首页 > 最新文献

BioEnergy Research最新文献

英文 中文
Influence of Ensiling Time and Elephant Grass Silage Alkaline Pretreatment in Anaerobic Co-digestion with Vinasse for Methane Production 饲养时间和象草青贮碱性预处理对厌氧协同消化沼气生产的影响
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-26 DOI: 10.1007/s12155-024-10746-3
Heloisa Vital Domingos, Thayse Farias de Barros, Taciana Carneiro Chaves, Fernanda Santana Peiter, Dayana de Gusmão Coêlho, Anderson Carlos Marafon, Eduardo Lucena Cavalcante de Amorim

This study investigated the anaerobic co-digestion of sugarcane vinasse (V) and elephant grass silage (S) to produce methane. Box-Behnken experimental design was applied to verify the statistical effects of the elephant grass ensiling time (40, 80 and 120 days), alkaline pretreatment of elephant grass silage (0.5, 2.25 and 4.00% w/v NaOH) and S:V mixture ratio (25:75, 50:50 and 75:25) on the methane yield. The results showed that the ensiling process resulted in the low degradation of lignocellulosic substances, emphasizing the need for pretreatment using more efficient techniques, such as thermo-alkaline, to improve the breakdown of elephant grass fibres. COD removals varied between 35 and 85%, and carbohydrate consumptions ranged from 63 to 72%, with the higher efficiencies for both parameters occurring in the reactors with lower percentages of silage. Cumulative methane yield ranged from 190.77 mLCH4/gVS (in the reactor with S:V of 75:25, 0.50% w/v NaOH and 80 ensiling days) to 1729.80 mLCH4/gVS (in the reactor with S:V of 25:75, 2.25% w/v NaOH and 120 ensiling days). According to ANOVA, S:V ratio was the only variable with a significant effect (p < 0.05) on cumulative methane yield. Therefore, the findings indicate that the relative composition of substrates within the mixture exerted the most significant influence on the process, underscoring the critical role of vinasse as a co-substrate in enhancing methane production despite silage pretreatments.

本研究探讨了甘蔗渣(V)和象草青贮(S)厌氧共消化产生甲烷的问题。采用 Box-Behnken 实验设计,验证了象草腐熟时间(40、80 和 120 天)、象草青贮的碱性预处理(0.5、2.25 和 4.00% w/v NaOH)和 S:V 混合比例(25:75、50:50 和 75:25)对甲烷产量的统计影响。结果表明,腐熟过程中木质纤维素物质的降解率较低,因此需要采用更有效的技术(如热碱法)进行预处理,以提高象草纤维的分解率。COD 去除率介于 35% 和 85% 之间,碳水化合物消耗量介于 63% 和 72% 之间,青贮比例较低的反应器中这两个参数的效率较高。累积甲烷产量从 190.77 mLCH4/gVS(在 S:V 为 75:25、0.50% w/v NaOH 和 80 腌制天的反应器中)到 1729.80 mLCH4/gVS(在 S:V 为 25:75、2.25% w/v NaOH 和 120 腌制天的反应器中)不等。根据方差分析,S:V 比率是唯一对累积甲烷产量有显著影响(p < 0.05)的变量。因此,研究结果表明,混合物中基质的相对组成对这一过程的影响最大,突出了蔗渣作为辅助基质在青贮预处理后仍能提高甲烷产量的关键作用。
{"title":"Influence of Ensiling Time and Elephant Grass Silage Alkaline Pretreatment in Anaerobic Co-digestion with Vinasse for Methane Production","authors":"Heloisa Vital Domingos,&nbsp;Thayse Farias de Barros,&nbsp;Taciana Carneiro Chaves,&nbsp;Fernanda Santana Peiter,&nbsp;Dayana de Gusmão Coêlho,&nbsp;Anderson Carlos Marafon,&nbsp;Eduardo Lucena Cavalcante de Amorim","doi":"10.1007/s12155-024-10746-3","DOIUrl":"10.1007/s12155-024-10746-3","url":null,"abstract":"<div><p>This study investigated the anaerobic co-digestion of sugarcane vinasse (V) and elephant grass silage (S) to produce methane. Box-Behnken experimental design was applied to verify the statistical effects of the elephant grass ensiling time (40, 80 and 120 days), alkaline pretreatment of elephant grass silage (0.5, 2.25 and 4.00% w/v NaOH) and S:V mixture ratio (25:75, 50:50 and 75:25) on the methane yield. The results showed that the ensiling process resulted in the low degradation of lignocellulosic substances, emphasizing the need for pretreatment using more efficient techniques, such as thermo-alkaline, to improve the breakdown of elephant grass fibres. COD removals varied between 35 and 85%, and carbohydrate consumptions ranged from 63 to 72%, with the higher efficiencies for both parameters occurring in the reactors with lower percentages of silage. Cumulative methane yield ranged from 190.77 mLCH<sub>4</sub>/gVS (in the reactor with S:V of 75:25, 0.50% w/v NaOH and 80 ensiling days) to 1729.80 mLCH<sub>4</sub>/gVS (in the reactor with S:V of 25:75, 2.25% w/v NaOH and 120 ensiling days). According to ANOVA, S:V ratio was the only variable with a significant effect (<i>p</i> &lt; 0.05) on cumulative methane yield. Therefore, the findings indicate that the relative composition of substrates within the mixture exerted the most significant influence on the process, underscoring the critical role of vinasse as a co-substrate in enhancing methane production despite silage pretreatments.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1895 - 1907"},"PeriodicalIF":3.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning Modelling for Predicting the Efficacy of Ionic Liquid-Aided Biomass Pretreatment 预测离子液体辅助生物质预处理功效的机器学习模型
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-26 DOI: 10.1007/s12155-024-10747-2
Biswanath Mahanty, Munmun Gharami, Dibyajyoti Haldar

The influence of ionic liquid (IL) characteristics, lignocellulosic biomass (LCB) properties, and process conditions on LCB pretreatment is not well understood. In this study, a total of 129 experimental data on LCB (grass, agricultural, and forest residues) pretreatment using imidazolium, triethylamine, and choline-amino acid ILs were compiled to develop machine learning (ML) models for cellulose, hemicellulose, lignin, and solid recovery. Following data imputation, a bilayer artificial neural network (ANN) and random forest (RF) regression, the two most widely adopted ML models, were developed. The full-featured ANN following Bayesian hyperparameter (HP) optimisation offered excellent fit on training (R2: 0.936–0.994), though cross-validation (R2CV) performance remained marginally poor, i.e. between 0.547 and 0.761. The fitness of HP-optimised RF models varied between 0.824 and 0.939 for regression, and between 0.383 and 0.831 in cross-validation. Temperature and pretreatment time had been the most important predictors, except for hemicellulose recovery. Bayesian predictor selection combined with HP optimisation improved the R2CV boundary for ANN (0.555–0.825), as well as for RF models (0.474–0.824). As predictive performance of the models varied depending on target response, use of a larger homogeneous dataset may be warranted. The predictive modelling framework for LCB pretreatment, developed in this study, can be extended to similar biochemical process systems.

离子液体(IL)特性、木质纤维素生物质(LCB)特性和工艺条件对 LCB 预处理的影响尚不十分清楚。本研究汇编了 129 个使用咪唑、三乙胺和胆碱-氨基酸离子液体预处理 LCB(草、农业和森林残留物)的实验数据,以开发纤维素、半纤维素、木质素和固体回收的机器学习(ML)模型。数据归类后,开发了双层人工神经网络(ANN)和随机森林(RF)回归这两种最广泛采用的 ML 模型。经过贝叶斯超参数(HP)优化的全功能人工神经网络在训练中提供了极佳的拟合度(R2:0.936-0.994),但交叉验证(R2CV)性能仍然略差,即在 0.547 和 0.761 之间。经过 HP 优化的 RF 模型的回归适配度在 0.824 和 0.939 之间,交叉验证的适配度在 0.383 和 0.831 之间。除半纤维素回收率外,温度和预处理时间是最重要的预测因子。贝叶斯预测因子选择与 HP 优化相结合,改善了 ANN(0.555-0.825)和 RF 模型(0.474-0.824)的 R2CV 边界。由于模型的预测性能因目标反应而异,因此可能需要使用更大的同质数据集。本研究开发的枸杞预处理预测建模框架可扩展到类似的生化过程系统。
{"title":"Machine Learning Modelling for Predicting the Efficacy of Ionic Liquid-Aided Biomass Pretreatment","authors":"Biswanath Mahanty,&nbsp;Munmun Gharami,&nbsp;Dibyajyoti Haldar","doi":"10.1007/s12155-024-10747-2","DOIUrl":"10.1007/s12155-024-10747-2","url":null,"abstract":"<div><p>The influence of ionic liquid (IL) characteristics, lignocellulosic biomass (LCB) properties, and process conditions on LCB pretreatment is not well understood. In this study, a total of 129 experimental data on LCB (grass, agricultural, and forest residues) pretreatment using imidazolium, triethylamine, and choline-amino acid ILs were compiled to develop machine learning (ML) models for cellulose, hemicellulose, lignin, and solid recovery. Following data imputation, a bilayer artificial neural network (ANN) and random forest (RF) regression, the two most widely adopted ML models, were developed. The full-featured ANN following Bayesian hyperparameter (HP) optimisation offered excellent fit on training (<i>R</i><sup>2</sup>: 0.936–0.994), though cross-validation (<i>R</i><sub>2</sub>CV) performance remained marginally poor, i.e. between 0.547 and 0.761. The fitness of HP-optimised RF models varied between 0.824 and 0.939 for regression, and between 0.383 and 0.831 in cross-validation. Temperature and pretreatment time had been the most important predictors, except for hemicellulose recovery. Bayesian predictor selection combined with HP optimisation improved the <i>R</i><sup>2</sup>CV boundary for ANN (0.555–0.825), as well as for RF models (0.474–0.824). As predictive performance of the models varied depending on target response, use of a larger homogeneous dataset may be warranted. The predictive modelling framework for LCB pretreatment, developed in this study, can be extended to similar biochemical process systems.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1569 - 1583"},"PeriodicalIF":3.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Corn Stover on the Enzymatic Hydrolysis of Lignocellulosic Biomass 玉米秸秆乙醇分级沉淀法提取的半纤维素对木质纤维素生物质酶水解的影响
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-25 DOI: 10.1007/s12155-024-10745-4
Zhanqiang Yan, Md Asraful Alam, Jinfeng Li, Wenlong Xiong, Shen Zhang, Zili Zhan, Jingliang Xu

The presence of hemicellulose inhibits the enzymatic hydrolysis of lignocellulosic biomass. The purpose of this study is to investigate the effect of different hemicellulose fractions on the enzymatic hydrolysis and the way to eliminate the inhibiting effect caused by hemicellulose. Four kinds of hemicelluloses, namely, HXF, H15, H30, and H60, were first extracted from corn stover by ethanol fractional precipitation. The structures of hemicellulose samples were analyzed using Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and high-performance ion chromatography. The results show that H30 has the strongest inhibition on the enzymatic hydrolysis of Avicel and corn stover, presenting inhibition ratio of 13.35% and 9.98%, respectively. The inhibition ratios of other hemicelluloses in Avicel and corn stover are 8–12% and 5–9%, respectively. However, the inhibiting effect caused by H30 is removed by adding hemicellulase, which even presents a 4.99% increase in the efficiency of enzymatic hydrolysis of corn stover. The corresponding glucose concentration reached 68.11 g/L. This research could help design effective processes to promote the enzymatic hydrolysis of lignocellulosic biomass.

