Pub Date : 2024-06-20DOI: 10.1038/s41583-024-00839-5
Lauren N. Ross, Dani S. Bassett
{"title":"Reply to ‘Causal prominence for neuroscience’","authors":"Lauren N. Ross, Dani S. Bassett","doi":"10.1038/s41583-024-00839-5","DOIUrl":"10.1038/s41583-024-00839-5","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"592-592"},"PeriodicalIF":28.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00839-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The power of direct observation: discovery of REM sleep","authors":"Danqian Liu","doi":"10.1038/s41583-024-00840-y","DOIUrl":"10.1038/s41583-024-00840-y","url":null,"abstract":"In this Journal Club, Danqian Liu describes the 1953 paper that reported the discovery of rapid eye movement (REM) sleep.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"595-595"},"PeriodicalIF":28.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1038/s41583-024-00829-7
Jingjing Gao, Swetharajan Gunasekar, Ziting (Judy) Xia, Kiruba Shalin, Christopher Jiang, Hao Chen, Dongtak Lee, Sohyung Lee, Nishkal D. Pisal, James N. Luo, Ana Griciuc, Jeffrey M. Karp, Rudolph Tanzi, Nitin Joshi
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders. Recent advances in the development of gene therapy tools provide hope that these approaches might modulate the altered gene expression that characterizes many CNS disorders. Gao et al. provide an overview of current gene therapy strategies, highlighting the interdependence of therapeutic modality, delivery vehicle and administration route for translational success.
{"title":"Gene therapy for CNS disorders: modalities, delivery and translational challenges","authors":"Jingjing Gao, Swetharajan Gunasekar, Ziting (Judy) Xia, Kiruba Shalin, Christopher Jiang, Hao Chen, Dongtak Lee, Sohyung Lee, Nishkal D. Pisal, James N. Luo, Ana Griciuc, Jeffrey M. Karp, Rudolph Tanzi, Nitin Joshi","doi":"10.1038/s41583-024-00829-7","DOIUrl":"10.1038/s41583-024-00829-7","url":null,"abstract":"Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders. Recent advances in the development of gene therapy tools provide hope that these approaches might modulate the altered gene expression that characterizes many CNS disorders. Gao et al. provide an overview of current gene therapy strategies, highlighting the interdependence of therapeutic modality, delivery vehicle and administration route for translational success.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"553-572"},"PeriodicalIF":28.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1038/s41583-024-00835-9
Sabine Krabbe
Sabine Krabbe describes a 1993 study of classical conditioning in the honeybee that provided early insights into the mechanisms of predictive learning.
{"title":"Lessons on predictive learning from the honeybee","authors":"Sabine Krabbe","doi":"10.1038/s41583-024-00835-9","DOIUrl":"10.1038/s41583-024-00835-9","url":null,"abstract":"Sabine Krabbe describes a 1993 study of classical conditioning in the honeybee that provided early insights into the mechanisms of predictive learning.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"518-518"},"PeriodicalIF":28.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1038/s41583-024-00832-y
Alexander J. Shackman, Shannon E. Grogans, Andrew S. Fox
{"title":"Fear, anxiety and the functional architecture of the human central extended amygdala","authors":"Alexander J. Shackman, Shannon E. Grogans, Andrew S. Fox","doi":"10.1038/s41583-024-00832-y","DOIUrl":"10.1038/s41583-024-00832-y","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"587-588"},"PeriodicalIF":28.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1038/s41583-024-00834-w
Liping Wang, Yu-Ting Tseng, Bernhard Schaefke, Pengfei Wei, Sheng He
{"title":"Reply to ‘Fear, anxiety and the functional architecture of the human central extended amygdala’","authors":"Liping Wang, Yu-Ting Tseng, Bernhard Schaefke, Pengfei Wei, Sheng He","doi":"10.1038/s41583-024-00834-w","DOIUrl":"10.1038/s41583-024-00834-w","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"589-590"},"PeriodicalIF":28.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00834-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A pas de deux between the hippocampus and the cortex during sleep","authors":"Adrien Peyrache","doi":"10.1038/s41583-024-00828-8","DOIUrl":"10.1038/s41583-024-00828-8","url":null,"abstract":"In this Journal Club, Adrien Peyrache highlights a 1998 paper that showed memory formation as a dynamic process involving multiple brain areas.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"517-517"},"PeriodicalIF":28.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s41583-024-00831-z
Izumi Fukunaga
In this Journal Club, Izumi Fukunaga discusses John Hopfield’s 1995 paper, which proposed a mechanism by which a continuously variable sensory stimulus can be transformed into a timing-based code.
{"title":"Pattern recognition using action potential timing","authors":"Izumi Fukunaga","doi":"10.1038/s41583-024-00831-z","DOIUrl":"10.1038/s41583-024-00831-z","url":null,"abstract":"In this Journal Club, Izumi Fukunaga discusses John Hopfield’s 1995 paper, which proposed a mechanism by which a continuously variable sensory stimulus can be transformed into a timing-based code.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 7","pages":"452-452"},"PeriodicalIF":28.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1038/s41583-024-00822-0
Kara A. Fulton, David Zimmerman, Aravi Samuel, Katrin Vogt, Sandeep Robert Datta
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour. The detection, discrimination and categorization of odours are essential for survival across the animal kingdom. In this Review, Datta and co-workers describe and compare the neural circuits that mediate the processing of olfactory information and the key principles of olfactory coding in insects and mammals.
{"title":"Common principles for odour coding across vertebrates and invertebrates","authors":"Kara A. Fulton, David Zimmerman, Aravi Samuel, Katrin Vogt, Sandeep Robert Datta","doi":"10.1038/s41583-024-00822-0","DOIUrl":"10.1038/s41583-024-00822-0","url":null,"abstract":"The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour. The detection, discrimination and categorization of odours are essential for survival across the animal kingdom. In this Review, Datta and co-workers describe and compare the neural circuits that mediate the processing of olfactory information and the key principles of olfactory coding in insects and mammals.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 7","pages":"453-472"},"PeriodicalIF":28.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}