M. Bušová, L. Kouřimská, Marek Doležal, V. Ilko, D. Revenco, M. Zare, Jan Matoušek, I. Ferrocino, I. Franciosa, Petr Smejkal, Matěj Přeslička, M. Prokešová
Humic substances (HS) are often used as feesd additives in livestock feeding. The long-term effects of different concentrations of HS additives in aquafeed on growth and production performance, antioxidant status, stress resistance, gut microbiome, overall health condition, final product yield, sensory properties of fresh and cooked meat, and composition of fatty acids of market size in African catfish (Clarias gariepinus) originating from aquaculture were compared in this study. C. gariepinus were exposed to dietary inclusions of HS (0, 1, and 3, and 6% w/w) in a long-term experiment (six months in total) until fish reached market size. The growth parameters, condition factor, and selected somatic indices did not differ (p > 0.05) between the tested groups (HS0–HS6). Biochemical parameters were not different between the tested HS groups by the end of experiment, and only glucose (GLC) levels significantly increased (p < 0.05) with increasing concentrations of HS fed as an additive. The levels of cortisol (COR) and GLC did not differ between the tested groups (p > 0.05) after the stress challenge, but the results of GLC levels before and after the stress challenge showed an increasing tendency with increasing levels of HS addition in the diet. The levels of COR were slightly lower in groups HS3 and HS6 than in HS1 and the control group. In the case of protein and fat contents, differences between groups (HS0–HS6) were statistically insignificant. Significant differences were found, however, in water and ash content. In some cases, statistically significant differences were found in fatty acid profiles and in nutritional indices assessing fatty acids between samples. Sensory characteristics of fresh fillets did not differ between the tested groups HS0–HS6. The total content of polyphenols increased depending on the addition of humates. The main gut microbiota of samples analyzed (HS0–HS3 group) comprised the following three genera: Ralstonia, Pseudomonas and Cetobacterium; other genera were present in all samples at a low relative abundance: Staphylococcus, Bradyrhizobium, Bacillus, and Anaerobacillus. The relative abundance of Pseudomonas decreased while the presence of Cetobacterium increased in samples fed with 3% of HS. The results of our study yielded a comprehensive set of experimental results about African catfish fed with HS as additives. Although a significant effect of HS on overall performance of C. gariepinus was not proven, a positive effect on antioxidant status was seen as well as a decrease in gut microorganisms that can be present as pathogenic contaminants in aquatic environments.
{"title":"Fatty Acid Profile, Atherogenic and Thrombogenic Indices, and Meat Quality as the Effect of Feed Additive in African Catfish Clarias gariepinus (Burchell, 1822)","authors":"M. Bušová, L. Kouřimská, Marek Doležal, V. Ilko, D. Revenco, M. Zare, Jan Matoušek, I. Ferrocino, I. Franciosa, Petr Smejkal, Matěj Přeslička, M. Prokešová","doi":"10.3390/app131810058","DOIUrl":"https://doi.org/10.3390/app131810058","url":null,"abstract":"Humic substances (HS) are often used as feesd additives in livestock feeding. The long-term effects of different concentrations of HS additives in aquafeed on growth and production performance, antioxidant status, stress resistance, gut microbiome, overall health condition, final product yield, sensory properties of fresh and cooked meat, and composition of fatty acids of market size in African catfish (Clarias gariepinus) originating from aquaculture were compared in this study. C. gariepinus were exposed to dietary inclusions of HS (0, 1, and 3, and 6% w/w) in a long-term experiment (six months in total) until fish reached market size. The growth parameters, condition factor, and selected somatic indices did not differ (p > 0.05) between the tested groups (HS0–HS6). Biochemical parameters were not different between the tested HS groups by the end of experiment, and only glucose (GLC) levels significantly increased (p < 0.05) with increasing concentrations of HS fed as an additive. The levels of cortisol (COR) and GLC did not differ between the tested groups (p > 0.05) after the stress challenge, but the results of GLC levels before and after the stress challenge showed an increasing tendency with increasing levels of HS addition in the diet. The levels of COR were slightly lower in groups HS3 and HS6 than in HS1 and the control group. In the case of protein and fat contents, differences between groups (HS0–HS6) were statistically insignificant. Significant differences were found, however, in water and ash content. In some cases, statistically significant differences were found in fatty acid profiles and in nutritional indices assessing fatty acids between samples. Sensory characteristics of fresh fillets did not differ between the tested groups HS0–HS6. The total