Due to the flexible characteristics of the rubber track, the ground pressure distribution on the soil is uneven, which will greatly increase the risk of soil compaction. Roller in the tracked chassis is a key influencing factor. Therefore, accurate analysis of the effect of the rollers on soil surface vertical stress distribution is important. In this research, the simulation of soil surface vertical stress distribution under rubber track with different roller structures and arrangements was carried out and experimentally validated. Firstly, a load transfer model of the roller-rubber track-soil system was developed. Then, a FEM simulation model of the roller −rubber track-soil system was constructed. The effect a single roller structure and the arrangement of multiple rollers was analyzed. Finally, field tests were carried out to test the soil surface vertical stress distribution with rollers of uniform distribution and dense at both sides. Results showed that the stress peaks were 69.3 kPa and 62.4 kPa, respectively. The soil surface vertical stress under the roller-track contact location was more than twice the average over the whole track surface. The diameter of a single roller and the arrangement of multiple rollers were the most important factors on the stress distribution.
扫码关注我们
求助内容:
应助结果提醒方式:
