首页 > 最新文献

Journal of Terramechanics最新文献

英文 中文
Design and implementation of a novel apparatus for terramechanics studies of helical scrolls 一种用于螺旋涡旋地力学研究的新型仪器的设计与实现
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-11-20 DOI: 10.1016/j.jterra.2023.11.001
Manmeet Brar, Jorge Villacrés, Shayan Meschian, Martin Barczyk, Michael Lipsett

Modeling the force interaction between a wheel and the ground is necessary when evaluating the effectiveness of a vehicle’s mobility on challenging terrain. Soft soils with low bearing strength are a particularly difficult medium for wheeled vehicles. Helical scrolls have shown promise as an alternative to wheels which can work across a range of terrains, warranting a detailed terramechanics study to model their capabilities. Most of the existing terramechanics literature is limited to wheels and often employs an apparatus to study single wheels in a fixed geometry.

This paper describes the design and implementation of a novel apparatus capable of housing a range of scroll geometries and configurations. The apparatus is comprised of a soil container, carriage to drive the scroll in two operating configurations, and a surrounding frame that enables both vertical and horizontal motions of the carriage. The carriage is outfitted with a drive system and instrumentation to measure the sinkage, stress, and drawbar pull values required for a terramechanics characterization. Initial stress-sinkage curves for three different scroll configurations align with expected results and provide a proof of concept that the proposed apparatus can successfully measure differing geometric parameters and can be used for further terramechanics characterizations.

在评估车辆在复杂地形上的机动效率时,对车轮与地面之间的力相互作用进行建模是必要的。承载强度低的软土对轮式车辆来说是一种特别困难的介质。螺旋卷轴作为车轮的替代品已经显示出了希望,它可以在一系列地形上工作,需要详细的地形力学研究来模拟它们的能力。现有的大多数地形力学文献都局限于车轮,并且通常使用仪器来研究固定几何形状的单个车轮。本文描述了一种能够容纳一系列涡旋几何形状和配置的新型装置的设计和实现。该装置包括土壤容器、以两种操作配置驱动卷轴的载体以及使载体进行垂直和水平运动的周围框架。小车配备了驱动系统和仪器来测量下沉、应力和拉杆拉力值,这是地形力学表征所需的。三种不同涡旋结构的初始应力-沉陷曲线与预期结果一致,证明了所提出的仪器可以成功测量不同的几何参数,并可用于进一步的地形力学表征。
{"title":"Design and implementation of a novel apparatus for terramechanics studies of helical scrolls","authors":"Manmeet Brar,&nbsp;Jorge Villacrés,&nbsp;Shayan Meschian,&nbsp;Martin Barczyk,&nbsp;Michael Lipsett","doi":"10.1016/j.jterra.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.11.001","url":null,"abstract":"<div><p>Modeling the force interaction between a wheel and the ground is necessary when evaluating the effectiveness of a vehicle’s mobility on challenging terrain. Soft soils with low bearing strength are a particularly difficult medium for wheeled vehicles. Helical scrolls have shown promise as an alternative to wheels which can work across a range of terrains, warranting a detailed terramechanics study to model their capabilities. Most of the existing terramechanics literature is limited to wheels and often employs an apparatus to study single wheels in a fixed geometry.</p><p>This paper describes the design and implementation of a novel apparatus capable of housing a range of scroll geometries and configurations. The apparatus is comprised of a soil container, carriage to drive the scroll in two operating configurations, and a surrounding frame that enables both vertical and horizontal motions of the carriage. The carriage is outfitted with a drive system and instrumentation to measure the sinkage, stress, and drawbar pull values required for a terramechanics characterization. Initial stress-sinkage curves for three different scroll configurations align with expected results and provide a proof of concept that the proposed apparatus can successfully measure differing geometric parameters and can be used for further terramechanics characterizations.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 89-100"},"PeriodicalIF":2.4,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489823000885/pdfft?md5=933ea986684083e2a2ff4cc5142422bc&pid=1-s2.0-S0022489823000885-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138355310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction 土壤-轮胎/农具相互作用数值模拟研究进展
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-13 DOI: 10.1016/j.jterra.2023.09.003
Dhruvin Jasoliya , Alexandrina Untaroiu , Costin Untaroiu

The study of deformable soils is one of the key factors in determining the tire, vehicle and/or agricultural tool design parameters. This literature review provides a brief overview of soil classification, soil testing, soil constitutive models, and numerical approaches utilized to model soil-tire/tool interaction. In the past, empirical, semi-empirical, and analytical soil models were used in these studies. However, some limitations occurred in terms of characterization of soil-tire/tool interaction in detail due to a large number of variables such as cohesion, moisture content, etc. In the last few decades, the finite element (FE) method was used with different formulations such as Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian to simulate the soil-tire/tool interaction. Recently, particle-based methods based on continuum mechanics and discrete mechanics started to be employed and showed good capability in terms of modeling of soil deformation and separation. Overall, this literature review provides simulation researchers insights into soil interaction modeling with tires and agricultural tools.

可变形土的研究是确定轮胎、车辆和/或农具设计参数的关键因素之一。这篇文献综述提供了土壤分类、土壤测试、土壤本构模型和用于模拟土壤-轮胎/工具相互作用的数值方法的简要概述。在过去的研究中,使用了经验、半经验和分析土壤模型。然而,由于黏聚力、含水率等大量变量,在详细表征土壤-轮胎/工具相互作用方面存在一些局限性。在过去的几十年里,有限元(FE)方法被用于不同的公式,如拉格朗日、欧拉和任意拉格朗日欧拉来模拟土壤-轮胎/工具的相互作用。近年来,基于连续力学和离散力学的基于颗粒的方法开始应用,并在土的变形和分离建模方面表现出良好的能力。总的来说,这篇文献综述为模拟研究人员提供了轮胎和农具土壤相互作用模型的见解。
{"title":"A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction","authors":"Dhruvin Jasoliya ,&nbsp;Alexandrina Untaroiu ,&nbsp;Costin Untaroiu","doi":"10.1016/j.jterra.2023.09.003","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.09.003","url":null,"abstract":"<div><p>The study of deformable soils is one of the key factors in determining the tire, vehicle and/or agricultural tool design parameters. This literature review provides a brief overview of soil classification, soil testing, soil constitutive models, and numerical approaches utilized to model soil-tire/tool interaction. In the past, empirical, semi-empirical, and analytical soil models were used in these studies. However, some limitations occurred in terms of characterization of soil-tire/tool interaction in detail due to a large number of variables such as cohesion, moisture content, etc. In the last few decades, the finite element (FE) method was used with different formulations such as Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian to simulate the soil-tire/tool interaction. Recently, particle-based methods based on continuum mechanics and discrete mechanics started to be employed and showed good capability in terms of modeling of soil deformation and separation. Overall, this literature review provides simulation researchers insights into soil interaction modeling with tires and agricultural tools.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 41-64"},"PeriodicalIF":2.4,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49876190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region 西南丘陵山区粘性土颗粒离散元接触模型及参数定标
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-13 DOI: 10.1016/j.jterra.2023.10.002
Le Yang , Junwei Li , Qinghui Lai , Liangliang Zhao , Jianjian Li , Ronghao Zeng , Zhihong Zhang

Distinct physical properties of red clay soil in hilly and mountainous regions of southwest China, including high adhesiveness and density, challenge the operation of agricultural machinery. A scarcity of accurate discrete element simulation parameters for this soil type restricts computational modeling. The study was focused on red clay soil with a moisture content of 12.50% ± 1% and a measured repose angle of 35.54°. The soil's inherent physical properties were identified through experimental assessments. Soil contact mechanical parameters were obtained from the GEMM database, and optimal contact parameter ranges were determined using Steepest Ascent Experiments, with the simulated soil particle repose angle serving as the response value. A second-order regression model was developed using a quadratic regression rotation orthogonal combination test. By taking the actual repose angle as the optimization criterion, parameters were optimized. The optimal contact mechanical parameters in EDEM simulations were identified as: JKR surface energy at 8.981 J/m2, recovery coefficient at 0.474, dynamic friction coefficient at 0.196, and static friction coefficient at 0.45. The model yielded a repose angle of 36.21°, closely corresponding with the observed value, with a relative error of 1.80%. The parameters calibrated in this study offer a valuable reference for future soil-tool interaction studies and tillage implement optimization in these regions.

西南丘陵山区红粘土具有粘性高、密度大等独特的物理特性,这对农业机械的操作构成了挑战。由于缺乏精确的离散元模拟参数,限制了这种土壤类型的计算建模。以含水量为12.50%±1%、实测休止角为35.54°的红粘土为研究对象。土壤的固有物理性质是通过实验评估确定的。从GEMM数据库获取土壤接触力学参数,以模拟的土壤颗粒休止角作为响应值,利用陡坡试验确定最佳接触参数范围。采用二次回归旋转正交组合试验建立了二阶回归模型。以实际休止角为优化准则,对参数进行了优化。EDEM模拟的最优接触力学参数为:JKR表面能为8.981 J/m2,恢复系数为0.474,动摩擦系数为0.196,静摩擦系数为0.45。模型得到的休止角为36.21°,与观测值基本吻合,相对误差为1.80%。本研究校正的参数为今后这些地区土壤-工具相互作用研究和耕作方式优化提供了有价值的参考。
{"title":"Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region","authors":"Le Yang ,&nbsp;Junwei Li ,&nbsp;Qinghui Lai ,&nbsp;Liangliang Zhao ,&nbsp;Jianjian Li ,&nbsp;Ronghao Zeng ,&nbsp;Zhihong Zhang","doi":"10.1016/j.jterra.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.10.002","url":null,"abstract":"<div><p>Distinct physical properties of red clay soil in hilly and mountainous regions of southwest China, including high adhesiveness and density, challenge the operation of agricultural machinery. A scarcity of accurate discrete element simulation parameters for this soil type restricts computational modeling. The study was focused on red clay soil with a moisture content of 12.50% ± 1% and a measured repose angle of 35.54°. The soil's inherent physical properties were identified through experimental assessments. Soil contact mechanical parameters were obtained from the GEMM database, and optimal contact parameter ranges were determined using Steepest Ascent Experiments, with the simulated soil particle repose angle serving as the response value. A second-order regression model was developed using a quadratic regression rotation orthogonal combination test. By taking the actual repose angle as the optimization criterion, parameters were optimized. The optimal contact mechanical parameters in EDEM simulations were identified as: JKR surface energy at 8.981 J/m<sup>2</sup>, recovery coefficient at 0.474, dynamic friction coefficient at 0.196, and static friction coefficient at 0.45. The model yielded a repose angle of 36.21°, closely corresponding with the observed value, with a relative error of 1.80%. The parameters calibrated in this study offer a valuable reference for future soil-tool interaction studies and tillage implement optimization in these regions.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 73-87"},"PeriodicalIF":2.4,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49876189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based soil compaction monitoring: A proof-of-concept study 基于深度学习的土壤压实监测:概念验证研究
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-11 DOI: 10.1016/j.jterra.2023.10.001
Shota Teramoto , Shinichi Ito , Taizo Kobayashi

The dynamic behavior of the vibratory drum of a soil compactor for earthworks is known to be affected by soil stiffness. Real-time monitoring techniques measuring the acceleration of vibratory drums have been widely used for soil compaction quality control; however, their accuracy can be affected by soil type and conditions. To resolve this problem, a novel deep learning-based technique is developed. The method allows the regression estimation of soil stiffness from vibration drum acceleration responses. By expanding the range of applicability and improving accuracy, the proposed method provides a more reliable and robust approach to evaluate soil compaction quality. To train the estimation model, numerous datasets of noise-free waveform data are numerically generated by solving the equations of motion of the mass–spring–damper system of a vibratory roller. To validate the effectiveness of the proposed technique, a field experiment is conducted. A good correlation between the estimated and measured values is demonstrated by the experimental results. The correlation coefficient is 0.790, indicating the high potential of the proposed method as a new real-time monitoring technique for soil compaction quality.

土方工程用土壤压实机振动鼓的动力特性受到土壤刚度的影响。振动鼓加速度实时监测技术已广泛应用于土壤压实质量控制;然而,它们的准确性会受到土壤类型和条件的影响。为了解决这个问题,开发了一种新的基于深度学习的技术。该方法允许从振动鼓加速度响应中回归估计土壤刚度。该方法扩大了适用范围,提高了精度,为土壤压实质量评价提供了更可靠、更稳健的方法。为了训练估计模型,通过求解振动压路机质量-弹簧-阻尼系统的运动方程,数值生成了大量无噪声波形数据集。为了验证该技术的有效性,进行了现场试验。实验结果表明,估计值与实测值之间具有良好的相关性。相关系数为0.790,表明该方法作为一种新的土壤压实质量实时监测技术具有很大的潜力。
{"title":"Deep learning-based soil compaction monitoring: A proof-of-concept study","authors":"Shota Teramoto ,&nbsp;Shinichi Ito ,&nbsp;Taizo Kobayashi","doi":"10.1016/j.jterra.2023.10.001","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.10.001","url":null,"abstract":"<div><p>The dynamic behavior of the vibratory drum of a soil compactor for earthworks is known to be affected by soil stiffness. Real-time monitoring techniques measuring the acceleration of vibratory drums have been widely used for soil compaction quality control; however, their accuracy can be affected by soil type and conditions. To resolve this problem, a novel deep learning-based technique is developed. The method allows the regression estimation of soil stiffness from vibration drum acceleration responses. By expanding the range of applicability and improving accuracy, the proposed method provides a more reliable and robust approach to evaluate soil compaction quality. To train the estimation model, numerous datasets of noise-free waveform data are numerically generated by solving the equations of motion of the mass–spring–damper system of a vibratory roller. To validate the effectiveness of the proposed technique, a field experiment is conducted. A good correlation between the estimated and measured values is demonstrated by the experimental results. The correlation coefficient is 0.790, indicating the high potential of the proposed method as a new real-time monitoring technique for soil compaction quality.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 65-72"},"PeriodicalIF":2.4,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49876188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single wheel test rig for ocean world rovers 海洋世界漫游者的单轮试验台
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.07.001
Athul Pradeepkumar Girija , Rachana Agrawal , Ye Lu , Archit Arora , Maxim de Jong , Sarag J. Saikia , James M. Longuski

