首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
Correction to: Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux 修正:稳定的锌金属阳极与有限的锌掺杂在MgF2界面快速和均匀的离子通量
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-03-04 DOI: 10.1007/s40820-022-00814-8
Ji Young Kim, Guicheng Liu, Ryanda Enggar Anugrah Ardhi, Jihun Park, Hansung Kim, Joong Kee Lee
{"title":"Correction to: Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux","authors":"Ji Young Kim, Guicheng Liu, Ryanda Enggar Anugrah Ardhi, Jihun Park, Hansung Kim, Joong Kee Lee","doi":"10.1007/s40820-022-00814-8","DOIUrl":"10.1007/s40820-022-00814-8","url":null,"abstract":"","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00814-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4173079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness 用碘化胍处理无机CsPbI3纳米晶体制备高效高亮度钙钛矿发光二极管
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-03-02 DOI: 10.1007/s40820-022-00813-9
Minh Tam Hoang, Amandeep Singh Pannu, Yang Yang, Sepideh Madani, Paul Shaw, Prashant Sonar, Tuquabo Tesfamichael, Hongxia Wang

The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material. In particular, nanocrystals (NCs) of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications. However, the presence of surface defects on the NCs negatively impacts their performance in devices. Herein, we report a compatible facial post-treatment of CsPbI3 nanocrystals using guanidinium iodide (GuI). It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation. As a consequence, the film of treated CsPbI3 nanocrystals exhibited significantly enhanced luminescence and charge transport properties, leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8% with high brightness (peak luminance of 7039 cd m−2 and a peak current density of 10.8 cd A−1). The EQE is over threefold higher than performance of untreated device (EQE: 3.8%). The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min (at current density of 25 mA cm−2), outperforming the untreated devices (T50 ~ 6 min).

在过去的十年中,金属卤化物钙钛矿的显著发展使它们有望成为下一代光电材料。特别是无机钙钛矿的纳米晶体(NCs)在发光和显示应用中表现出优异的性能。然而,nc表面缺陷的存在会对其在器件中的性能产生负面影响。在此,我们报道了使用碘化胍(GuI)对CsPbI3纳米晶体进行相容的面部后处理。研究发现,由于碘离子和胍离子的有益贡献,GuI处理有效地钝化了纳米碳表面的卤化物空位缺陷,同时提供了有效的表面保护和激子约束。结果表明,处理后的CsPbI3纳米晶体薄膜的发光和电荷输运性能显著增强,制备出高性能发光二极管,最高外量子效率为13.8%,亮度高(峰值亮度为7039 cd m−2,峰值电流密度为10.8 cd a−1)。EQE比未处理设备的性能高出三倍以上(EQE: 3.8%)。处理后器件的工作半衰期也显著提高,T50为20 min(电流密度为25 mA cm−2),优于未处理器件(T50 ~ 6 min)。
{"title":"Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness","authors":"Minh Tam Hoang,&nbsp;Amandeep Singh Pannu,&nbsp;Yang Yang,&nbsp;Sepideh Madani,&nbsp;Paul Shaw,&nbsp;Prashant Sonar,&nbsp;Tuquabo Tesfamichael,&nbsp;Hongxia Wang","doi":"10.1007/s40820-022-00813-9","DOIUrl":"10.1007/s40820-022-00813-9","url":null,"abstract":"<div><p>The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material. In particular, nanocrystals (NCs) of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications. However, the presence of surface defects on the NCs negatively impacts their performance in devices. Herein, we report a compatible facial post-treatment of CsPbI<sub>3</sub> nanocrystals using guanidinium iodide (GuI). It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation. As a consequence, the film of treated CsPbI<sub>3</sub> nanocrystals exhibited significantly enhanced luminescence and charge transport properties, leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8% with high brightness (peak luminance of 7039 cd m<sup>−2</sup> and a peak current density of 10.8 cd A<sup>−1</sup>). The EQE is over threefold higher than performance of untreated device (EQE: 3.8%). The operational half-lifetime of the treated devices also was significantly improved with T<sub>50</sub> of 20 min (at current density of 25 mA cm<sup>−2</sup>), outperforming the untreated devices (T<sub>50</sub> ~ 6 min). \u0000</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00813-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4095431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Architecture Design and Interface Engineering of Self-assembly VS4/rGO Heterostructures for Ultrathin Absorbent 超薄吸收材料自组装VS4/rGO异质结构的结构设计与界面工程
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-02-25 DOI: 10.1007/s40820-022-00809-5
Qi Li, Xuan Zhao, Zheng Zhang, Xiaochen Xun, Bin Zhao, Liangxu Xu, Zhuo Kang, Qingliang Liao, Yue Zhang

The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS4/rGO heterostructure can be regulated by the generation of VS4 nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS4/rGO40 heterostructure can reach − 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.

微波吸收剂的应用是解决日益严重的电磁污染威胁的迫切需要。重要的是,开发超薄吸收剂被认为是设计轻量化和柔性电子设备的关键,但仍然存在前所未有的挑战。本文通过结构设计和界面工程的策略,构建了自组装的VS4/rGO异质结构,并将其工程化为超薄微波吸收剂。VS4/rGO异质结构的微结构和异质界面可以通过生成锚定在rGO上的VS4纳米棒来调节,从而有效地调节阻抗匹配和衰减常数。在14 GHz时,2VS4/rGO40异质结构的最大反射损耗可达- 43.5 dB,阻抗匹配常数和衰减常数分别接近0.98和187。在1.4 mm的超薄厚度下,有效吸收带宽可达4.8 GHz。实验结果和理论计算清楚地揭示了异质界面对微波吸收性能的深远影响。微结构和异质界面协同激发多维优势,增强微波的偶极极化、界面极化和多次反射散射。总体而言,结构设计和界面工程策略为实现超薄和增强微波吸收材料铺平了道路。
{"title":"Architecture Design and Interface Engineering of Self-assembly VS4/rGO Heterostructures for Ultrathin Absorbent","authors":"Qi Li,&nbsp;Xuan Zhao,&nbsp;Zheng Zhang,&nbsp;Xiaochen Xun,&nbsp;Bin Zhao,&nbsp;Liangxu Xu,&nbsp;Zhuo Kang,&nbsp;Qingliang Liao,&nbsp;Yue Zhang","doi":"10.1007/s40820-022-00809-5","DOIUrl":"10.1007/s40820-022-00809-5","url":null,"abstract":"<div><p>The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS<sub>4</sub>/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS<sub>4</sub>/rGO heterostructure can be regulated by the generation of VS<sub>4</sub> nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS<sub>4</sub>/rGO40 heterostructure can reach − 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00809-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4964053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors 一种更好的锌离子存储装置:锌离子混合超级电容器的最新进展
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-02-23 DOI: 10.1007/s40820-022-00793-w
Jialun Jin, Xiangshun Geng, Qiang Chen, Tian-Ling Ren

Highlights

  • The advances of electrode materials, energy storage mechanisms, electrolytes and applications for Zn-ion hybrid supercapacitors (ZHSCs) are comprehensively summarized.

  • Recent progresses in ZHSCs are discussed by categorizing into two configurations of Zn//Cap and Cap//ZBC.

  • Future opportunities and challenges for the development of ZHSCs are also elaborated.

重点综述了锌离子混合超级电容器的电极材料、储能机理、电解质及应用等方面的研究进展。本文将zhsc分为Zn//Cap和Cap//ZBC两种构型,讨论了zhsc的研究进展。并阐述了浙商未来发展面临的机遇和挑战。
{"title":"A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors","authors":"Jialun Jin,&nbsp;Xiangshun Geng,&nbsp;Qiang Chen,&nbsp;Tian-Ling Ren","doi":"10.1007/s40820-022-00793-w","DOIUrl":"10.1007/s40820-022-00793-w","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The advances of electrode materials, energy storage mechanisms, electrolytes and applications for Zn-ion hybrid supercapacitors (ZHSCs) are comprehensively summarized.</p>\u0000 </li>\u0000 <li>\u0000 <p>Recent progresses in ZHSCs are discussed by categorizing into two configurations of Zn//Cap and Cap//ZBC.</p>\u0000 </li>\u0000 <li>\u0000 <p>Future opportunities and challenges for the development of ZHSCs are also elaborated.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00793-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4889979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth Ni花/ mxene -三聚氰胺泡沫衍生的超高效微波吸收和红外隐身3D磁/导电网络
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-02-21 DOI: 10.1007/s40820-022-00812-w
Haoran Cheng, Yamin Pan, Xin Wang, Chuntai Liu, Changyu Shen, Dirk W. Schubert, Zhanhu Guo, Xianhu Liu

Highlights

  • Ni-MXene/MF foam is synthesized via an electrostatic assembly and dip-coating process.

  • The “micro-capacitor” structure of Ni/MXene and the 3D porous structure of MF endow the foam excellent impedance matching and wave absorption performance.

  • The excellent heat insulation, infrared stealth, and flame-retardant performances are achieved.

