Binjie Xu, Xuefeng Han, Suocheng Xu, Deren Yang, Xiaodong Pi
Single-crystal silicon carbide (SiC) is an important semiconductor material for the fabrication of power and radio frequency (RF) devices. The major technique for growing single-crystal SiC is the so-called physical vapor transport (PVT) method, in which not only the thermal field but also the fluid-flow field and the distribution of gas species can be hardly measured directly. In this study, a multi-component flow model is proposed that includes the inside and outside of a growth chamber and a joint between the seed crystal holder and crucible which allows exchanges of the gas species. The joint is simulated as a thin porous graphite sheet. The Hertz-Knudsen equation is used to describe the sublimation and deposition. The convection and diffusion are described by the Navier–Stokes equations and mixture-averaged diffusion model, in which the Stefan flow is taken into account. The numerical simulations are conducted by the finite element method (FEM) with a multi-physics coupled model, which is able to predict the fluid flow field, species distribution field, crystal growth rate, and evolution of the molar concentration of dopant gas. Using this model, the effects of several experimental conditions on the transport of gas species and the growth rate of single-crystal SiC are analyzed.
{"title":"Numerical Simulation of the Transport of Gas Species in the PVT Growth of Single-Crystal SiC","authors":"Binjie Xu, Xuefeng Han, Suocheng Xu, Deren Yang, Xiaodong Pi","doi":"10.1002/crat.202300354","DOIUrl":"10.1002/crat.202300354","url":null,"abstract":"<p>Single-crystal silicon carbide (SiC) is an important semiconductor material for the fabrication of power and radio frequency (RF) devices. The major technique for growing single-crystal SiC is the so-called physical vapor transport (PVT) method, in which not only the thermal field but also the fluid-flow field and the distribution of gas species can be hardly measured directly. In this study, a multi-component flow model is proposed that includes the inside and outside of a growth chamber and a joint between the seed crystal holder and crucible which allows exchanges of the gas species. The joint is simulated as a thin porous graphite sheet. The Hertz-Knudsen equation is used to describe the sublimation and deposition. The convection and diffusion are described by the Navier–Stokes equations and mixture-averaged diffusion model, in which the Stefan flow is taken into account. The numerical simulations are conducted by the finite element method (FEM) with a multi-physics coupled model, which is able to predict the fluid flow field, species distribution field, crystal growth rate, and evolution of the molar concentration of dopant gas. Using this model, the effects of several experimental conditions on the transport of gas species and the growth rate of single-crystal SiC are analyzed.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi Lin, Xinyu Lu, Hanming Wang, Xudong Bai, Xuechao Liu, Min Jin
Indium selenides (InSe) is a promising layer-structured semiconductor with broad potential applications in photovoltaics, diodes, and optic devices, but its thermoelectric performance is limited by the high thermal conductivity. In this work, by alloying high-performance thermoelectric SnSe in InSe, the In0.5Sn0.5Se crystal is prepared via a zone melting method. The density of In0.5Sn0.5Se crystal is measured as 5.81 g cm−3 which is between the density of pure SnSe and InSe. The XRD measurements indicate that the grown In0.5Sn0.5Se crystal consists of InSe and SnSe crystals with a preferred orientation along (00l) and (h00) planes, respectively. SEM and EDS analysis reveal that eutectic InSe and SnSe phases interdigitate with each other. The thermogravimetry analysis shows a slow decrease at a temperature ≈700 °C. In0.5Sn0.5Se crystal displays a n-type conduct behavior, the electrical conductivity σ is ≈0.02 Scm−1 at room temperature and increases to 8.4 Scm−1 under 820 K. The highest power factor PF is estimated to be ≈0.36 µWcmK−2 near 570 K. The InSe-SnSe phase boundaries lead the thermal conductivity of In0.5Sn0.5Se crystal to be as low as 0.29 Wm−1K−1. Due to the low lattice thermal conductivity, In0.5Sn0.5Se crystal shows a ZT value of 0.04 at 600 K in this work.
