null,"abstract":"In order to accomplish accurate mushroom classification and measurement, it is necessary to optimize the existing classification algorithm and measurement devices, as well as to design a specific robot to improve classification accuracy and measurement efficiency. In order to achieve the above objectives, a research-level verification of mushroom grading using Yolov5 + OpenCV and a mushroom measuring system using a resistance strain gauge sensor was carried out. In the aspect of mushroom grading, a method based on the OpenCV visual library was used to identify the minimum quadrilateral outside the mushroom contour, allowing the size of the mushroom to be measured. The experiment’s results show that the method can assess target objects that are occluded with each other under different illumination conditions with 96% accuracy. In the measurement of mushrooms, the strain of the resistance is converted into an analog signal, and the weight of different grades of mushrooms is converted according to the linear relationship after processing by the detection circuit module. Through this method, the error range is successfully controlled within ±0.02 kg, which meets the requirements of accurate measurement of mushrooms. The results of field experiments show that the proposed accurate grading and measurement method of Lentinula edodes is effective and feasible, and provides technical support for the intelligent grading and measurement of Lentinula edodes in production units.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49117673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pilar Pardos-Aguilella, Luis Ceballos-Laita, Sara Cabanillas-Barea, Silvia Pérez-Guillén, Gianluca Ciuffreda, Sandra Jiménez-del-Barrio, Andoni Carrasco-Uribarren
Background: Neck pain (NP) is a frequent condition in women, characterized by exhibiting distinct clinical manifestations such as the presence of deep neck (DN) muscle weakness. Endurance and ultrasonography of the DN muscles, and patient-reported outcome measures, are commonly used outcomes in clinical practice. The aim of this study is to assess and correlate the endurance of the DN muscles and their morphological characteristics with pain intensity, neck disability and headache impact. Methods: An observational and correlational study was carried out. Eighty-two women were recruited, and endurance tests of neck flexor and extensor (chin tuck flexion test and neck extensor muscles endurance test), ultrasonography of the DN muscles, pain intensity, disability (neck disability index) and headache impact (HIT-6) were measured. Spearman’s rho was used to evaluate the correlation between the outcome variables, and a simple linear regression analysis was carried out to explain the model in detail. Results: Statistically significant negative correlations between the chin tuck neck flexion test and neck disability index (NDI) (r = −0.38; p < 0.001) and HIT-6 (r = −0.26; p = 0.02) were found. The neck extensor muscles endurance test showed a negative correlation with NDI (r = −0.27; p = 0.01) and HIT-6 (r = −0.26; p = 0.02). The simple linear regression analysis showed an R squared of 26.7% and was statistically significant (NDI: R squared = 0.267; F = 3.13; p = 0.004) for NDI. Conclusion: A negative correlation between deep neck muscle endurance test results and self-reported outcome measures in women with low cervical disability and neck pain were observed. This suggests that lower endurance in the deep neck muscles may be associated with poorer self-reported symptoms and functionality in these patients. The chin tuck neck flexion test and deep extensor muscles endurance test could predict self-perceived neck disability in women with low cervical disability and NP.