Ni-MXene/MF泡沫是通过静电组装和浸涂工艺合成的。Ni/MXene的“微电容器”结构和MF的三维多孔结构赋予了泡沫优异的阻抗匹配和波吸收性能。具有优良的隔热、红外隐身、阻燃性能。
{"title":"Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth","authors":"Haoran Cheng,&nbsp;Yamin Pan,&nbsp;Xin Wang,&nbsp;Chuntai Liu,&nbsp;Changyu Shen,&nbsp;Dirk W. Schubert,&nbsp;Zhanhu Guo,&nbsp;Xianhu Liu","doi":"10.1007/s40820-022-00812-w","DOIUrl":"10.1007/s40820-022-00812-w","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Ni-MXene/MF foam is synthesized via an electrostatic assembly and dip-coating process.</p>\u0000 </li>\u0000 <li>\u0000 <p>The “micro-capacitor” structure of Ni/MXene and the 3D porous structure of MF endow the foam excellent impedance matching and wave absorption performance.</p>\u0000 </li>\u0000 <li>\u0000 <p>The excellent heat insulation, infrared stealth, and flame-retardant performances are achieved.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00812-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4817833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics 功能化纤维应变传感器:通往下一代可穿戴电子产品的途径
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-02-15 DOI: 10.1007/s40820-022-00806-8
Zekun Liu, Tianxue Zhu, Junru Wang, Zijian Zheng, Yi Li, Jiashen Li, Yuekun Lai

Highlights

  • General principles for fiber functionalization and strain sensor fabrication are briefly reviewed.

  • Future application potentials of wearable strain sensors are summarized and evaluated.

  • Challenges and perspectives of fiber-based wearable strain sensors are critically discussed.

重点介绍了光纤功能化和应变传感器制造的一般原理。对可穿戴应变传感器的应用前景进行了总结和评价。讨论了基于纤维的可穿戴应变传感器的挑战和前景。
{"title":"Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics","authors":"Zekun Liu,&nbsp;Tianxue Zhu,&nbsp;Junru Wang,&nbsp;Zijian Zheng,&nbsp;Yi Li,&nbsp;Jiashen Li,&nbsp;Yuekun Lai","doi":"10.1007/s40820-022-00806-8","DOIUrl":"10.1007/s40820-022-00806-8","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>General principles for fiber functionalization and strain sensor fabrication are briefly reviewed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Future application potentials of wearable strain sensors are summarized and evaluated.</p>\u0000 </li>\u0000 <li>\u0000 <p>Challenges and perspectives of fiber-based wearable strain sensors are critically discussed.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00806-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4601522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 79
3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization 具有原位生长CNTs/Ni异质结的三维种子萌发样MXene通过极化和磁化增强微波吸收
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2021-07-19 DOI: 10.1007/s40820-021-00680-w
Xiao Li, Wenbin You, Chunyang Xu, Lei Wang, Liting Yang, Yuesheng Li, Renchao Che
{"title":"3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization","authors":"Xiao Li,&nbsp;Wenbin You,&nbsp;Chunyang Xu,&nbsp;Lei Wang,&nbsp;Liting Yang,&nbsp;Yuesheng Li,&nbsp;Renchao Che","doi":"10.1007/s40820-021-00680-w","DOIUrl":"https://doi.org/10.1007/s40820-021-00680-w","url":null,"abstract":"","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40820-021-00680-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4753305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 102
Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges 二维纳米材料中光催化和电催化的异同:策略、陷阱、应用和挑战
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2021-07-15 DOI: 10.1007/s40820-021-00681-9
Weiqi Qian, Suwen Xu, Xiaoming Zhang, Chuanbo Li, Weiyou Yang, Chris R. Bowen, Ya Yang
{"title":"Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges","authors":"Weiqi Qian,&nbsp;Suwen Xu,&nbsp;Xiaoming Zhang,&nbsp;Chuanbo Li,&nbsp;Weiyou Yang,&nbsp;Chris R. Bowen,&nbsp;Ya Yang","doi":"10.1007/s40820-021-00681-9","DOIUrl":"https://doi.org/10.1007/s40820-021-00681-9","url":null,"abstract":"","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40820-021-00681-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4612752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 55
Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules 高性能钙钛矿太阳能组件用多功能接口SnO2的可扩展制造
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2021-07-10 DOI: 10.1007/s40820-021-00675-7
Guoqing Tong, Luis K. Ono, Yuqiang Liu, Hui Zhang, Tongle Bu, Yabing Qi
{"title":"Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules","authors":"Guoqing Tong,&nbsp;Luis K. Ono,&nbsp;Yuqiang Liu,&nbsp;Hui Zhang,&nbsp;Tongle Bu,&nbsp;Yabing Qi","doi":"10.1007/s40820-021-00675-7","DOIUrl":"https://doi.org/10.1007/s40820-021-00675-7","url":null,"abstract":"","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40820-021-00675-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications 金属及金属氧化物基纳米酶的研究进展:性质、机理及应用
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2021-07-09 DOI: 10.1007/s40820-021-00674-8
Qianwen Liu, Amin Zhang, Ruhao Wang, Qian Zhang, Daxiang Cui
{"title":"A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications","authors":"Qianwen Liu,&nbsp;Amin Zhang,&nbsp;Ruhao Wang,&nbsp;Qian Zhang,&nbsp;Daxiang Cui","doi":"10.1007/s40820-021-00674-8","DOIUrl":"https://doi.org/10.1007/s40820-021-00674-8","url":null,"abstract":"","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40820-021-00674-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4388578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 154
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1