{"title":"Preparation of In0.5Sn0.5Se Crystal via a Zone Melting Method and Evaluation of its Thermoelectric Properties","authors":"Siqi Lin, Xinyu Lu, Hanming Wang, Xudong Bai, Xuechao Liu, Min Jin","doi":"10.1002/crat.202400057","DOIUrl":"10.1002/crat.202400057","url":null,"abstract":"<p>Indium selenides (InSe) is a promising layer-structured semiconductor with broad potential applications in photovoltaics, diodes, and optic devices, but its thermoelectric performance is limited by the high thermal conductivity. In this work, by alloying high-performance thermoelectric SnSe in InSe, the In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal is prepared via a zone melting method. The density of In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal is measured as 5.81 g cm<sup>−3</sup> which is between the density of pure SnSe and InSe. The XRD measurements indicate that the grown In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal consists of InSe and SnSe crystals with a preferred orientation along (00l) and (h00) planes, respectively. SEM and EDS analysis reveal that eutectic InSe and SnSe phases interdigitate with each other. The thermogravimetry analysis shows a slow decrease at a temperature ≈700 °C. In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal displays a n-type conduct behavior, the electrical conductivity <i>σ</i> is ≈0.02 Scm<sup>−1</sup> at room temperature and increases to 8.4 Scm<sup>−1</sup> under 820 K. The highest power factor <i>PF</i> is estimated to be ≈0.36 µWcmK<sup>−2</sup> near 570 K. The InSe-SnSe phase boundaries lead the thermal conductivity of In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal to be as low as 0.29 Wm<sup>−1</sup>K<sup>−1</sup>. Due to the low lattice thermal conductivity, In<sub>0.5</sub>Sn<sub>0.5</sub>Se crystal shows a <i>ZT</i> value of 0.04 at 600 K in this work.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, phosphogypsum (PG) is simulated by doping fluorine and phosphorus ions in an analytically pure reagent of gypsum dihydrate. The influence of fluorine and phosphorus impurity and content on the dehydration reaction process of phosphogypsum and its crystalline micromorphology is assessed during the preparation of α-type gypsum hemihydrate in the reversed-phase microemulsion system and its mechanism. The results show that when the fluorine content increases from 0 to 1.0 mol L−1 (ωNaF = 1.0 mol L−1), the dehydration process of dihydrate gypsum will be greatly slowed down. Scanning electron microscopy (SEM) analysis showed that even a small amount of F− (ωNaF = 0.2 mol L−1) can significantly inhibit the formation of α-type hemi-hydrated gypsum. When ωH3PO4 = 0.10 mol L−1, the water of crystallization content in the solid phase of the sample decreased to 5.24% after 90 min, which is significantly lower than during the same period of the benchmark group. However, there is a threshold value for the effect of phosphorus on the microscopic morphology of the α-type gypsum hemihydrate crystals, when ωH3PO4 ≤ 0.04 mol L−1, the crystal morphology is basically unaffected. Moreover, when ωH3PO4 continued to increase, the defects on the crystal surface increased.
{"title":"Effect of Fluorine and Phosphorus Impurities in Phosphogypsum on Microstructure and Mechanism of α-Type Hemihydrate Gypsum Crystals","authors":"Xingyu Chen, Tianyao Shi, Weidong Zhao, Yuefei Li","doi":"10.1002/crat.202300326","DOIUrl":"10.1002/crat.202300326","url":null,"abstract":"<p>In this study, phosphogypsum (PG) is simulated by doping fluorine and phosphorus ions in an analytically pure reagent of gypsum dihydrate. The influence of fluorine and phosphorus impurity and content on the dehydration reaction process of phosphogypsum and its crystalline micromorphology is assessed during the preparation of α-type gypsum hemihydrate in the reversed-phase microemulsion system and its mechanism. The results show that when the fluorine content increases from 0 to 1.0 mol L<sup>−1</sup> (ωNaF = 1.0 mol L<sup>−1</sup>), the dehydration process of dihydrate gypsum will be greatly slowed down. Scanning electron microscopy (SEM) analysis showed that even a small amount of F− (ωNaF = 0.2 mol L<sup>−1</sup>) can significantly inhibit the formation of α-type hemi-hydrated gypsum. When ωH<sub>3</sub>PO<sub>4</sub> = 0.10 mol L<sup>−1</sup>, the water of crystallization content in the solid phase of the sample decreased to 5.24% after 90 min, which is significantly lower than during the same period of the benchmark group. However, there is a threshold value for the effect of phosphorus on the microscopic morphology of the α-type gypsum hemihydrate crystals, when ωH<sub>3</sub>PO<sub>4</sub> ≤ 0.04 mol L<sup>−1</sup>, the crystal morphology is basically unaffected. Moreover, when ωH<sub>3</sub>PO<sub>4</sub> continued to increase, the defects on the crystal surface increased.