{"title":"Correlation between Neck Muscle Endurance Tests, Ultrasonography, and Self-Reported Outcomes in Women with Low Cervical Disability and Neck Pain","authors":"Pilar Pardos-Aguilella, Luis Ceballos-Laita, Sara Cabanillas-Barea, Silvia Pérez-Guillén, Gianluca Ciuffreda, Sandra Jiménez-del-Barrio, Andoni Carrasco-Uribarren","doi":"10.3390/app131810106","DOIUrl":"https://doi.org/10.3390/app131810106","url":null,"abstract":"Background: Neck pain (NP) is a frequent condition in women, characterized by exhibiting distinct clinical manifestations such as the presence of deep neck (DN) muscle weakness. Endurance and ultrasonography of the DN muscles, and patient-reported outcome measures, are commonly used outcomes in clinical practice. The aim of this study is to assess and correlate the endurance of the DN muscles and their morphological characteristics with pain intensity, neck disability and headache impact. Methods: An observational and correlational study was carried out. Eighty-two women were recruited, and endurance tests of neck flexor and extensor (chin tuck flexion test and neck extensor muscles endurance test), ultrasonography of the DN muscles, pain intensity, disability (neck disability index) and headache impact (HIT-6) were measured. Spearman’s rho was used to evaluate the correlation between the outcome variables, and a simple linear regression analysis was carried out to explain the model in detail. Results: Statistically significant negative correlations between the chin tuck neck flexion test and neck disability index (NDI) (r = −0.38; p < 0.001) and HIT-6 (r = −0.26; p = 0.02) were found. The neck extensor muscles endurance test showed a negative correlation with NDI (r = −0.27; p = 0.01) and HIT-6 (r = −0.26; p = 0.02). The simple linear regression analysis showed an R squared of 26.7% and was statistically significant (NDI: R squared = 0.267; F = 3.13; p = 0.004) for NDI. Conclusion: A negative correlation between deep neck muscle endurance test results and self-reported outcome measures in women with low cervical disability and neck pain were observed. This suggests that lower endurance in the deep neck muscles may be associated with poorer self-reported symptoms and functionality in these patients. The chin tuck neck flexion test and deep extensor muscles endurance test could predict self-perceived neck disability in women with low cervical disability and NP.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41585295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlo Carbone, Alejandra Rubio-Bueno, F. Ortega, Ramón G. Rubio, E. Guzmán
This study investigates the surface modification of hydrophilic silica nanoparticles by non-chemical adsorption of an amphiphilic triblock copolymer, Pluronic F-127, and elucidates its influence on the interfacial dispersion properties. The interaction between Pluronic F-127 and silica nanoparticles drives the formation of copolymer-decorated particles with increased hydrodynamic diameter and reduced effective charge as the copolymer concentration increases, while the opposite effect occurs as the particle concentration increases at a fixed polymer concentration. This indicates that increasing the copolymer concentration leads to an increase in the coating density, whereas increasing the particle concentration leads to a decrease. This is of paramount importance for modulating the reorganization of the Pluronic F-127 shell upon adsorption at fluid–fluid interfaces and, thus, the adsorption of the decorated nanoparticles at the interface and the rheological properties of the obtained layers. In fact, the relationship between copolymer concentration and interfacial tension, as well as the mechanical response of the interface, mirrors the patterns observed in Pluronic F-127 solutions, and only a shift mediated by the Pluronic F-127 concentration is found. This suggests that the presence of particles limits the space available for Pluronic F-127 molecules to reorganize at the interface but does not significantly affect the interfacial behavior of the particle-laden interface.
{"title":"Adsorption of Mixed Dispersions of Silica Nanoparticles and an Amphiphilic Triblock Copolymer at the Water–Vapor Interface","authors":"Carlo Carbone, Alejandra Rubio-Bueno, F. Ortega, Ramón G. Rubio, E. Guzmán","doi":"10.3390/app131810093","DOIUrl":"https://doi.org/10.3390/app131810093","url":null,"abstract":"This study investigates the surface modification of hydrophilic silica nanoparticles by non-chemical adsorption of an amphiphilic triblock copolymer, Pluronic F-127, and elucidates its influence on the interfacial dispersion properties. The interaction between Pluronic F-127 and silica nanoparticles drives the formation of copolymer-decorated particles with increased hydrodynamic diameter and reduced effective charge as the copolymer concentration increases, while the opposite effect occurs as the particle concentration increases at a fixed polymer concentration. This indicates that increasing the copolymer concentration leads to an increase in the coating density, whereas increasing the particle concentration leads to a decrease. This is of paramount importance for modulating the reorganization of the Pluronic F-127 shell upon adsorption at fluid–fluid interfaces and, thus, the adsorption of the decorated nanoparticles at the interface and the rheological properties of the obtained layers. In fact, the relationship between copolymer concentration and interfacial tension, as well as the mechanical response of the interface, mirrors the patterns observed in Pluronic F-127 solutions, and only a shift mediated by the Pluronic F-127 concentration is found. This suggests that the presence of particles limits the space available for Pluronic F-127 molecules to reorganize at the interface but does not significantly affect the interfacial behavior of the particle-laden interface.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44903213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Verstockt, Filip Thiessen, I. Hoorens, L. Brochez, Gunther Steenackers
Skin cancer is a significant global health issue, placing a growing burden on individuals and society. Conventional diagnostic methods like visual examination and biopsy have limitations in invasiveness and accuracy. As a result, alternative tools such as infrared thermography have gained attention in skin cancer diagnosis. Tissue-mimicking phantoms have been instrumental in facilitating research in this field, offering controlled environments. While they do not fully replicate human skin complexity, physical skin models provide stability, ease of fabrication, and control over properties. Agarose phantoms are employed in this study. This research focused on testing and comparing cooling techniques for human skin in the context of skin cancer diagnosis using dynamic infrared thermography. Six cooling methods were investigated: a cool pack, an aluminum medal, ice, alcohol, a vortex cooler and a Zimmer Cryo 6 cooler. The experimental setup involved an infrared camera (Optris Xi400) with microscope optics positioned above an agar phantom mimicking flat skin and an ulcerating skin lesion. Based on experiments conducted on the skin phantom, it was observed that convective cooling methods offered more consistent and uniform cooling. Conversely, conductive methods proved effective for flat objects but posed challenges in achieving uniform cooling for bulging skin or ulcerated lesions. Ice or alcohol were deemed unsuitable due to artifacts influencing the infrared radiation and thermal camera view. A decision matrix assessed cooling techniques based on criteria such as uniformity, repeatability, view obstruction, efficiency, workload, patient comfort, clinical suitability, noise exposure, consumables, additional equipment, and price. The Zimmer Cryo 6 cooler emerged as the most suitable cooling method after evaluating various factors.
{"title":"Comparative Analysis of Cooling Methods for Dynamic Infrared Thermography (DIRT)-Based Skin Cancer Diagnosis","authors":"J. Verstockt, Filip Thiessen, I. Hoorens, L. Brochez, Gunther Steenackers","doi":"10.3390/app131810105","DOIUrl":"https://doi.org/10.3390/app131810105","url":null,"abstract":"Skin cancer is a significant global health issue, placing a growing burden on individuals and society. Conventional diagnostic methods like visual examination and biopsy have limitations in invasiveness and accuracy. As a result, alternative tools such as infrared thermography have gained attention in skin cancer diagnosis. Tissue-mimicking phantoms have been instrumental in facilitating research in this field, offering controlled environments. While they do not fully replicate human skin complexity, physical skin models provide stability, ease of fabrication, and control over properties. Agarose phantoms are employed in this study. This research focused on testing and comparing cooling techniques for human skin in the context of skin cancer diagnosis using dynamic infrared thermography. Six cooling methods were investigated: a cool pack, an aluminum medal, ice, alcohol, a vortex cooler and a Zimmer Cryo 6 cooler. The experimental setup involved an infrared camera (Optris Xi400) with microscope optics positioned above an agar phantom mimicking flat skin and an ulcerating skin lesion. Based on experiments conducted on the skin phantom, it was observed that convective cooling methods offered more consistent and uniform cooling. Conversely, conductive methods proved effective for flat objects but posed challenges in achieving uniform cooling for bulging skin or ulcerated lesions. Ice or alcohol were deemed unsuitable due to artifacts influencing the infrared radiation and thermal camera view. A decision matrix assessed cooling techniques based on criteria such as uniformity, repeatability, view obstruction, efficiency, workload, patient comfort, clinical suitability, noise exposure, consumables, additional equipment, and price. The Zimmer Cryo 6 cooler emerged as the most suitable cooling method after evaluating various factors.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44282817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cylindrical multi-degree-of-freedom (multi-DOF) ultrasonic motors have the potential to significantly reduce motor size compared to other ultrasonic motors. They find applications in various systems, including micro-robot joints and space probes. This paper proposes a 3-DOF cylindrical ultrasonic motor with hybrid vibration modes. Hybrid vibration modes encompass non-standard longitudinal and bending vibrations. The structure and operating principle of the motor are described first. COMSOL Multiphysics models the stator’s vibration modes, frequency response, and 3-DOF motion. A motor prototype is manufactured and characterized to demonstrate the output characteristics of the motor. The results indicate that the motor has a no-load speed of 37 rpm along the x- and y-axes and up to 77 rpm along the z-axis. The maximum output torque of the motor is 25 Nm. The motor is low in height and compact, providing a method for further reducing the stator length of motors of the same type.
{"title":"Development of a 3-DOF Cylindrical Ultrasonic Motor Based on Non-Standard Modes","authors":"Jingwen Leng, Long Jin, Zhike Xu, X. Zhu","doi":"10.3390/app131810096","DOIUrl":"https://doi.org/10.3390/app131810096","url":null,"abstract":"Cylindrical multi-degree-of-freedom (multi-DOF) ultrasonic motors have the potential to significantly reduce motor size compared to other ultrasonic motors. They find applications in various systems, including micro-robot joints and space probes. This paper proposes a 3-DOF cylindrical ultrasonic motor with hybrid vibration modes. Hybrid vibration modes encompass non-standard longitudinal and bending vibrations. The structure and operating principle of the motor are described first. COMSOL Multiphysics models the stator’s vibration modes, frequency response, and 3-DOF motion. A motor prototype is manufactured and characterized to demonstrate the output characteristics of the motor. The results indicate that the motor has a no-load speed of 37 rpm along the x- and y-axes and up to 77 rpm along the z-axis. The maximum output torque of the motor is 25 Nm. The motor is low in height and compact, providing a method for further reducing the stator length of motors of the same type.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45570182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. M. Sánchez-Villalobos, A. Serna-Berna, J. Salinas-Ramos, P. Escolar-Pérez, Marina Andreu-Gálvez, Emma Martínez-Alonso, J. Pérez-Vicente, Miguel Alcaraz
Whole-brain radiation therapy and stereotactic radiosurgery are two treatment modalities commonly utilized to treat brain metastases (BMs). The aim of this study is to retrospectively analyze the main radio-oncologic and clinical-demographic aspects of a cohort of BM patients treated with Volumetric Modulated Arc Therapy for radiosurgery (VMAT-RS). This is a cross-sectional observational design study with a retrospective review of the medical records of patients with brain metastases treated with VMAT-RS between 2012 and 2018. Clinical and demographic data, with special attention to sex, age, primary tumor, brain tumor-related epilepsy (BTRE), number and brain location of BMs, Karnofsky Performance Status (KPS), the updated DS-GPA prognostic index, and the survival estimated according to the Kaplan–Meier model from the date of radiosurgery, were analyzed. One hundred and twenty-one patients with 229 BMs were treated with VMAT-RS. Patients presented 1–4 BMs, which were treated with five non-coplanar VMAT arcs. Sixty-eight percent of the patients had lung cancer, and 35% of the BMs were in the frontal lobe. The proportion of local control was 88.5%. BTRE prevalence was 30.6%. The median survival time (MST) was 7.7 months. In the multivariate analysis of the Cox regression model, KPS ≥ 70 (HRKPS < 70 = 2.59; p = 0.001) and higher DS-GPA (HRDS-GPAII = 0.55, p = 0.022; HRDS-GPAIII-IV = 0.38, p = 0.006) were associated with improved survival. In the univariate analysis, primary tumor, age, and the presence of metastases in the posterior fossa (PFBMs) were also significant. In conclusion, the VMAT-RS is a technique with an overall survival rate comparable to other radiosurgery techniques. The median survival is significantly longer for those with higher KPS and DS-GPA. Other variables, such as the type of primary tumor, age, and PFBMs, could also influence survival, although further studies are needed.
{"title":"Volumetric Modulated Arc Therapy for Radiosurgery of Brain Metastases: A Single-Center Study","authors":"J. M. Sánchez-Villalobos, A. Serna-Berna, J. Salinas-Ramos, P. Escolar-Pérez, Marina Andreu-Gálvez, Emma Martínez-Alonso, J. Pérez-Vicente, Miguel Alcaraz","doi":"10.3390/app131810097","DOIUrl":"https://doi.org/10.3390/app131810097","url":null,"abstract":"Whole-brain radiation therapy and stereotactic radiosurgery are two treatment modalities commonly utilized to treat brain metastases (BMs). The aim of this study is to retrospectively analyze the main radio-oncologic and clinical-demographic aspects of a cohort of BM patients treated with Volumetric Modulated Arc Therapy for radiosurgery (VMAT-RS). This is a cross-sectional observational design study with a retrospective review of the medical records of patients with brain metastases treated with VMAT-RS between 2012 and 2018. Clinical and demographic data, with special attention to sex, age, primary tumor, brain tumor-related epilepsy (BTRE), number and brain location of BMs, Karnofsky Performance Status (KPS), the updated DS-GPA prognostic index, and the survival estimated according to the Kaplan–Meier model from the date of radiosurgery, were analyzed. One hundred and twenty-one patients with 229 BMs were treated with VMAT-RS. Patients presented 1–4 BMs, which were treated with five non-coplanar VMAT arcs. Sixty-eight percent of the patients had lung cancer, and 35% of the BMs were in the frontal lobe. The proportion of local control was 88.5%. BTRE prevalence was 30.6%. The median survival time (MST) was 7.7 months. In the multivariate analysis of the Cox regression model, KPS ≥ 70 (HRKPS < 70 = 2.59; p = 0.001) and higher DS-GPA (HRDS-GPAII = 0.55, p = 0.022; HRDS-GPAIII-IV = 0.38, p = 0.006) were associated with improved survival. In the univariate analysis, primary tumor, age, and the presence of metastases in the posterior fossa (PFBMs) were also significant. In conclusion, the VMAT-RS is a technique with an overall survival rate comparable to other radiosurgery techniques. The median survival is significantly longer for those with higher KPS and DS-GPA. Other variables, such as the type of primary tumor, age, and PFBMs, could also influence survival, although further studies are needed.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46522448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Zmener, C. Pameijer, Roberto Della Porta, Romina de Lucca
Introduction: The effect of high temperatures on the properties of endodontic sealers during warm compaction of gutta-percha may be a matter of concern. This study aimed to evaluate the effect of heat on the biocompatibility and bioactivity of EndoSequence BC Sealer HiFlow (ESHF; Brasseler, Savannah, GA, USA) and AH Plus (AHPS; Dentsply, De Trey, Konstanz, Germany) when implanted into the bone tissue of rat tibias. Methods: Medical-grade silicone tubes containing freshly prepared ESHF or AHPS were heated to 100 °C and then cooled down to 65 °C before being implanted in the tibias of 24 Wistar rats. The outer walls of the tubes served as controls. After 10, 30 and 90 days, the animals were euthanized and the implants and their surrounding tissues were dissected, fixed in formalin, and processed for microscopic evaluation. Results: After 10 days postoperatively, a severe inflammatory reaction without reactionary bone formation was observed in contact with ESHF and AHPS. The severity of the reaction had decreased at the 30-day observation period for both sealers but only ESHF samples showed new bone formation adjacent to the sealer. After 90 days, no inflammatory cells were found in contact with ESHF, while a thin fibrous tissue capsule and complete bone reparation of the surrounding areas were observed in contact with the material. For AH Plus, a fibrous connective tissue containing scarce remaining inflammatory cells could be observed in most of the samples, however, in the absence of new bone formation. No significant differences (p > 0.05) between ESHF and AHPS were found at the 10-day observation period. At the 30 and 90-day, significant differences (p < 0.05) between both materials were observed. The reaction to the controls showed significant differences with ESHF and AHPS for all experimental periods. Significant differences (p < 0.05) for the total effect of time were also found between both sealers (p < 0.05). Conclusions: At the end of the experiment, heated ESHF reacted as a biocompatible/bioactive material and stimulated continued development of new healthy bone. Although AHPS was tolerated well by the surrounding tissues, the sealer did not promote new reparative bone formation.
导读:在胶胶温压实过程中,高温对根管密封剂性能的影响可能是一个值得关注的问题。本研究旨在评价热对EndoSequence BC Sealer HiFlow (ESHF;布拉塞勒,萨凡纳,乔治亚州,美国)和AH Plus (AHPS;Dentsply, De Trey, Konstanz, Germany)植入大鼠胫骨骨组织。方法:将含有新鲜制备的ESHF或AHPS的医用级硅胶管加热至100℃,再冷却至65℃,植入24只Wistar大鼠胫骨。管子的外壁用作控制。10、30和90天后,对动物实施安乐死,解剖植入物及其周围组织,在福尔马林中固定,并进行显微镜观察。结果:术后10 d, ESHF和AHPS接触均出现严重炎症反应,但未出现反应性骨形成。在30天的观察期内,两组患者的反应严重程度都有所下降,但只有ESHF样本在缝合处附近出现了新骨形成。90天后,与ESHF接触未见炎症细胞,与材料接触的纤维组织包膜较薄,周围区域骨修复完整。对于AH +,在大多数样品中可以观察到含有少量剩余炎症细胞的纤维结缔组织,然而,在没有新骨形成的情况下。观察10 d时,ESHF与AHPS无显著差异(p > 0.05)。在第30天和第90天,两种材料之间的差异显著(p < 0.05)。与ESHF和AHPS相比,对对照组的反应在所有实验期间都有显著差异。两种封口剂对时间的总影响也有显著差异(p < 0.05)。结论:在实验结束时,加热的ESHF作为一种生物相容性/生物活性材料发生反应,并刺激新的健康骨的持续发育。虽然周围组织对AHPS耐受良好,但封口剂并不能促进新的修复性骨形成。
{"title":"Tissue Response to a Heat Resistant Silicate-Based and an Epoxy Resin-Based Endodontic Sealer Implanted in Rat Tibias","authors":"O. Zmener, C. Pameijer, Roberto Della Porta, Romina de Lucca","doi":"10.3390/app131810075","DOIUrl":"https://doi.org/10.3390/app131810075","url":null,"abstract":"Introduction: The effect of high temperatures on the properties of endodontic sealers during warm compaction of gutta-percha may be a matter of concern. This study aimed to evaluate the effect of heat on the biocompatibility and bioactivity of EndoSequence BC Sealer HiFlow (ESHF; Brasseler, Savannah, GA, USA) and AH Plus (AHPS; Dentsply, De Trey, Konstanz, Germany) when implanted into the bone tissue of rat tibias. Methods: Medical-grade silicone tubes containing freshly prepared ESHF or AHPS were heated to 100 °C and then cooled down to 65 °C before being implanted in the tibias of 24 Wistar rats. The outer walls of the tubes served as controls. After 10, 30 and 90 days, the animals were euthanized and the implants and their surrounding tissues were dissected, fixed in formalin, and processed for microscopic evaluation. Results: After 10 days postoperatively, a severe inflammatory reaction without reactionary bone formation was observed in contact with ESHF and AHPS. The severity of the reaction had decreased at the 30-day observation period for both sealers but only ESHF samples showed new bone formation adjacent to the sealer. After 90 days, no inflammatory cells were found in contact with ESHF, while a thin fibrous tissue capsule and complete bone reparation of the surrounding areas were observed in contact with the material. For AH Plus, a fibrous connective tissue containing scarce remaining inflammatory cells could be observed in most of the samples, however, in the absence of new bone formation. No significant differences (p > 0.05) between ESHF and AHPS were found at the 10-day observation period. At the 30 and 90-day, significant differences (p < 0.05) between both materials were observed. The reaction to the controls showed significant differences with ESHF and AHPS for all experimental periods. Significant differences (p < 0.05) for the total effect of time were also found between both sealers (p < 0.05). Conclusions: At the end of the experiment, heated ESHF reacted as a biocompatible/bioactive material and stimulated continued development of new healthy bone. Although AHPS was tolerated well by the surrounding tissues, the sealer did not promote new reparative bone formation.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43396120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Bridio, Giulia Luraghi, Anna Ramella, J. F. Rodriguez Matas, G. Dubini, Claudio A. Luisi, Michael Neidlin, P. Konduri, N. Arrarte Terreros, H. Marquering, C. Majoie, Francesco Migliavacca
The development of in silico trials based on high-fidelity simulations of clinical procedures requires the availability of large cohorts of three-dimensional (3D) patient-specific anatomy models, which are often hard to collect due to limited availability and/or accessibility and imaging quality. Statistical shape modeling (SSM) allows one to identify the main modes of shape variation and to generate new samples based on the variability observed in a training dataset. In this work, a method for the automatic 3D reconstruction of vascular anatomies based on SSM is used for the generation of a virtual cohort of cerebrovascular models suitable for computational simulations, useful for in silico stroke trials. Starting from 88 cerebrovascular anatomies segmented from stroke patients’ images, an SSM algorithm was developed to generate a virtual population of 100 vascular anatomies, defined by centerlines and diameters. An acceptance criterion was defined based on geometric parameters, resulting in the acceptance of 83 generated anatomies. The 3D reconstruction method was validated by reconstructing a cerebrovascular phantom lumen and comparing the result with an STL geometry obtained from a computed tomography scan. In conclusion, the final 3D models of the generated anatomies show that the proposed methodology can produce a reliable cohort of cerebral arteries.
{"title":"Generation of a Virtual Cohort of Patients for in Silico Trials of Acute Ischemic Stroke Treatments","authors":"Sara Bridio, Giulia Luraghi, Anna Ramella, J. F. Rodriguez Matas, G. Dubini, Claudio A. Luisi, Michael Neidlin, P. Konduri, N. Arrarte Terreros, H. Marquering, C. Majoie, Francesco Migliavacca","doi":"10.3390/app131810074","DOIUrl":"https://doi.org/10.3390/app131810074","url":null,"abstract":"The development of in silico trials based on high-fidelity simulations of clinical procedures requires the availability of large cohorts of three-dimensional (3D) patient-specific anatomy models, which are often hard to collect due to limited availability and/or accessibility and imaging quality. Statistical shape modeling (SSM) allows one to identify the main modes of shape variation and to generate new samples based on the variability observed in a training dataset. In this work, a method for the automatic 3D reconstruction of vascular anatomies based on SSM is used for the generation of a virtual cohort of cerebrovascular models suitable for computational simulations, useful for in silico stroke trials. Starting from 88 cerebrovascular anatomies segmented from stroke patients’ images, an SSM algorithm was developed to generate a virtual population of 100 vascular anatomies, defined by centerlines and diameters. An acceptance criterion was defined based on geometric parameters, resulting in the acceptance of 83 generated anatomies. The 3D reconstruction method was validated by reconstructing a cerebrovascular phantom lumen and comparing the result with an STL geometry obtained from a computed tomography scan. In conclusion, the final 3D models of the generated anatomies show that the proposed methodology can produce a reliable cohort of cerebral arteries.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42187010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical Camera Communication (OCC) is a groundbreaking technology that combines optical signals and image sensors for data transmission [...]
光学相机通信(OCC)是一项突破性的技术,它结合了光学信号和图像传感器进行数据传输〔…〕
{"title":"Special Issue on Optical Camera Communications and Applications","authors":"Pankaj Singh, Sung-Yoon Jung","doi":"10.3390/app131810091","DOIUrl":"https://doi.org/10.3390/app131810091","url":null,"abstract":"Optical Camera Communication (OCC) is a groundbreaking technology that combines optical signals and image sensors for data transmission [...]","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47082949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the increasing variety of products, the increasing substitutability of products, and the trend of customized products, the volatility of market demand is increasing, which poses a challenge to make accurate demand forecasting. The Bayesian method is particularly promising and appealing when the data fluctuate greatly. This paper proposes a product-demand forecasting model based on multilayer Bayesian network, which introduces hidden layer variables and volatility factors to meet the time series connection and volatility of the demand data. However, most studies use sampling methods to estimate the parameters. We use Bayesian maximum a posteriori estimation to estimate the model parameters and introduce an improved particle swarm optimization algorithm (MPSO) to optimize the objective function. In order to increase the diversity of the particle population and accelerate the convergence, an adaptive particle velocity, position updating strategy, and nonlinear changing inertia weight are introduced in the algorithm. Finally, RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) are used as the evaluation criterion to conduct experiments on six different datasets, and the experimental results are compared with the results of the ARIMA (autoregressive integrated moving average model) method and PSO algorithm. The experimental results show that the method has a good prediction effect. It provides a new idea for demand forecasting in the supply chain.
{"title":"Bayesian Network Demand-Forecasting Model Based on Modified Particle Swarm Optimization","authors":"Shebiao Hu, Kun Li","doi":"10.3390/app131810088","DOIUrl":"https://doi.org/10.3390/app131810088","url":null,"abstract":"With the increasing variety of products, the increasing substitutability of products, and the trend of customized products, the volatility of market demand is increasing, which poses a challenge to make accurate demand forecasting. The Bayesian method is particularly promising and appealing when the data fluctuate greatly. This paper proposes a product-demand forecasting model based on multilayer Bayesian network, which introduces hidden layer variables and volatility factors to meet the time series connection and volatility of the demand data. However, most studies use sampling methods to estimate the parameters. We use Bayesian maximum a posteriori estimation to estimate the model parameters and introduce an improved particle swarm optimization algorithm (MPSO) to optimize the objective function. In order to increase the diversity of the particle population and accelerate the convergence, an adaptive particle velocity, position updating strategy, and nonlinear changing inertia weight are introduced in the algorithm. Finally, RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) are used as the evaluation criterion to conduct experiments on six different datasets, and the experimental results are compared with the results of the ARIMA (autoregressive integrated moving average model) method and PSO algorithm. The experimental results show that the method has a good prediction effect. It provides a new idea for demand forecasting in the supply chain.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46010523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}