半纤维素的存在会抑制木质纤维素生物质的酶水解。本研究旨在探讨不同半纤维素组分对酶水解的影响以及消除半纤维素抑制作用的方法。首先用乙醇分馏沉淀法从玉米秸秆中提取了四种半纤维素,即 HXF、H15、H30 和 H60。利用傅立叶变换红外光谱、1H 和 13C 核磁共振以及高效离子色谱法分析了半纤维素样品的结构。结果表明,H30 对 Avicel 和玉米秸秆酶水解的抑制作用最强,抑制比分别为 13.35% 和 9.98%。对 Avicel 和玉米秸秆中其他半纤维素的抑制率分别为 8-12% 和 5-9%。然而,加入半纤维素酶后,H30 的抑制作用被消除,玉米秸秆的酶水解效率甚至提高了 4.99%。相应的葡萄糖浓度达到 68.11 克/升。这项研究有助于设计有效的工艺,促进木质纤维素生物质的酶水解。
{"title":"Effect of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Corn Stover on the Enzymatic Hydrolysis of Lignocellulosic Biomass","authors":"Zhanqiang Yan,&nbsp;Md Asraful Alam,&nbsp;Jinfeng Li,&nbsp;Wenlong Xiong,&nbsp;Shen Zhang,&nbsp;Zili Zhan,&nbsp;Jingliang Xu","doi":"10.1007/s12155-024-10745-4","DOIUrl":"10.1007/s12155-024-10745-4","url":null,"abstract":"<div><p>The presence of hemicellulose inhibits the enzymatic hydrolysis of lignocellulosic biomass. The purpose of this study is to investigate the effect of different hemicellulose fractions on the enzymatic hydrolysis and the way to eliminate the inhibiting effect caused by hemicellulose. Four kinds of hemicelluloses, namely, H<sub>XF</sub>, H<sub>15</sub>, H<sub>30</sub>, and H<sub>60</sub>, were first extracted from corn stover by ethanol fractional precipitation. The structures of hemicellulose samples were analyzed using Fourier transform infrared spectroscopy, <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance, and high-performance ion chromatography. The results show that H<sub>30</sub> has the strongest inhibition on the enzymatic hydrolysis of Avicel and corn stover, presenting inhibition ratio of 13.35% and 9.98%, respectively. The inhibition ratios of other hemicelluloses in Avicel and corn stover are 8–12% and 5–9%, respectively. However, the inhibiting effect caused by H<sub>30</sub> is removed by adding hemicellulase, which even presents a 4.99% increase in the efficiency of enzymatic hydrolysis of corn stover. The corresponding glucose concentration reached 68.11 g/L. This research could help design effective processes to promote the enzymatic hydrolysis of lignocellulosic biomass.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1469 - 1480"},"PeriodicalIF":3.1,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of Cranberry Bush (Viburnum opulus L.) Fruit Pomace as a Renewable Substrate for Biobutanol Production by Clostridium beijerinckii in the Presence of Sodium Dithionite 利用蔓越橘果渣作为可再生底物,在亚硫酸钠存在下通过贝氏梭菌生产生物丁醇
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-22 DOI: 10.1007/s12155-024-10739-2
Mariye Nur Çelik, Nazlıhan Tekin, Sevgi Ertuğrul Karatay, Gönül Dönmez

The present study aims to evaluate the use of cranberry bush fruit pomace (CBFP) (Viburnum opulus L.), which has recently become popular raw material, as a substrate in the presence of a reducing agent to increase biobutanol production by Clostridium beijerinckii DSMZ 6422. For this purpose, some factors were optimized, including the pretreatment, initial concentration of CBFP (5–20%), different types of reducing agents (ascorbic acid, L-cysteine, sodium dithionite and sodium sulfite), different concentrations of sodium dithionite (2.5–15 mM), inoculum concentration (5%, 10%, and 20%), and fermentation time (24–96 h). The maximum biobutanol, total ABE, biobutanol yield, and biobutanol productivity were 9.45 g/L, 12.08 g/L, 0.21 g/g, and 0.13 g/L/h in the medium containing enzymatically hydrolyzed 10% CBFP, 10 mM sodium dithionite, and 20% inoculum at the end of 72 h, respectively. These findings demonstrate that CBFP can be considered as a sustainable, economical, and viable substrate on biobutanol production for the first time in the literature.

摘要 本研究旨在评估蔓越橘果渣(CBFP)(Viburnum opulus L.)作为基质在还原剂存在下的使用情况,以提高贝氏梭菌(Clostridium beijerinckii DSMZ 6422)的生物丁醇产量。为此,对一些因素进行了优化,包括预处理、CBFP 初始浓度(5-20%)、不同类型的还原剂(抗坏血酸、L-半胱氨酸、亚硫酸钠和亚硫酸钠)、不同浓度的亚硫酸钠(2.5-15 mM)、接种物浓度(5%、10% 和 20%)以及发酵时间(24-96 h)。在含有经酶水解的 10% CBFP、10 mM 连二亚硫酸钠和 20% 接种物的培养基中,72 h 后的最大生物丁醇、总 ABE、生物丁醇产量和生物丁醇生产率分别为 9.45 g/L、12.08 g/L、0.21 g/g 和 0.13 g/L/h。这些研究结果表明,CBFP 可被视为一种可持续、经济、可行的生物丁醇生产底物,这在文献中尚属首次。
{"title":"Use of Cranberry Bush (Viburnum opulus L.) Fruit Pomace as a Renewable Substrate for Biobutanol Production by Clostridium beijerinckii in the Presence of Sodium Dithionite","authors":"Mariye Nur Çelik,&nbsp;Nazlıhan Tekin,&nbsp;Sevgi Ertuğrul Karatay,&nbsp;Gönül Dönmez","doi":"10.1007/s12155-024-10739-2","DOIUrl":"10.1007/s12155-024-10739-2","url":null,"abstract":"<div><p>The present study aims to evaluate the use of cranberry bush fruit pomace (CBFP) (<i>Viburnum opulus</i> L.), which has recently become popular raw material, as a substrate in the presence of a reducing agent to increase biobutanol production by <i>Clostridium beijerinckii</i> DSMZ 6422. For this purpose, some factors were optimized, including the pretreatment, initial concentration of CBFP (5–20%), different types of reducing agents (ascorbic acid, L-cysteine, sodium dithionite and sodium sulfite), different concentrations of sodium dithionite (2.5–15 mM), inoculum concentration (5%, 10%, and 20%), and fermentation time (24–96 h). The maximum biobutanol, total ABE, biobutanol yield, and biobutanol productivity were 9.45 g/L, 12.08 g/L, 0.21 g/g, and 0.13 g/L/h in the medium containing enzymatically hydrolyzed 10% CBFP, 10 mM sodium dithionite, and 20% inoculum at the end of 72 h, respectively. These findings demonstrate that CBFP can be considered as a sustainable, economical, and viable substrate on biobutanol production for the first time in the literature.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1689 - 1700"},"PeriodicalIF":3.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10739-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Buffering Effect of Solids During High-Solid Enzymatic Hydrolysis of Lignocellulose 木质纤维素高固酶水解过程中固体的自我缓冲作用
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-19 DOI: 10.1007/s12155-024-10744-5
Xin Shi, Lan Wang, Hongzhang Chen

The role of buffer in modulating the enzymatic hydrolysis environment of lignocellulose is crucial. However, studies on the impact of buffer on high-solid enzymatic hydrolysis remain limited. This study discovered that utilizing deionized water as a reaction medium, rather than the conventional buffer, did not influence the enzymatic hydrolysis of steam-exploded corn stover when the solid loading ranged between 15 and 25%. At 15% solid loading, the glucan conversion in the group treated with buffer was recorded at 89.8%, with a corresponding glucose concentration of 51.1 g/L. In contrast, the group without buffer exhibited a conversion of 88.9% and a glucose concentration of 50.5 g/L. The increase of acid groups in lignin was attributed to the formation of phenolic hydroxyls during steam explosion, which provided the substrate with the necessary conditions for buffering effects. Sequentially, during the high-solid enzymatic hydrolysis process, the substrate’s increased pore volume and specific surface area could potentially offset the buffering capacity, which led to the buffering effect becoming ineffective. Leveraging the self-buffering effect of the substrate, a fed-batch strategy was developed. This strategy replaced the water supplementation with buffers, augmenting the solid loading from 20 to 33% across six distinct feeding sessions over a span of 72 h. This not only reduced costs but also laid the foundation for the industrial viability of lignocellulosic high-concentration sugar production, thereby advancing the biofuels and bioproducts sector. These findings provide valuable insights for the exploration of solid reaction processes.

缓冲液在调节木质纤维素的酶水解环境中的作用至关重要。然而,有关缓冲液对高固体酶水解影响的研究仍然有限。本研究发现,当固体负荷在 15% 到 25% 之间时,使用去离子水而不是传统的缓冲液作为反应介质不会影响蒸汽爆破玉米秸秆的酶水解。当固体负载量为 15%时,用缓冲液处理组的葡聚糖转化率为 89.8%,相应的葡萄糖浓度为 51.1 克/升。相比之下,未添加缓冲剂的组的转化率为 88.9%,葡萄糖浓度为 50.5 克/升。木质素中酸性基团的增加归因于蒸汽爆炸过程中酚羟基的形成,这为底物提供了缓冲作用的必要条件。随后,在高固体酶水解过程中,基质孔隙体积和比表面积的增加有可能抵消缓冲能力,导致缓冲作用失效。利用基质的自我缓冲作用,开发出了一种喂料批处理策略。这不仅降低了成本,还为木质纤维素高浓度糖生产的工业可行性奠定了基础,从而推动了生物燃料和生物产品行业的发展。这些发现为探索固体反应过程提供了宝贵的启示。
{"title":"Self-Buffering Effect of Solids During High-Solid Enzymatic Hydrolysis of Lignocellulose","authors":"Xin Shi,&nbsp;Lan Wang,&nbsp;Hongzhang Chen","doi":"10.1007/s12155-024-10744-5","DOIUrl":"10.1007/s12155-024-10744-5","url":null,"abstract":"<div><p>The role of buffer in modulating the enzymatic hydrolysis environment of lignocellulose is crucial. However, studies on the impact of buffer on high-solid enzymatic hydrolysis remain limited. This study discovered that utilizing deionized water as a reaction medium, rather than the conventional buffer, did not influence the enzymatic hydrolysis of steam-exploded corn stover when the solid loading ranged between 15 and 25%. At 15% solid loading, the glucan conversion in the group treated with buffer was recorded at 89.8%, with a corresponding glucose concentration of 51.1 g/L. In contrast, the group without buffer exhibited a conversion of 88.9% and a glucose concentration of 50.5 g/L. The increase of acid groups in lignin was attributed to the formation of phenolic hydroxyls during steam explosion, which provided the substrate with the necessary conditions for buffering effects. Sequentially, during the high-solid enzymatic hydrolysis process, the substrate’s increased pore volume and specific surface area could potentially offset the buffering capacity, which led to the buffering effect becoming ineffective. Leveraging the self-buffering effect of the substrate, a fed-batch strategy was developed. This strategy replaced the water supplementation with buffers, augmenting the solid loading from 20 to 33% across six distinct feeding sessions over a span of 72 h. This not only reduced costs but also laid the foundation for the industrial viability of lignocellulosic high-concentration sugar production, thereby advancing the biofuels and bioproducts sector. These findings provide valuable insights for the exploration of solid reaction processes.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1701 - 1711"},"PeriodicalIF":3.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Biomass Valorization: The Microbial Diversity in Promoting a Sustainable Socio-economy 揭示生物质的价值:促进可持续社会经济的微生物多样性
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-15 DOI: 10.1007/s12155-024-10743-6
Antonielle Vieira Monclaro, Helder Andrey Rocha Gomes, Gilvan Caetano Duarte, Leonora Rios de Souza Moreira, Edivaldo Ximenes Ferreira Filho