Ocean Worlds such as Europa and Enceladus are known to harbor subsurface liquid water oceans under their icy crust and are high-priority targets for in situ exploration. Compared to the Moon and Mars, Ocean Worlds likely present a significantly more challenging environment for surface mobility systems due to the extremely cold temperature, high radiation dosage, and poorly constrained material properties under these conditions. Small-diameter wheels such as those used by Mars rovers are prone to slip-sinkage in loose soil and damage from sharp rock and ice formations. A 4-wheel rover with a simple drive system and large deployable compliant tires is proposed as a solution for extreme terrain mobility on Ocean World surfaces. The present work describes the design and construction of a single wheel test rig and a prototype large-diameter deployable wheel for Ocean World rovers and initial test results. The test rig allows independent control of the vertical load, slip ratio, slip angle, and camber angle, and accommodates large-diameter deployable wheels. The test rig features a modular test bed that can simulate varied surface features such as fine-grained ice, smooth hard ice, sharp ice formations, and large ice boulder fields.

众所周知,像木卫二和土卫二这样的海洋世界在其冰冷的地壳下蕴藏着地下液态水海洋,是原位勘探的优先目标。与月球和火星相比,由于极冷的温度、高辐射剂量和在这些条件下材料性能的限制很差,海洋世界可能为地表移动系统提供了一个更具挑战性的环境。火星探测车使用的小直径车轮容易在松散的土壤中滑落,也容易被尖锐的岩石和冰层损坏。提出了一种具有简单驱动系统和大型可展开柔性轮胎的四轮漫游车,作为海洋世界表面极端地形移动的解决方案。本文介绍了“海洋世界”月球车单轮试验台和大直径可展开轮样机的设计和制造,以及初步试验结果。该试验台可以独立控制垂直载荷、滑移比、滑移角和弧度角,并可容纳大直径可展开车轮。该测试平台具有模块化测试平台,可以模拟各种表面特征,如细粒度冰、光滑硬冰、尖锐的冰形成和大型冰巨石场。
{"title":"A single wheel test rig for ocean world rovers","authors":"Athul Pradeepkumar Girija ,&nbsp;Rachana Agrawal ,&nbsp;Ye Lu ,&nbsp;Archit Arora ,&nbsp;Maxim de Jong ,&nbsp;Sarag J. Saikia ,&nbsp;James M. Longuski","doi":"10.1016/j.jterra.2023.07.001","DOIUrl":"10.1016/j.jterra.2023.07.001","url":null,"abstract":"<div><p>Ocean Worlds such as Europa and Enceladus are known to harbor subsurface liquid water oceans under their icy crust and are high-priority targets for in situ exploration. Compared to the Moon and Mars, Ocean Worlds likely present a significantly more challenging environment for surface mobility systems due to the extremely cold temperature, high radiation dosage, and poorly constrained material properties under these conditions. Small-diameter wheels such as those used by Mars rovers are prone to slip-sinkage in loose soil and damage from sharp rock and ice formations. A 4-wheel rover with a simple drive system and large deployable compliant tires is proposed as a solution for extreme terrain mobility on Ocean World surfaces. The present work describes the design and construction of a single wheel test rig and a prototype large-diameter deployable wheel for Ocean World rovers and initial test results. The test rig allows independent control of the vertical load, slip ratio, slip angle, and camber angle, and accommodates large-diameter deployable wheels. The test rig features a modular test bed that can simulate varied surface features such as fine-grained ice, smooth hard ice, sharp ice formations, and large ice boulder fields.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 101-119"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49029066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Obstacle detection in snow covered terrain 积雪地形中的障碍物检测
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.05.004
S.N. Vecherin, J.M. Shaker, M.W. Parker

This work describes an automatic detection method of obstacles covered by snow. The method is based on the detection of statistical anomalies relative to an estimated background image which contains no obstacles. The sensitivity of the detection can be adjusted by a specified probability of false alarms, and the obstacle detection confidence is characterized by a probability of detection. Statistical properties of the background image are estimated from the given image without additional information on the background. The visible height of obstacles above the snow is related to the actual height of the obstacles above the ground, so that an operator can estimate the actual height of the snow covered obstacle. The developed method requires no training, is self-calibrating to the cluttered images, operates with a single given image, and aligns with a detection quantification adopted in the receiver operating characteristic framework.

