A two-port ceramic-based antenna loaded with partially reflecting surface (PRS) is structured and explored. Fan-shaped slot is utilized to create circularly polarized wave in both frequency ranges. Dual frequency ranges are due to hybrid mode creation inside the ceramic material, i.e. HEM11δ and HEM12δ modes. PRS is used to change the phase gradient, which in turn tilts the radiation beam (±35°) obtained from different port in opposite direction. This concept is useful to reduce the envelop correlation coefficient using far-field. Experimental verification confirms that the designed antenna works from 26.1 to 27.5 GHz and 31.7 to 33.6 GHz along with less than 3-dB axial ratio from 26.5 to 27.1 GHz and 31.9 to 33.1 GHz respectively. Orthogonal placement of ports introduces the concept of polarization diversity and decreases the coupling between ports by an amount of −25 dB. Good gain value (up to 7.0 dBi) and better value of diversity performance make the designed radiator applicable for 5 G millimeter-wave uses.
The present work studies the design of a high impedance surface (HIS)-based bowtie antenna in the framework of characteristic mode analysis (CMA) and proposes the method of higher order mode suppression. A triangular-elliptical bowtie antenna operating in the frequency range of 1.6–6 GHz is designed. The radiating and higher order modes of the proposed antenna are identified using CMA, and an HIS structure is used to enhance the desired mode and to suppress the higher order mode in order to get high gain, good front-to-back ratio (FBR), and stable radiation characteristics. The final designed HIS-based bowtie antenna gives stable radiation patterns from 1.7 to 5.5 GHz with a maximum boresight gain of 10.5 dB. Also, gain from 6.5 to 12 dB and FBR from 8 to 18 dB are obtained in the operating bandwidth. The proposed antenna features the advantages of low profile, wideband and high boresight gain making it suitable for ground-penetrating radar applications.
In this paper, a single-layer band-stop frequency selective surface (FSS) by combination of Mike Kastle unit and square ring unit is proposed to achieve wide angular stable shielding. Owing to the rotational symmetry of the structure, the designed FSS is insensitive to polarization. By the combination design, the wide angular stability can be achieved as the incident angle increases from 0° to 85°, with only a maximum frequency deviation of 0.012 GHz. Meanwhile, the mechanism of the proposed FSS is investigated by the parametric analysis of equivalent circuit model. The prototype was manufactured and measured to verify the design and simulation analysis, and the measurement results were in good agreement with the simulation results.
This article presents the modeling and realization of a compact substrate integrated coaxial line (SICL) based butler matrix operating at 5 GHz for beam-forming applications. The proposed 4 × 4 butler matrix is developed using SICL-based hybrid coupler, crossover, and phase shifter. A compact 90∘ coupler comprising of center tapped unequal stubs is designed to enhance the size reduction as well as to extend the out of band rejection. Wideband SICL-based crossover operating from DC to 10 GHz is conceived for the proposed butler matrix using a plated through hole as transition. The SICL crossover features very high measured isolation of 65 dB owing to the reduction in coupling between the two signal paths within a lateral footprint of only 0.034 $lambda_g^2$. A meandered SICL-based line is used in order to provide the necessary 45∘ and 0∘ phase shift to realize the butler matrix. The fully shielded and self-packaged compact 4 × 4 SICL-based butler matrix is fabricated and experimentally validated to operate at 5 GHz.
A reflective linear-to-circular polarization converter based on dual frequency-selective structures (FSSs) is proposed and modeled to exhibit efficient wideband performance. The design utilizes a diagonal array of two connected circular patches as an effective anisotropy with regular current distribution in several successive resonances, resulting in orthogonal reflections with a 90° phase difference. The relevant upper-part characteristic is improved by using two separate square patches as a high-frequency resonator. This design with distinct key parameters leads to high overlapping and then excellent bandwidth and efficiency over 105% and 96%, respectively, with an axial ratio below 1.7 dB. A sophisticated equivalent circuit-admittance model including effective mutual coupling between two FSSs is extracted, featuring closed-form equations for the physical design. Different dielectric constants are studied on the converter, which offer controllable coverage in the range of 3–24 GHz (S, C, X, Ku, and K bands), variably. For actual validation, a very thin (0.04λ0 at 3.65 GHz) 8 × 8 array prototype was built and measured at different incident angles, showing angular stability up to 45° in 78% (6–14 GHz) bandwidth. This converter has potential applications in communication, spectroscopy, detection, and imaging in micro-, mm-, and THz-wave regions.