Lignocellulosic biomass is of significant industrial and scientific interest. Residues derived from different activities (agro-industrial work, food consumption, wood use, urban solid waste, etc.) and their subsequent use are key to extending circularity models to the different technological sectors that are beginning to implement circular economy cycles. Biorefineries are integrated platforms that value waste conversion into various value-added products. The generation of bioproducts derived from lignocellulosic waste (green fuels, green chemicals, and biomaterials) has promoted a shift from a fossil fuel–based economy to a more sustainable one. In addition, integrating biorefineries into the circular economy framework promotes a comprehensive approach to resource management, waste reduction, and sustainable development, which contributes to the overall resilience and efficiency of societal systems. There has been increased focus on the application of “canonical microorganisms” for residual biomass conversion, such as fungi, bacteria, and yeast. However, there is a plethora of other potential microorganisms that can be candidates for new biotechnological applications. This review aims to describe the valorization of different sources of lignocellulosic biomass in the global context, with a focus on Brazilian practice, and to emphasize how the use of microbial diversity is critical to enhancing current technologies, such as advanced liquid fuels. Finally, there is a discussion of the potential of anaerobic fungi, archaea, protists, and oomycetes as microbial product conversion technologies.

木质纤维素生物质具有重大的工业和科学意义。不同活动(农工作业、食品消费、木材使用、城市固体废弃物等)产生的残留物及其后续利用是将循环模式扩展到开始实施循环经济周期的不同技术领域的关键。生物精炼厂是将废物转化为各种增值产品的综合平台。从木质纤维素废弃物中产生的生物产品(绿色燃料、绿色化学品和生物材料)促进了从以化石燃料为基础的经济向更可持续的经济转变。此外,将生物精炼厂纳入循环经济框架可促进资源管理、减少废物和可持续发展的综合方法,有助于提高社会系统的整体复原力和效率。真菌、细菌和酵母等 "典型微生物 "在剩余生物质转化中的应用日益受到关注。然而,还有大量其他潜在微生物可以成为新生物技术应用的候选者。本综述旨在介绍全球范围内不同来源的木质纤维素生物质的价值化情况,重点关注巴西的实践,并强调微生物多样性的利用对于提高先进液体燃料等现有技术的重要性。最后,还讨论了厌氧真菌、古菌、原生动物和卵菌作为微生物产品转化技术的潜力。
{"title":"Unveiling the Biomass Valorization: The Microbial Diversity in Promoting a Sustainable Socio-economy","authors":"Antonielle Vieira Monclaro,&nbsp;Helder Andrey Rocha Gomes,&nbsp;Gilvan Caetano Duarte,&nbsp;Leonora Rios de Souza Moreira,&nbsp;Edivaldo Ximenes Ferreira Filho","doi":"10.1007/s12155-024-10743-6","DOIUrl":"10.1007/s12155-024-10743-6","url":null,"abstract":"<div><p>Lignocellulosic biomass is of significant industrial and scientific interest. Residues derived from different activities (agro-industrial work, food consumption, wood use, urban solid waste, etc.) and their subsequent use are key to extending circularity models to the different technological sectors that are beginning to implement circular economy cycles. Biorefineries are integrated platforms that value waste conversion into various value-added products. The generation of bioproducts derived from lignocellulosic waste (green fuels, green chemicals, and biomaterials) has promoted a shift from a fossil fuel–based economy to a more sustainable one. In addition, integrating biorefineries into the circular economy framework promotes a comprehensive approach to resource management, waste reduction, and sustainable development, which contributes to the overall resilience and efficiency of societal systems. There has been increased focus on the application of “canonical microorganisms” for residual biomass conversion, such as fungi, bacteria, and yeast. However, there is a plethora of other potential microorganisms that can be candidates for new biotechnological applications. This review aims to describe the valorization of different sources of lignocellulosic biomass in the global context, with a focus on Brazilian practice, and to emphasize how the use of microbial diversity is critical to enhancing current technologies, such as advanced liquid fuels. Finally, there is a discussion of the potential of anaerobic fungi, archaea, protists, and oomycetes as microbial product conversion technologies.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1355 - 1374"},"PeriodicalIF":3.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Three Delignification Treatments of Corncob Residues for High Cellulosic Ethanol Production 分析用于高纤维素乙醇生产的三种玉米芯残渣木质素化处理方法
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-15 DOI: 10.1007/s12155-024-10738-3
KeKe Cheng, TianMei Wu, XiaoBi Tan, HuiXiong Zhong