本文描述了一种积雪覆盖障碍物的自动检测方法。该方法是基于检测相对于不包含障碍物的估计背景图像的统计异常。检测灵敏度可以通过指定的虚警概率来调节,障碍物检测置信度用检测概率来表征。从给定的图像中估计背景图像的统计属性,而不需要背景上的附加信息。积雪上障碍物的可见高度与障碍物离地面的实际高度有关,这样操作员就可以估计积雪覆盖障碍物的实际高度。所开发的方法不需要训练,对杂乱图像进行自校准,对单个给定图像进行操作,并且与接收机工作特性框架中采用的检测量化相一致。
{"title":"Obstacle detection in snow covered terrain","authors":"S.N. Vecherin,&nbsp;J.M. Shaker,&nbsp;M.W. Parker","doi":"10.1016/j.jterra.2023.05.004","DOIUrl":"10.1016/j.jterra.2023.05.004","url":null,"abstract":"<div><p>This work describes an automatic detection method of obstacles covered by snow. The method is based on the detection of statistical anomalies relative to an estimated background image which contains no obstacles. The sensitivity of the detection can be adjusted by a specified probability of false alarms, and the obstacle detection confidence is characterized by a probability of detection. Statistical properties of the background image are estimated from the given image without additional information on the background. The visible height of obstacles above the snow is related to the actual height of the obstacles above the ground, so that an operator can estimate the actual height of the snow covered obstacle. The developed method requires no training, is self-calibrating to the cluttered images, operates with a single given image, and aligns with a detection quantification adopted in the receiver operating characteristic framework.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 1-8"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48303038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of modeling and validation techniques for tire-deformable soil interactions 轮胎-可变形土相互作用的建模和验证技术综述
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.05.007
Varsha S Swamy , Rashna Pandit , Alba Yerro , Corina Sandu , Denise M. Rizzo , Katherine Sebeck , David Gorsich

The mobility of vehicles in off-road environments is critical for many applications. Predicting the tire-soil interaction is a challenge, especially in non-linear deformable terrain. This paper presents an overview of the bibliographic references on tires–deformable soil interactions after the 2000's, identifying the gaps in the literature. The capabilities and challenges of different modeling frameworks used for mobility (i.e., empirical, semi-empirical, and physics-based) are discussed; special emphasis is given to continuum-based frameworks. A summary of terrain material models used to approximate the behavior of coarse and fine-grained soils is provided with practices used to characterize such materials. A review of tire models for deformable soil navigation and the tire-soil interfaces is provided. Strategies to validate all these models are presented. Finally, the application of these studies for assessing the sensitivity concerning input parameters (e.g., velocity, inflation pressure, and normal load), multi-pass, multi-layered soils, wet soils, and fully integrated multi-body vehicle models are discussed. The final contribution of this review paper is a summary table that synthesizes the extensive bibliographic review. Overall, this work highlights a lack of physics-based trafficability studies in wet and plastic deformable soils. Moreover, studies on contact adhesion, stone picking, multipass, and cornering also need improvement.

车辆在非公路环境中的机动性对许多应用来说至关重要。预测轮胎-土壤相互作用是一个挑战,特别是在非线性变形地形。本文概述了2000年以后关于轮胎-可变形土壤相互作用的参考文献,并确定了文献中的空白。讨论了用于移动性的不同建模框架(即经验的、半经验的和基于物理的)的能力和挑战;特别强调以连续为基础的框架。用于近似粗粒和细粒土壤行为的地形材料模型的摘要提供了用于表征此类材料的实践。本文综述了用于可变形土壤导航的轮胎模型和轮胎-土壤界面模型。提出了验证所有这些模型的策略。最后,讨论了这些研究在评估输入参数(如速度、膨胀压力和正常载荷)、多通道、多层土壤、湿土和完全集成的多体车辆模型的敏感性方面的应用。这篇综述论文的最后贡献是一个综合了广泛的书目综述的汇总表。总的来说,这项工作强调了在湿和塑性变形土壤中缺乏基于物理的可通行性研究。此外,在接触粘附、拣石、多通、过角等方面的研究也有待改进。
{"title":"Review of modeling and validation techniques for tire-deformable soil interactions","authors":"Varsha S Swamy ,&nbsp;Rashna Pandit ,&nbsp;Alba Yerro ,&nbsp;Corina Sandu ,&nbsp;Denise M. Rizzo ,&nbsp;Katherine Sebeck ,&nbsp;David Gorsich","doi":"10.1016/j.jterra.2023.05.007","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.05.007","url":null,"abstract":"<div><p>The mobility of vehicles in off-road environments is critical for many applications. Predicting the tire-soil interaction is a challenge, especially in non-linear deformable terrain. This paper presents an overview of the bibliographic references on tires–deformable soil interactions after the 2000's, identifying the gaps in the literature. The capabilities and challenges of different modeling frameworks used for mobility (i.e., empirical, semi-empirical, and physics-based) are discussed; special emphasis is given to continuum-based frameworks. A summary of terrain material models used to approximate the behavior of coarse and fine-grained soils is provided with practices used to characterize such materials. A review of tire models for deformable soil navigation and the tire-soil interfaces is provided. Strategies to validate all these models are presented. Finally, the application of these studies for assessing the sensitivity concerning input parameters (e.g., velocity, inflation pressure, and normal load), multi-pass, multi-layered soils, wet soils, and fully integrated multi-body vehicle models are discussed. The final contribution of this review paper is a summary table that synthesizes the extensive bibliographic review. Overall, this work highlights a lack of physics-based trafficability studies in wet and plastic deformable soils. Moreover, studies on contact adhesion, stone picking, multipass, and cornering also need improvement.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 73-92"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49878024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a soil clod recognition bench-scale experiment for discrete element method modeling of tilling phenomena 离散元法模拟耕作现象的土块识别台架试验的建立
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.06.004
Shuto Ishii , Isami Suto , Hiroaki Tabe , Kota Aono , Moju Zhao , Yoshifumi Ueshige , Kohei Matsushita , Takashi Iritani , Tadayuki Hanamoto , Masayuki Nakao , Keisuke Nagato

Rotary claws are used to break soil into small pieces and plow the soil flat. In this study, rotary claw development in tiller machines was evaluated using both equipment and the discrete element method (DEM). However, evaluation through equipment is imprecise and time consuming. Although DEM is an effective method for modeling the movement of granular materials, it requires numerous parameters to ensure accuracy, which must be determined through experimental evaluation and comparison. To resolve this concern, an image processing method was developed that leverages point cloud data obtained from a depth camera to capture changes in soil shape, distribution, and soil clod size before and after tilling. The effect of soil moisture content and claw rotation speed on soil clod formation and decomposition was evaluated. The experimental results show that the location, number, and soil clod size vary with soil moisture content and claw rotation speed. The results were compared with the DEM simulation to reconcile differences and confirm the feasibility of the proposed method. The model experiment system for soil clods and the image processing method facilitates a quantitative comparison between experimental and DEM simulated soil dispersal, which accelerates the search for DEM parameters to reproduce the tilling.

旋转爪是用来把土壤掰成小块,把土壤犁平的。在本研究中,采用离散元法(DEM)对分蘖机的旋爪发展进行了评估。然而,通过设备进行评估是不精确和耗时的。虽然DEM是一种有效的模拟颗粒状物质运动的方法,但它需要大量的参数来保证准确性,这些参数必须通过实验评估和比较来确定。为了解决这一问题,研究人员开发了一种图像处理方法,利用深度相机获得的点云数据来捕捉耕作前后土壤形状、分布和土壤块大小的变化。评价了土壤含水量和爪旋转速度对土壤结块形成和分解的影响。实验结果表明,爪爪的位置、数量和土块尺寸随土壤含水量和爪爪转速的变化而变化。将结果与DEM模拟结果进行比较,以调和差异,并验证所提方法的可行性。土块模型实验系统和图像处理方法便于将实验与DEM模拟的土壤分散进行定量比较,从而加快了对DEM参数的搜索以再现耕作过程。
{"title":"Construction of a soil clod recognition bench-scale experiment for discrete element method modeling of tilling phenomena","authors":"Shuto Ishii ,&nbsp;Isami Suto ,&nbsp;Hiroaki Tabe ,&nbsp;Kota Aono ,&nbsp;Moju Zhao ,&nbsp;Yoshifumi Ueshige ,&nbsp;Kohei Matsushita ,&nbsp;Takashi Iritani ,&nbsp;Tadayuki Hanamoto ,&nbsp;Masayuki Nakao ,&nbsp;Keisuke Nagato","doi":"10.1016/j.jterra.2023.06.004","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.06.004","url":null,"abstract":"<div><p>Rotary claws are used to break soil into small pieces and plow the soil flat. In this study, rotary claw development in tiller machines was evaluated using both equipment and the discrete element method (DEM). However, evaluation through equipment is imprecise and time consuming. Although DEM is an effective method for modeling the movement of granular materials, it requires numerous parameters to ensure accuracy, which must be determined through experimental evaluation and comparison. To resolve this concern, an image processing method was developed that leverages point cloud data obtained from a depth camera to capture changes in soil shape, distribution, and soil clod size before and after tilling. The effect of soil moisture content and claw rotation speed on soil clod formation and decomposition was evaluated. The experimental results show that the location, number, and soil clod size vary with soil moisture content and claw rotation speed. The results were compared with the DEM simulation to reconcile differences and confirm the feasibility of the proposed method. The model experiment system for soil clods and the image processing method facilitates a quantitative comparison between experimental and DEM simulated soil dispersal, which accelerates the search for DEM parameters to reproduce the tilling.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 63-71"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49878025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of factors affecting the characterisation of soil strength properties using a Bevameter in-situ plate sinkage and shear test apparatus 利用Bevameter原位板沉降剪切试验装置对土强度特性表征影响因素进行试验研究
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.06.002
Ray Kruger, P. Schalk Els, Herman A. Hamersma