content of polyphenols increased depending on the addition of humates. The main gut microbiota of samples analyzed (HS0–HS3 group) comprised the following three genera: Ralstonia, Pseudomonas and Cetobacterium; other genera were present in all samples at a low relative abundance: Staphylococcus, Bradyrhizobium, Bacillus, and Anaerobacillus. The relative abundance of Pseudomonas decreased while the presence of Cetobacterium increased in samples fed with 3% of HS. The results of our study yielded a comprehensive set of experimental results about African catfish fed with HS as additives. Although a significant effect of HS on overall performance of C. gariepinus was not proven, a positive effect on antioxidant status was seen as well as a decrease in gut microorganisms that can be present as pathogenic contaminants in aquatic environments.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46658271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rudawská, Arkadiusz Gola, J. Pizoń, Paweł Capała, Łukasz Wójcik
The aim of the paper is to assess the impact of the effectiveness of bonding steel elements with paint coating. The adhesive joints were made using two types of the adhesives: two-component epoxy resin adhesive based on Bisphenol A and polyurethane. Three types of adhesive joints were made: (i) reference samples, (ii) samples with a paint polyester coating, and (iii) samples with a zinc primer and paint polyester coating. These coatings were applied using the electrokinetic method. A shear strength test of the adhesive joints (EN DIN 1465 standard), a coating adhesion test (ASTM D3359-B standard), and surface wettability tests (based on contact angle) were used. Through analyzing the test results, it can be seen that the strength of the adhesive joints of the reference samples made with epoxy adhesive is 46% lower than that of the specimens with primer and paint coating applied. However, in the case of the adhesive joints made with the polyurethane adhesive, the aforementioned difference in the strength value of the adhesive joints of the reference samples and paint-coated samples with an applied primer is 76%. Adherends with a paint coating and a previously applied primer obtained the lowest value of the contact angle (38.72°) and are characterized by good wettability.
本文的目的是评估用油漆涂层粘合钢元件的有效性的影响。采用双酚A双组分环氧树脂胶粘剂和聚氨酯胶粘剂两种胶粘剂制作了粘接接头。制作了三种类型的粘合接头:(i)参考样品,(ii)具有涂料聚酯涂层的样品,以及(iii)具有锌底漆和涂料聚酯涂层。这些涂层是使用电动方法涂覆的。使用粘合接头的剪切强度测试(EN DIN 1465标准)、涂层附着力测试(ASTM D3359-B标准)和表面润湿性测试(基于接触角)。通过对试验结果的分析可以看出,使用环氧胶粘剂制成的参考样品的粘接接头强度比使用底漆和油漆涂层的样品低46%。然而,在用聚氨酯粘合剂制成的粘合接头的情况下,参考样品和涂有底漆的涂料样品的粘合接头强度值的上述差异为76%。具有油漆涂层和先前涂覆的底漆的粘附物获得了最低的接触角值(38.72°),并且具有良好的润湿性。
{"title":"Effectiveness of Bonding Steel Elements with Polyester-Coated Paint","authors":"A. Rudawská, Arkadiusz Gola, J. Pizoń, Paweł Capała, Łukasz Wójcik","doi":"10.3390/app131810059","DOIUrl":"https://doi.org/10.3390/app131810059","url":null,"abstract":"The aim of the paper is to assess the impact of the effectiveness of bonding steel elements with paint coating. The adhesive joints were made using two types of the adhesives: two-component epoxy resin adhesive based on Bisphenol A and polyurethane. Three types of adhesive joints were made: (i) reference samples, (ii) samples with a paint polyester coating, and (iii) samples with a zinc primer and paint polyester coating. These coatings were applied using the electrokinetic method. A shear strength test of the adhesive joints (EN DIN 1465 standard), a coating adhesion test (ASTM D3359-B standard), and surface wettability tests (based on contact angle) were used. Through analyzing the test results, it can be seen that the strength of the adhesive joints of the reference samples made with epoxy adhesive is 46% lower than that of the specimens with primer and paint coating applied. However, in the case of the adhesive joints made with the polyurethane adhesive, the aforementioned difference in the strength value of the adhesive joints of the reference samples and paint-coated samples with an applied primer is 76%. Adherends with a paint coating and a previously applied primer obtained the lowest value of the contact angle (38.72°) and are characterized by good wettability.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47585444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harmonic wave excitation in a semi-infinite incompressible hyperelastic 1D rod with the Mooney–Rivlin equation of state reveals the formation and propagation of the shock wave fronts arising between faster and slower moving parts of the initially harmonic wave. The observed shock wave fronts result in the collapse of the slower moving parts being absorbed by the faster parts; hence, to the attenuation of the kinetic and the elastic strain energy with the corresponding heat generation. Both geometrically and physically nonlinear equations of motion are solved by the explicit Lax–Wendroff numerical tine-integration scheme combined with the finite element approach for spatial discretization.
{"title":"Oscillating Nonlinear Acoustic Waves in a Mooney–Rivlin Rod","authors":"A. Karakozova, Sergey Kuznetsov","doi":"10.3390/app131810037","DOIUrl":"https://doi.org/10.3390/app131810037","url":null,"abstract":"Harmonic wave excitation in a semi-infinite incompressible hyperelastic 1D rod with the Mooney–Rivlin equation of state reveals the formation and propagation of the shock wave fronts arising between faster and slower moving parts of the initially harmonic wave. The observed shock wave fronts result in the collapse of the slower moving parts being absorbed by the faster parts; hence, to the attenuation of the kinetic and the elastic strain energy with the corresponding heat generation. Both geometrically and physically nonlinear equations of motion are solved by the explicit Lax–Wendroff numerical tine-integration scheme combined with the finite element approach for spatial discretization.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45469342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to its superior corrosion resistance and low coefficient of friction, polytetrafluoroethylene (PTFE) is extensively used in the aerospace, machinery, chemical, and pharmaceutical industries. However, PTFE components encounter complex alternating stresses, resulting in ratchet and creep, which will affect the component’s reliability. It is therefore necessary to clarify the PTFE’s resistance to ratchet and creep. In this paper, uniaxial ratchet and tensile creep experiments were conducted at five temperatures on a PTFE dog-bone tensile specimen. At various temperatures and stress levels, the effects of average stress and stress amplitude on the cyclic plastic behavior of PTFE were investigated. It is demonstrated that the ratchet strains and strain rates at 23 °C are greater than those at 50 °C. The reason for this is that the PTFE material exhibits different crystal states at these two temperatures. At temperatures above 50 °C, the ratchet strain and ratchet strain rate increase with temperature. At temperatures above 100 °C, the ratchet strain and ratchet strain rate of PTFE materials increase more rapidly due to the glass transition. By analyzing the creep strain and ratchet strain of specimens subjected to varying levels of average and amplitude stress, it was discovered that the creep strain and ratchet strain caused by the average stress under the same stress increment were greater than those caused by the amplitude stress.
{"title":"Study of Cyclic Plasticity and Creep Ratchet Behavior of PTFE","authors":"Hongyan Liu, Lei Zhang, Kun Lu, Bingjun Gao","doi":"10.3390/app131810039","DOIUrl":"https://doi.org/10.3390/app131810039","url":null,"abstract":"Due to its superior corrosion resistance and low coefficient of friction, polytetrafluoroethylene (PTFE) is extensively used in the aerospace, machinery, chemical, and pharmaceutical industries. However, PTFE components encounter complex alternating stresses, resulting in ratchet and creep, which will affect the component’s reliability. It is therefore necessary to clarify the PTFE’s resistance to ratchet and creep. In this paper, uniaxial ratchet and tensile creep experiments were conducted at five temperatures on a PTFE dog-bone tensile specimen. At various temperatures and stress levels, the effects of average stress and stress amplitude on the cyclic plastic behavior of PTFE were investigated. It is demonstrated that the ratchet strains and strain rates at 23 °C are greater than those at 50 °C. The reason for this is that the PTFE material exhibits different crystal states at these two temperatures. At temperatures above 50 °C, the ratchet strain and ratchet strain rate increase with temperature. At temperatures above 100 °C, the ratchet strain and ratchet strain rate of PTFE materials increase more rapidly due to the glass transition. By analyzing the creep strain and ratchet strain of specimens subjected to varying levels of average and amplitude stress, it was discovered that the creep strain and ratchet strain caused by the average stress under the same stress increment were greater than those caused by the amplitude stress.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49369731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urban traffic congestion is a pressing issue, demanding effective and cost-efficient solutions. This paper develops the Traffic Weighted Multi-Maps (TWM) method to solve the Traffic Assignment Problem in Intelligent Transportation Systems (ITS). TWM offers drivers diverse views of the network, promoting path diversity and adaptability. Providing an optimal TWM configuration to the traffic demand in terms of structure and allocation policy is a challenging issue as it usually depends on the size of the network and its complexity. The paper explores TWM generation and assignment by applying routing areas based on semi-disjointed k-shortest paths and allocating them using a per-sub flow optimized assignment policy. This approach allows obtaining a pseudo-optimal solution for static traffic assignment with similar results in terms of total travel time compared to the direct solution of calculating optimal map weights and the theoretical system optimum. It offers a cost-effective solution valid for wide urban areas, as the TWM calculation depends on the variety of the traffic flows and the number of semi-disjoint routing areas considered instead of the network complexity and size. Urban network experiments with synthetic traffic demands are studied under different TWM adoption rates, comparing results with existing traffic assignment policies and estimation methods. It highlights its potential for enhancing urban traffic management. Overall, TWM presents a promising approach to addressing urban traffic congestion efficiently.
{"title":"Application of Traffic Weighted Multi-Maps Based on Disjoint Routing Areas for Static Traffic Assignment","authors":"Alvaro Paricio-Garcia, Miguel A. López-Carmona","doi":"10.3390/app131810071","DOIUrl":"https://doi.org/10.3390/app131810071","url":null,"abstract":"Urban traffic congestion is a pressing issue, demanding effective and cost-efficient solutions. This paper develops the Traffic Weighted Multi-Maps (TWM) method to solve the Traffic Assignment Problem in Intelligent Transportation Systems (ITS). TWM offers drivers diverse views of the network, promoting path diversity and adaptability. Providing an optimal TWM configuration to the traffic demand in terms of structure and allocation policy is a challenging issue as it usually depends on the size of the network and its complexity. The paper explores TWM generation and assignment by applying routing areas based on semi-disjointed k-shortest paths and allocating them using a per-sub flow optimized assignment policy. This approach allows obtaining a pseudo-optimal solution for static traffic assignment with similar results in terms of total travel time compared to the direct solution of calculating optimal map weights and the theoretical system optimum. It offers a cost-effective solution valid for wide urban areas, as the TWM calculation depends on the variety of the traffic flows and the number of semi-disjoint routing areas considered instead of the network complexity and size. Urban network experiments with synthetic traffic demands are studied under different TWM adoption rates, comparing results with existing traffic assignment policies and estimation methods. It highlights its potential for enhancing urban traffic management. Overall, TWM presents a promising approach to addressing urban traffic congestion efficiently.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45115068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synergetic effect of nonthermal plasma and ZnO nanoparticles (NPs) on the degradation efficiency of methylene blue was investigated. First, the ZnO nanoparticles were synthesized via the hydrothermal route; the spherical nanoparticles had diameters of 30–50 nm, as observed with a scanning electron microscope (SEM), and had hexagonal ZnO lattice structures, which was confirmed by both X-ray diffraction (XRD) and Raman spectroscopy. The X-ray-photoemission spectroscopy confirmed the ZnO composition and the presence of oxygen vacancies; meanwhile, the optical band gap energy was 3.17 eV. The optical emission of plasma radiation confirmed the presence of various active plasma species. Second, it was found that the maximum degradation efficiency of MB after 60 min was 85% in plasma alone and increased to 95% when combined with 0.2 gL−1 ZnO; but this decreased to 75% when ZnO loading increased to 0.4 gL−1. These results clearly show that combining plasma with the right amount of ZnO is a promising advanced oxidation technique as it provides an additional source of hydroxyl radicals and, at the same time, a source of photons that can excite the ZnO catalyst. The degradation mechanism for plasma alone and the plasma in combination with ZnO was presented.
{"title":"Synergistic Effect of Nonthermal Plasma and ZnO Nanoparticles on Organic Dye Degradation","authors":"E. Abdel-Fattah, S. Alotibi","doi":"10.3390/app131810045","DOIUrl":"https://doi.org/10.3390/app131810045","url":null,"abstract":"The synergetic effect of nonthermal plasma and ZnO nanoparticles (NPs) on the degradation efficiency of methylene blue was investigated. First, the ZnO nanoparticles were synthesized via the hydrothermal route; the spherical nanoparticles had diameters of 30–50 nm, as observed with a scanning electron microscope (SEM), and had hexagonal ZnO lattice structures, which was confirmed by both X-ray diffraction (XRD) and Raman spectroscopy. The X-ray-photoemission spectroscopy confirmed the ZnO composition and the presence of oxygen vacancies; meanwhile, the optical band gap energy was 3.17 eV. The optical emission of plasma radiation confirmed the presence of various active plasma species. Second, it was found that the maximum degradation efficiency of MB after 60 min was 85% in plasma alone and increased to 95% when combined with 0.2 gL−1 ZnO; but this decreased to 75% when ZnO loading increased to 0.4 gL−1. These results clearly show that combining plasma with the right amount of ZnO is a promising advanced oxidation technique as it provides an additional source of hydroxyl radicals and, at the same time, a source of photons that can excite the ZnO catalyst. The degradation mechanism for plasma alone and the plasma in combination with ZnO was presented.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46975349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The area of modern wireless communication systems has experienced rapid growth, leading to a rising demand for multifunctional devices capable of providing various wireless services [...]
现代无线通信系统领域经历了快速增长,导致对能够提供各种无线服务的多功能设备的需求不断上升[…]
{"title":"Editorial on “Design, Analysis, and Measurement of Antennas”","authors":"Nasser Ojaroudi","doi":"10.3390/app131810069","DOIUrl":"https://doi.org/10.3390/app131810069","url":null,"abstract":"The area of modern wireless communication systems has experienced rapid growth, leading to a rising demand for multifunctional devices capable of providing various wireless services [...]","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44773168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Habila, Z. Alothman, Mohamed Sheikh, Saleh O. Alaswad
Spiny-like spherical copper metal–organic frameworks (SSC-MOFs) were prepared and characterized via SEM, TEM, EDS, XRD, FTIR and the BET surface area. The fabricated SSC-MOFs were applied to develop a procedure for the microextraction of trace arsenic(III) for preconcentration. The results show that a copper- and imidazole-derived metal–organic framework was formed in a sphere with a spiny surface and a surface area of 120.7 m2/g. The TEM confirmed the perforated network structures of the SSC-MOFs, which were prepared at room temperature. The surface functional groups were found to contain NH and C=N groups. The XRD analysis confirmed the crystalline structure of the prepared SSC-MOFs. The application for the process of microextracting the arsenic(III) for preconcentration was achieved with superior efficiency. The optimum conditions for the recovery of the arsenic(III) were a pH of 7 and the use of a sample volume up to 40 mL. The developed SSC-MOF-derived microextraction process has an LOD of 0.554 µg·L−1 and an LOQ of 1.66 µg·L−10. The developed SSC-MOF-derived microextraction process was applied for the accurate preconcentration of arsenic(III) from real samples, including food and water, with the promised performance efficiency.