Three delignification treatments of corncob residues (CCR), including NaOH, formic acid, and sulfite treatments, were compared at the respective optimized condition and in light of chemical compositions, sugar recovery, and ethanol production. NaOH and sulfite treatment can remove lignin in the CCR efficiently. Though NaOH treatment showed a superior ability of delignification, its solid cellulose recovery is lower than that of sulfite treatment. The sulfite treatment has the highest selectivity between delignification and cellulose conservation. The formic acid-treated CCR still had high lignin contents because formic acid also accelerated the solvation of cellulose. In fed-batch simultaneous saccharification and fermentation (SSF) with 25% substrate loading, the highest 77.1 ± 2.33 g/L ethanol was from NaOH-treated CCR, corresponding to a CCR-to-ethanol yield of 0.208 ± 0.0021 g/g. However, the sulfite pretreated CCR also produced 68.2 ± 2.22 g/L ethanol, with a higher CCR-to-ethanol yield of 0.219 ± 0.0012 g/g. The high substrate dosage is beneficial to ethanol concentration but not beneficial to CCR-to-ethanol yield. The optimal substrate dosage required for ethanol production depends on the targeted aim (ethanol concentration or CCR-to-ethanol yield).

根据化学成分、糖回收率和乙醇产量,比较了玉米芯残渣(CCR)在各自优化条件下的三种木质素处理方法,包括 NaOH、甲酸和亚硫酸盐处理。NaOH 和亚硫酸盐处理可有效去除 CCR 中的木质素。虽然 NaOH 处理的脱木素能力更强,但其固体纤维素回收率低于亚硫酸盐处理。亚硫酸盐处理在木质素脱除和纤维素保存之间具有最高的选择性。甲酸处理的 CCR 中木质素含量仍然很高,因为甲酸也会加速纤维素的溶解。在 25% 底物负载的喂料批次同步糖化和发酵(SSF)中,NaOH 处理的 CCR 可产生最高的 77.1 ± 2.33 g/L 乙醇,对应的 CCR 转化为乙醇的产量为 0.208 ± 0.0021 g/g。然而,亚硫酸盐预处理的 CCR 也能产生 68.2 ± 2.22 克/升乙醇,CCR 转化为乙醇的产量更高,为 0.219 ± 0.0012 克/克。高底物用量有利于乙醇浓度的提高,但不利于 CCR 转化为乙醇的产量。乙醇生产所需的最佳底物用量取决于目标(乙醇浓度或 CCR 转化为乙醇的产量)。
{"title":"Analysis of Three Delignification Treatments of Corncob Residues for High Cellulosic Ethanol Production","authors":"KeKe Cheng,&nbsp;TianMei Wu,&nbsp;XiaoBi Tan,&nbsp;HuiXiong Zhong","doi":"10.1007/s12155-024-10738-3","DOIUrl":"10.1007/s12155-024-10738-3","url":null,"abstract":"<div><p>Three delignification treatments of corncob residues (CCR), including NaOH, formic acid, and sulfite treatments, were compared at the respective optimized condition and in light of chemical compositions, sugar recovery, and ethanol production. NaOH and sulfite treatment can remove lignin in the CCR efficiently. Though NaOH treatment showed a superior ability of delignification, its solid cellulose recovery is lower than that of sulfite treatment. The sulfite treatment has the highest selectivity between delignification and cellulose conservation. The formic acid-treated CCR still had high lignin contents because formic acid also accelerated the solvation of cellulose. In fed-batch simultaneous saccharification and fermentation (SSF) with 25% substrate loading, the highest 77.1 ± 2.33 g/L ethanol was from NaOH-treated CCR, corresponding to a CCR-to-ethanol yield of 0.208 ± 0.0021 g/g. However, the sulfite pretreated CCR also produced 68.2 ± 2.22 g/L ethanol, with a higher CCR-to-ethanol yield of 0.219 ± 0.0012 g/g. The high substrate dosage is beneficial to ethanol concentration but not beneficial to CCR-to-ethanol yield. The optimal substrate dosage required for ethanol production depends on the targeted aim (ethanol concentration or CCR-to-ethanol yield).</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1449 - 1459"},"PeriodicalIF":3.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal Carbonization and Torrefaction of Kenaf, Rice Husk, Corncob, and Wood Chip: Characteristics and Differences of Hydrochar and Torrefied Char 剑麻、稻壳、玉米芯和木屑的水热碳化和热解:氢化炭和焦化炭的特征和差异
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-15 DOI: 10.1007/s12155-024-10731-w
Seong Rae Lim, Ga Hee Kim, Byung Hwan Um

The characteristics of biochar vary widely depending on the type of biomass and thermochemical conversion method. In this study, four types of biomass (kenaf, rice husk, corncob, and wood chips) were subjected to hydrothermal carbonization and torrefaction at 220 °C, 260 °C, and 300 °C for 30 min. The acquired biochars showed significant differences in the type of reaction and biomass. At each temperature, the decomposition of volatiles was more severe in hydrochar (HC) than in torrefied char (TC). The mass yields of HC were 44.30–61.63 wt.% (220 °C), 20.89–37.04 wt.% (260 °C), and 12.59–29.19 wt.% (300 °C), whereas the mass yields of TC were 94.73–97.69 wt.% (220 °C), 87.19–95.04 wt.% (260 °C), and 68.22–80.78 wt.% (300 °C). The elemental and thermal characteristics of TC changed gradually as the reaction temperature increased, and the characteristics of HC were enhanced rapidly. Wood chip biochar that was reacted at 300 °C showed the highest heating values of 28.77 MJ/kg (HC) and 21.09 MJ/kg (TC). The results of chemical analyses showed that hydrothermal carbonization strongly affected the cleavage of inter- and intra-molecular carbon bonds in cellulose and hemicellulose. In contrast, torrefaction removed the thermally fragile moisture and hemicellulose content from biomass.

Graphical Abstract

生物炭的特性因生物质类型和热化学转化方法的不同而有很大差异。在这项研究中,四种生物质(槿麻、稻壳、玉米芯和木屑)分别在 220 ℃、260 ℃ 和 300 ℃ 下进行了 30 分钟的水热碳化和热解。所获得的生物炭在反应类型和生物质方面存在显著差异。在每个温度下,水热炭(HC)的挥发物分解都比焦烧炭(TC)严重。HC 的质量产率分别为 44.30-61.63 wt.%(220 °C)、20.89-37.04 wt.%(260 °C)和 12.59-29.19 wt.%(300 °C),而 TC 的质量产率分别为 94.73-97.69 wt.%(220 °C)、87.19-95.04 wt.%(260 °C)和 68.22-80.78 wt.%(300 °C)。随着反应温度的升高,TC 的元素特性和热特性逐渐发生变化,而 HC 的特性则迅速增强。在 300 °C 下反应的木屑生物炭热值最高,分别为 28.77 MJ/kg(HC)和 21.09 MJ/kg(TC)。化学分析结果表明,水热碳化强烈影响了纤维素和半纤维素分子间和分子内碳键的裂解。与此相反,热解则去除了生物质中热易碎的水分和半纤维素含量。
{"title":"Hydrothermal Carbonization and Torrefaction of Kenaf, Rice Husk, Corncob, and Wood Chip: Characteristics and Differences of Hydrochar and Torrefied Char","authors":"Seong Rae Lim,&nbsp;Ga Hee Kim,&nbsp;Byung Hwan Um","doi":"10.1007/s12155-024-10731-w","DOIUrl":"10.1007/s12155-024-10731-w","url":null,"abstract":"<div><p>The characteristics of biochar vary widely depending on the type of biomass and thermochemical conversion method. In this study, four types of biomass (kenaf, rice husk, corncob, and wood chips) were subjected to hydrothermal carbonization and torrefaction at 220 °C, 260 °C, and 300 °C for 30 min. The acquired biochars showed significant differences in the type of reaction and biomass. At each temperature, the decomposition of volatiles was more severe in hydrochar (HC) than in torrefied char (TC). The mass yields of HC were 44.30–61.63 wt.% (220 °C), 20.89–37.04 wt.% (260 °C), and 12.59–29.19 wt.% (300 °C), whereas the mass yields of TC were 94.73–97.69 wt.% (220 °C), 87.19–95.04 wt.% (260 °C), and 68.22–80.78 wt.% (300 °C). The elemental and thermal characteristics of TC changed gradually as the reaction temperature increased, and the characteristics of HC were enhanced rapidly. Wood chip biochar that was reacted at 300 °C showed the highest heating values of 28.77 MJ/kg (HC) and 21.09 MJ/kg (TC). The results of chemical analyses showed that hydrothermal carbonization strongly affected the cleavage of inter- and intra-molecular carbon bonds in cellulose and hemicellulose. In contrast, torrefaction removed the thermally fragile moisture and hemicellulose content from biomass.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1816 - 1831"},"PeriodicalIF":3.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Lipid and Xylo-oligosaccharides from Cellulose and Hemicellulose in Reed Sawdust 利用芦苇锯屑中的纤维素和半纤维素生产脂质和木寡糖
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-14 DOI: 10.1007/s12155-024-10735-6
MeiZhen Jiao, Xinran Zhang, Yiqin Wang, Jian Du, Yehan Tao, Yanna Lv, Ming Chen, Jie Lu, Haisong Wang

Reed sawdust is a kind of paper mill waste with high cellulose and hemicellulose content. To promote the rational use of resources, it is essential to make full use of waste resources and transform them into new values. In this work, reed sawdust was pretreated with liquid hot water (LHW) at 170 °C for 30 min. A total of 39.00 g/L glucose was obtained after enzymatic saccharification of cellulose at 50 °C, 20 FPU/g-reed sawdust cellulase, 25% (w/v) reed sawdust, in 5 replenishments. When the fermentation was performed 96 h, the medium contained xylo-oligosaccharides (XOS) 11.74 g/L and biomass 15.21 g/L, in which lipid was 4.14 g/L. After spray drying, feed additives containing 29.17% XOS and 10.29% docosahexaenoic acid (DHA) can be prepared. In particular, the hemicellulose and cellulose in reed sawdust are creatively used at the same time without separation, which greatly reduces the cost of purification in traditional processes and provides a new way for the high-value transformation of sawdust resources.