The Bekker-Wong soil-wheel interaction model has been widely adopted in the terramechanics field. This model requires the soil to be characterised using a Bevameter, which entails performing in situ plate sinkage and shear stress tests. Bevameter soil characterisation is not a standardised test procedure, and the test setup may influence the identified soil model parameters. This study investigates the influence of the following five factors for partially saturated sandy soil: I) soil preparation method on pressure-sinkage, II) soil preparation method on shear stress, III) torsional vs. translational shear mechanism, IV) shear contact area, and V) the influence of shear velocity. The results indicate that the influence of soil preparation on pressure-sinkage response is substantial, exhibiting an order-of-magnitude difference. The influence of soil preparation on shear tests is notable, but less significant. The shear mechanism, shear contact area and shear velocity exhibited a maximum absolute shear stress difference of 18%, 20% and 10%, respectively. Moreover, depending on the test setup configuration and data processing decisions, the estimated internal soil friction angles ranged from 16.5 to 37.5° for the same soil. The findings are expected to have significant implications for the prediction of vehicle drawbar pull using the Bekker-Wong model.

Bekker-Wong土-轮相互作用模型在地球力学领域被广泛采用。该模型要求使用Bevameter对土壤进行表征,这需要进行原位板下沉和剪切应力测试。Bevameter土壤表征不是一个标准化的测试程序,测试设置可能会影响识别的土壤模型参数。研究了部分饱和砂土的5个影响因素:1)整土方法对压力沉降的影响;2)整土方法对剪应力的影响;3)扭剪与平剪机制;4)剪切接触面积;5)剪切速度的影响。结果表明,整土对压力沉降响应的影响是显著的,表现出数量级的差异。制备土对剪切试验的影响显著,但不显著。剪切机制、剪切接触面积和剪切速度的最大绝对剪应力差异分别为18%、20%和10%。此外,根据试验装置配置和数据处理决策,对相同土壤的估计内摩擦角范围为16.5至37.5°。研究结果预计将对使用Bekker-Wong模型预测车辆拉杆拉力具有重要意义。
{"title":"Experimental investigation of factors affecting the characterisation of soil strength properties using a Bevameter in-situ plate sinkage and shear test apparatus","authors":"Ray Kruger,&nbsp;P. Schalk Els,&nbsp;Herman A. Hamersma","doi":"10.1016/j.jterra.2023.06.002","DOIUrl":"10.1016/j.jterra.2023.06.002","url":null,"abstract":"<div><p>The Bekker-Wong soil-wheel interaction model has been widely adopted in the terramechanics field. This model requires the soil to be characterised using a Bevameter, which entails performing in situ plate sinkage and shear stress tests. Bevameter soil characterisation is not a standardised test procedure, and the test setup may influence the identified soil model parameters. This study investigates the influence of the following five factors for partially saturated sandy soil: I) soil preparation method on pressure-sinkage, II) soil preparation method on shear stress, III) torsional vs. translational shear mechanism, IV) shear contact area, and V) the influence of shear velocity. The results indicate that the influence of soil preparation on pressure-sinkage response is substantial, exhibiting an order-of-magnitude difference. The influence of soil preparation on shear tests is notable, but less significant. The shear mechanism, shear contact area and shear velocity exhibited a maximum absolute shear stress difference of 18%, 20% and 10%, respectively. Moreover, depending on the test setup configuration and data processing decisions, the estimated internal soil friction angles ranged from 16.5 to 37.5° for the same soil. The findings are expected to have significant implications for the prediction of vehicle drawbar pull using the Bekker-Wong model.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 45-62"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41901069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of integrating a bio-inspired convex structure with a low-surface energy polymer on soil adhesion and friction 集成仿生凸结构与低表面能聚合物对土壤粘附和摩擦的影响
IF 2.4 3区 工程技术 Q1 Engineering Pub Date : 2023-10-01 DOI: 10.1016/j.jterra.2023.06.003
Abouelnadar El Salem , Guozhong Zhang , Hongchang Wang , Haytham M. Salem , Mohamed A.I. Abdalla , Ahmed A. Ghazy