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the ecocompatibility with carbonate-based substrates, Ca(OH)2 nanoparticles are currently used for cultural heritage conservation such as wall paintings. However, the nano Ca(OH)2 still suffers from different forms and poor uniformity, limiting its application potential. Also, there is a lack of systematic comparative studies between nano Ca(OH)2 and the commonly used wall painting reinforcement materials. In this study, homogeneous hexagonal nano Ca(OH)2 particles with a size of ≈100 nm are successfully prepared through the convenient chemical liquid phase method and by utilizing surfactants to control the growth. The resulting nano Ca(OH)2 is less agglomerated and has superior crystalline morphology, prolonged suspension time, and more suitable carbonation time in comparison to commercial Ca(OH)2 materials. Additionally, the reinforcement effect of the resulting nano-Ca(OH)2 with that of the commonly used pigment layer reinforcement materials such as AC33, B72, Tetraethyl orthosilicate, WPU (Waterborne polyurethane) and commercial Ca(OH)2 is systematically compared. The synthesized nano Ca(OH)2 penetrated wall painting blocks to a depth of 683 µm, three times deeper than commercial Ca(OH)2, achieving moderate color deviation, higher flexural strength (0.529 MPa), and bond strength (1.105 mg cm−2), thus highlighting its potential in wall painting reinforcement and expanding its application scope.
{"title":"Preparation of Highly Crystalline Nano Ca(OH)2 and Its Comparative Assessment with Commonly Used Materials for the Protection of Wall Paintings","authors":"Ting Zhao, Nian-Chen Ding, Rui Guo, Yuan Fang, Jian-Feng Zhu, Wen-Zong Yang, Yi Qin","doi":"10.1002/crat.202400021","DOIUrl":"10.1002/crat.202400021","url":null,"abstract":"<p>Due to the ecocompatibility with carbonate-based substrates, Ca(OH)<sub>2</sub> nanoparticles are currently used for cultural heritage conservation such as wall paintings. However, the nano Ca(OH)<sub>2</sub> still suffers from different forms and poor uniformity, limiting its application potential. Also, there is a lack of systematic comparative studies between nano Ca(OH)<sub>2</sub> and the commonly used wall painting reinforcement materials. In this study, homogeneous hexagonal nano Ca(OH)<sub>2</sub> particles with a size of ≈100 nm are successfully prepared through the convenient chemical liquid phase method and by utilizing surfactants to control the growth. The resulting nano Ca(OH)<sub>2</sub> is less agglomerated and has superior crystalline morphology, prolonged suspension time, and more suitable carbonation time in comparison to commercial Ca(OH)<sub>2</sub> materials. Additionally, the reinforcement effect of the resulting nano-Ca(OH)<sub>2</sub> with that of the commonly used pigment layer reinforcement materials such as AC33, B72, Tetraethyl orthosilicate, WPU (Waterborne polyurethane) and commercial Ca(OH)<sub>2</sub> is systematically compared. The synthesized nano Ca(OH)<sub>2</sub> penetrated wall painting blocks to a depth of 683 µm, three times deeper than commercial Ca(OH)<sub>2</sub>, achieving moderate color deviation, higher flexural strength (0.529 MPa), and bond strength (1.105 mg cm<sup>−2</sup>), thus highlighting its potential in wall painting reinforcement and expanding its application scope.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: Crystal Research and Technology 5'2024","authors":"","doi":"10.1002/crat.202470033","DOIUrl":"https://doi.org/10.1002/crat.202470033","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cover image provided courtesy of Jianguang Zhou, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, China.