芦苇锯末是一种纤维素和半纤维素含量较高的造纸厂废料。为了促进资源的合理利用,必须充分利用废弃资源并将其转化为新的价值。在这项工作中,芦苇锯末在 170 °C 下用液态热水(LHW)预处理 30 分钟。在 50 °C、20 FPU/g-芦苇锯末纤维素酶、25%(w/v)芦苇锯末、分 5 次补充的情况下,对纤维素进行酶糖化,共获得 39.00 g/L 葡萄糖。发酵 96 小时后,培养基中的木寡糖(XOS)含量为 11.74 克/升,生物量为 15.21 克/升,其中脂质含量为 4.14 克/升。经喷雾干燥后,可制备出含有 29.17% 的 XOS 和 10.29% 的二十二碳六烯酸(DHA)的饲料添加剂。特别是创造性地将芦苇锯末中的半纤维素和纤维素不经分离同时利用,大大降低了传统工艺的提纯成本,为锯末资源的高值化转化提供了一条新途径。
{"title":"Production of Lipid and Xylo-oligosaccharides from Cellulose and Hemicellulose in Reed Sawdust","authors":"MeiZhen Jiao,&nbsp;Xinran Zhang,&nbsp;Yiqin Wang,&nbsp;Jian Du,&nbsp;Yehan Tao,&nbsp;Yanna Lv,&nbsp;Ming Chen,&nbsp;Jie Lu,&nbsp;Haisong Wang","doi":"10.1007/s12155-024-10735-6","DOIUrl":"10.1007/s12155-024-10735-6","url":null,"abstract":"<div><p>Reed sawdust is a kind of paper mill waste with high cellulose and hemicellulose content. To promote the rational use of resources, it is essential to make full use of waste resources and transform them into new values. In this work, reed sawdust was pretreated with liquid hot water (LHW) at 170 °C for 30 min. A total of 39.00 g/L glucose was obtained after enzymatic saccharification of cellulose at 50 °C, 20 FPU/g-<sub>reed sawdust</sub> cellulase, 25% (w/v) reed sawdust, in 5 replenishments. When the fermentation was performed 96 h, the medium contained xylo-oligosaccharides (XOS) 11.74 g/L and biomass 15.21 g/L, in which lipid was 4.14 g/L. After spray drying, feed additives containing 29.17% XOS and 10.29% docosahexaenoic acid (DHA) can be prepared. In particular, the hemicellulose and cellulose in reed sawdust are creatively used at the same time without separation, which greatly reduces the cost of purification in traditional processes and provides a new way for the high-value transformation of sawdust resources.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1493 - 1502"},"PeriodicalIF":3.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life Cycle Assessment as a Key Decision Tool for Emerging Pretreatment Technologies of Biomass-to-Biofuel: Unveiling Challenges, Advances, and Future Potential 生命周期评估作为生物质转化为生物燃料的新兴预处理技术的关键决策工具:揭示挑战、进展和未来潜力
IF 3.1 3区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-03-14 DOI: 10.1007/s12155-024-10741-8
Jayita Chopra, Vivek Rangarajan, Senthilkumar Rathnasamy, Pinaki Dey

The surge in global biofuel demand is propelled by intensifying concerns over climate change and effective waste management. Government mandates on biofuel blending further boost this trend, underlining the significance of selecting renewable feedstocks, such as bioethanol and biodiesel, for biofuel production. The importance of selecting an efficient biomass pretreatment method cannot be overstated, given its status as the most energy-intensive and chemical-reliant step in the biofuel production chain. Thus, pretreatment becomes a crucial determinant in the feasibility and economic viability of biofuel technologies. Amid a wide array of pretreatment strategies, identifying a method that is both effective and sustainable is crucial for advancing biofuel commercialization. This review aims to rigorously evaluate both traditional and novel pretreatment techniques and their environmental footprints, leveraging life cycle assessment (LCA) studies from existing literature. By examining the sustainability of various pretreatment methods, this paper provides a holistic and clear view, serving as an essential resource for policymakers and industry stakeholders. It outlines the challenges faced in each phase of an LCA and proposes viable solutions. Additionally, the review furnishes valuable insights, recommendations, and directions for future research in achieving sustainable biofuel production.

对气候变化和有效废物管理的日益关注推动了全球生物燃料需求的激增。政府对生物燃料混合的强制要求进一步推动了这一趋势,凸显了选择生物乙醇和生物柴油等可再生原料生产生物燃料的重要性。生物质预处理是生物燃料生产链中最耗能、最依赖化学品的步骤,因此选择高效的生物质预处理方法的重要性怎么强调都不为过。因此,预处理成为决定生物燃料技术可行性和经济可行性的关键因素。在众多预处理策略中,找到一种既有效又可持续的方法对于推动生物燃料商业化至关重要。本综述旨在利用现有文献中的生命周期评估(LCA)研究,对传统和新型预处理技术及其环境足迹进行严格评估。通过研究各种预处理方法的可持续性,本文提供了一个全面而清晰的视角,可作为政策制定者和行业利益相关者的重要资源。本文概述了生命周期评估每个阶段所面临的挑战,并提出了可行的解决方案。此外,该综述还为今后实现可持续生物燃料生产的研究提供了宝贵的见解、建议和方向。
{"title":"Life Cycle Assessment as a Key Decision Tool for Emerging Pretreatment Technologies of Biomass-to-Biofuel: Unveiling Challenges, Advances, and Future Potential","authors":"Jayita Chopra,&nbsp;Vivek Rangarajan,&nbsp;Senthilkumar Rathnasamy,&nbsp;Pinaki Dey","doi":"10.1007/s12155-024-10741-8","DOIUrl":"10.1007/s12155-024-10741-8","url":null,"abstract":"<div><p>The surge in global biofuel demand is propelled by intensifying concerns over climate change and effective waste management. Government mandates on biofuel blending further boost this trend, underlining the significance of selecting renewable feedstocks, such as bioethanol and biodiesel, for biofuel production. The importance of selecting an efficient biomass pretreatment method cannot be overstated, given its status as the most energy-intensive and chemical-reliant step in the biofuel production chain. Thus, pretreatment becomes a crucial determinant in the feasibility and economic viability of biofuel technologies. Amid a wide array of pretreatment strategies, identifying a method that is both effective and sustainable is crucial for advancing biofuel commercialization. This review aims to rigorously evaluate both traditional and novel pretreatment techniques and their environmental footprints, leveraging life cycle assessment (LCA) studies from existing literature. By examining the sustainability of various pretreatment methods, this paper provides a holistic and clear view, serving as an essential resource for policymakers and industry stakeholders. It outlines the challenges faced in each phase of an LCA and proposes viable solutions. Additionally, the review furnishes valuable insights, recommendations, and directions for future research in achieving sustainable biofuel production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 2","pages":"857 - 876"},"PeriodicalIF":3.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BioEnergy Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1