The capacity of soil-burrowing animals to move freely in sticky soil is a motivational trait for developing soil-engaging tools with high operational efficiency. Meanwhile, outstanding hydrophobicity, chemical stability, and corrosion resistance make ultra-high molecular weight polyethylene (UHMW-PE) a potential option for reducing soil adhesion. This study looked into the viability of combining a domed surface inspired by the micro-convex structure of the dung beetle skin with the UHMW-PE as a surface coating to reduce sliding resistance. The sliding resistances of three plates (a flat plate of carbon steel, a flat plate of UHMW-PE, and a domed plate of UHMW-PE) were assessed under varied operating and soil conditions. In each treatment, the tested plate was dragged for 0.7 m of the soil bin length, and the sliding resistance was recorded using the distributed stress and strain test and analysis system (DH3820 N). The results revealed that in all treatments, the sliding resistance of the UHMW-PE domed plate was significantly lower than that of the flat steel plate. Furthermore, the UHMW-PE domed plate outperformed the other tested plates in reducing sliding resistance in more moist and sticky soils, paving the way for the development of highly practical and effective soil-engaging tools.

土穴动物在粘性土壤中自由移动的能力是开发高效吸土工具的动力特性。同时,优异的疏水性、化学稳定性和耐腐蚀性使超高分子量聚乙烯(UHMW-PE)成为减少土壤附着力的潜在选择。这项研究着眼于将受蜣螂皮肤微凸结构启发的圆顶表面与超高分子量聚乙烯(UHMW-PE)作为表面涂层相结合的可行性,以减少滑动阻力。研究了碳钢平板、超高分子量聚乙烯平板和超高分子量聚乙烯圆顶板在不同工况和土壤条件下的滑动阻力。在每个处理中,将被试板拖拽0.7 m的土仓长度,并使用DH3820 N分布式应力应变测试分析系统记录其滑动阻力。结果表明,在所有处理中,超高分子量聚乙烯穹顶板的滑动阻力均显著低于扁钢板。此外,超高分子量聚乙烯(UHMW-PE)圆顶板在减少潮湿和粘性土壤中的滑动阻力方面优于其他测试板,为开发高度实用和有效的土壤接触工具铺平了道路。
{"title":"The effect of integrating a bio-inspired convex structure with a low-surface energy polymer on soil adhesion and friction","authors":"Abouelnadar El Salem ,&nbsp;Guozhong Zhang ,&nbsp;Hongchang Wang ,&nbsp;Haytham M. Salem ,&nbsp;Mohamed A.I. Abdalla ,&nbsp;Ahmed A. Ghazy","doi":"10.1016/j.jterra.2023.06.003","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.06.003","url":null,"abstract":"<div><p>The capacity of soil-burrowing animals to move freely in sticky soil is a motivational trait for developing soil-engaging tools with high operational efficiency. Meanwhile, outstanding hydrophobicity, chemical stability, and corrosion resistance make ultra-high molecular weight polyethylene (UHMW-PE) a potential option for reducing soil adhesion. This study looked into the viability of combining a domed surface inspired by the micro-convex structure of the dung beetle skin with the UHMW-PE as a surface coating to reduce sliding resistance. The sliding resistances of three plates (a flat plate of carbon steel, a flat plate of UHMW-PE, and a domed plate of UHMW-PE) were assessed under varied operating and soil conditions. In each treatment, the tested plate was dragged for 0.7 m of the soil bin length, and the sliding resistance was recorded using the distributed stress and strain test and analysis system (DH3820 N). The results revealed that in all treatments, the sliding resistance of the UHMW-PE domed plate was significantly lower than that of the flat steel plate. Furthermore, the UHMW-PE domed plate outperformed the other tested plates in reducing sliding resistance in more moist and sticky soils, paving the way for the development of highly practical and effective soil-engaging tools.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"109 ","pages":"Pages 93-100"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49878026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Terramechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1