{"title":"Fabrication of Spiny-like Spherical Copper Metal–Organic Frameworks for the Microextraction of Arsenic(III) from Water and Food Samples before ICP-MS Detection","authors":"M. Habila, Z. Alothman, Mohamed Sheikh, Saleh O. Alaswad","doi":"10.3390/app131810036","DOIUrl":"https://doi.org/10.3390/app131810036","url":null,"abstract":"Spiny-like spherical copper metal–organic frameworks (SSC-MOFs) were prepared and characterized via SEM, TEM, EDS, XRD, FTIR and the BET surface area. The fabricated SSC-MOFs were applied to develop a procedure for the microextraction of trace arsenic(III) for preconcentration. The results show that a copper- and imidazole-derived metal–organic framework was formed in a sphere with a spiny surface and a surface area of 120.7 m2/g. The TEM confirmed the perforated network structures of the SSC-MOFs, which were prepared at room temperature. The surface functional groups were found to contain NH and C=N groups. The XRD analysis confirmed the crystalline structure of the prepared SSC-MOFs. The application for the process of microextracting the arsenic(III) for preconcentration was achieved with superior efficiency. The optimum conditions for the recovery of the arsenic(III) were a pH of 7 and the use of a sample volume up to 40 mL. The developed SSC-MOF-derived microextraction process has an LOD of 0.554 µg·L−1 and an LOQ of 1.66 µg·L−10. The developed SSC-MOF-derived microextraction process was applied for the accurate preconcentration of arsenic(III) from real samples, including food and water, with the promised performance efficiency.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44870307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat island cooling strategies (HICSs) are used to mitigate urban heat island phenomena and adapt to climate change as proposed by the U.S. Environmental Protection Agency (EPA), the Intergovernmental Panel on Climate Change (IPCC), and the World Health Organization (WHO). This study investigated urban heat island reduction and assessed the cooling effect of HICSs under various temporal and spatial conditions in urban areas. The study area was the Mugye-dong urban area in South Korea. To identify the effectiveness of heat island cooling strategies (HICSs), unmanned aerial vehicle (UAV)-based remote sensing and microclimate sensors were used to generate land cover, sky view factor (SVF) distribution, and land surface temperature (LST) maps of the study area. Differences in cooling effect according to spatial density (SD) were identified by dividing the SVF into five intervals of 0.2. Temporal changes were investigated throughout the day and under cloudiness-based meteorological conditions affected by solar radiation or less affected by solar radiation. Lower SD was associated with a greater cooling effect; meteorological conditions affected by solar radiation had a stronger cooling effect. The variation of the daytime cooling effect increased with decreasing SD. The difference in cooling effect between morning and afternoon was <1 °C under conditions less affected by solar radiation. Under conditions affected by solar radiation, the maximum temperatures were −6.716 °C in urban green spaces and −4.292 °C in shadow zones, whereas the maximum temperature was −6.814 °C in ground-based albedo modification zones; thus, differences were greater under conditions affected by solar radiation than under conditions less affected by solar radiation. As a result, it was found that HICS show a high cooling effect, high diurnal variation, and high morning-afternoon deviation under weather conditions with low SD and under conditions affected by solar radiation. This study quantitatively calculated the cooling effect of HICSs applied in urban areas under various spatiotemporal conditions and compared differences by technology. Accordingly, it is believed that it will serve as a basis for supporting the practical effects of the concepts presented by international organizations for climate change adaptation.
{"title":"Comparative Analysis of Urban Heat Island Cooling Strategies According to Spatial and Temporal Conditions Using Unmanned Aerial Vehicles(UAV) Observation","authors":"Young-Il Cho, Donghyeon Yoon, Moung-Jin Lee","doi":"10.3390/app131810052","DOIUrl":"https://doi.org/10.3390/app131810052","url":null,"abstract":"Heat island cooling strategies (HICSs) are used to mitigate urban heat island phenomena and adapt to climate change as proposed by the U.S. Environmental Protection Agency (EPA), the Intergovernmental Panel on Climate Change (IPCC), and the World Health Organization (WHO). This study investigated urban heat island reduction and assessed the cooling effect of HICSs under various temporal and spatial conditions in urban areas. The study area was the Mugye-dong urban area in South Korea. To identify the effectiveness of heat island cooling strategies (HICSs), unmanned aerial vehicle (UAV)-based remote sensing and microclimate sensors were used to generate land cover, sky view factor (SVF) distribution, and land surface temperature (LST) maps of the study area. Differences in cooling effect according to spatial density (SD) were identified by dividing the SVF into five intervals of 0.2. Temporal changes were investigated throughout the day and under cloudiness-based meteorological conditions affected by solar radiation or less affected by solar radiation. Lower SD was associated with a greater cooling effect; meteorological conditions affected by solar radiation had a stronger cooling effect. The variation of the daytime cooling effect increased with decreasing SD. The difference in cooling effect between morning and afternoon was <1 °C under conditions less affected by solar radiation. Under conditions affected by solar radiation, the maximum temperatures were −6.716 °C in urban green spaces and −4.292 °C in shadow zones, whereas the maximum temperature was −6.814 °C in ground-based albedo modification zones; thus, differences were greater under conditions affected by solar radiation than under conditions less affected by solar radiation. As a result, it was found that HICS show a high cooling effect, high diurnal variation, and high morning-afternoon deviation under weather conditions with low SD and under conditions affected by solar radiation. This study quantitatively calculated the cooling effect of HICSs applied in urban areas under various spatiotemporal conditions and compared differences by technology. Accordingly, it is believed that it will serve as a basis for supporting the practical effects of the concepts presented by international organizations for climate change adaptation.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43464111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanli Yang, L. Xing, Longbo Zhang, Hongzhen Cai, Maozu Guo
Biomedical texts are relatively obscure in describing relations between specialized entities, and the automatic extraction of drug–drug or drug–disease relations from massive biomedical texts presents a challenge faced by many researchers. To this end, this paper designs a relation extraction method based on dependency information fusion to improve the predictive power of the model for the relations between given biomedical entities. Firstly, we propose a local–global pruning strategy for the dependency syntax tree. Next, we propose the construction of a dependency type matrix for the pruned dependency tree to incorporate sentence dependency information into the model to feature extraction. We then incorporate attention mechanism into the graph convolutional model by calculating the attention weights of word–word dependencies, thus improving the traditional graph convolutional network. The model distinguishes the importance of different dependency information by attention weights, thus weakening the influence of interfering information such as word-to-word dependencies that are unrelated to entities in long sentences. In this paper, our proposed Dependency Information Fusion Attention Graph Convolutional Network (DIF-A-GCN) is evaluated on two biomedical datasets, DDI and CIVIC. The experimental results show that our proposed method based on dependency information fusion outperforms current state-of-the-art biomedical relation extraction models.
{"title":"A Biomedical Relation Extraction Method Based on Graph Convolutional Network with Dependency Information Fusion","authors":"Wanli Yang, L. Xing, Longbo Zhang, Hongzhen Cai, Maozu Guo","doi":"10.3390/app131810055","DOIUrl":"https://doi.org/10.3390/app131810055","url":null,"abstract":"Biomedical texts are relatively obscure in describing relations between specialized entities, and the automatic extraction of drug–drug or drug–disease relations from massive biomedical texts presents a challenge faced by many researchers. To this end, this paper designs a relation extraction method based on dependency information fusion to improve the predictive power of the model for the relations between given biomedical entities. Firstly, we propose a local–global pruning strategy for the dependency syntax tree. Next, we propose the construction of a dependency type matrix for the pruned dependency tree to incorporate sentence dependency information into the model to feature extraction. We then incorporate attention mechanism into the graph convolutional model by calculating the attention weights of word–word dependencies, thus improving the traditional graph convolutional network. The model distinguishes the importance of different dependency information by attention weights, thus weakening the influence of interfering information such as word-to-word dependencies that are unrelated to entities in long sentences. In this paper, our proposed Dependency Information Fusion Attention Graph Convolutional Network (DIF-A-GCN) is evaluated on two biomedical datasets, DDI and CIVIC. The experimental results show that our proposed method based on dependency information fusion outperforms current state-of-the-art biomedical relation extraction models.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48835897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}