首页 > 最新文献

Nature Chemical Engineering最新文献

英文 中文
Design and diagnosis of high-performance CO2-to-CO electrolyzer cells 高性能 CO2 转 CO 电解槽的设计与诊断
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00035-3
Sven Brückner, Quanchen Feng, Wen Ju, Daniela Galliani, Anna Testolin, Malte Klingenhof, Sebastian Ott, Peter Strasser
This work reports the design and diagnostic analysis of a pH-neutral CO2-to-CO zero-gap electrolyzer cell incorporating a nickel–nitrogen-doped carbon catalyst. The cell yields ~100% CO faradaic efficiency at applied current densities of up to 250 mA cm−2 at low cell voltage and 40% total energy efficiency. It features a low stoichiometric CO2 excess, λstoich, of 1.2 that yields a molar CO concentration of ~70%vol in the electrolyzer exit stream at 40% single-pass CO2 conversion, with over 100 h stability. Here we introduce the experimental carbon crossover coefficient (CCC) as a tool for electrolyzer cell diagnostics. The CCC describes the ratio between noncatalytic acid–base CO2 consumption and catalytically generated alkalinity, thereby offering insight into the nature of the prevalent ionic transport and transport mechanisms of undesired CO2 losses. We demonstrate the diagnostic value of the CCC in transport-based cell failure during oscillatory cell flooding between salt precipitation and salt redissolution. The present dynamic cell diagnostics provide practical guidelines toward improved CO2 electrolyzer designs. Optimizing CO2-to-CO electrolyzers is important for developing tandem electrolysis processes. Now an efficient precious metal-free CO2-to-CO electrolyzer cathode design allows operation under a low stoichiometric CO2 excess ratio that yields a molar CO concentration of 70% in the exit stream along with a diagnostic approach to its catalytic and mass transport characteristics.
本研究报告介绍了一种 pH 值中性 CO2 到 CO 零间隙电解槽的设计和诊断分析,该电解槽采用了掺杂镍氮的碳催化剂。该电池在低电压和高达 250 mA cm-2 的应用电流密度下可产生约 100% 的 CO 远电解效率和 40% 的总能效。它的特点是二氧化碳的低化学计量过量(λstoich)为 1.2,在单程二氧化碳转化率为 40% 时,电解槽出口流中的二氧化碳摩尔浓度约为 70%vol,稳定性超过 100 小时。在此,我们介绍实验性碳交叉系数(CCC),作为电解槽诊断的工具。CCC 描述了非催化酸碱 CO2 消耗量与催化产生的碱度之间的比率,从而提供了对普遍存在的离子传输性质和不希望的 CO2 损失的传输机制的深入了解。在盐沉淀和盐再溶解之间的振荡细胞淹没过程中,我们展示了 CCC 在基于传输的细胞失效方面的诊断价值。目前的电池动态诊断为改进二氧化碳电解槽设计提供了实用指南。优化 CO2 到 CO 电解槽对于开发串联电解工艺非常重要。现在,一种高效的无贵金属 CO2 转 CO 电解槽阴极设计可在低化学计量 CO2 过剩率下运行,出口流中的 CO 摩尔浓度为 70%,同时还可对其催化和质量传输特性进行诊断。
{"title":"Design and diagnosis of high-performance CO2-to-CO electrolyzer cells","authors":"Sven Brückner, Quanchen Feng, Wen Ju, Daniela Galliani, Anna Testolin, Malte Klingenhof, Sebastian Ott, Peter Strasser","doi":"10.1038/s44286-024-00035-3","DOIUrl":"10.1038/s44286-024-00035-3","url":null,"abstract":"This work reports the design and diagnostic analysis of a pH-neutral CO2-to-CO zero-gap electrolyzer cell incorporating a nickel–nitrogen-doped carbon catalyst. The cell yields ~100% CO faradaic efficiency at applied current densities of up to 250 mA cm−2 at low cell voltage and 40% total energy efficiency. It features a low stoichiometric CO2 excess, λstoich, of 1.2 that yields a molar CO concentration of ~70%vol in the electrolyzer exit stream at 40% single-pass CO2 conversion, with over 100 h stability. Here we introduce the experimental carbon crossover coefficient (CCC) as a tool for electrolyzer cell diagnostics. The CCC describes the ratio between noncatalytic acid–base CO2 consumption and catalytically generated alkalinity, thereby offering insight into the nature of the prevalent ionic transport and transport mechanisms of undesired CO2 losses. We demonstrate the diagnostic value of the CCC in transport-based cell failure during oscillatory cell flooding between salt precipitation and salt redissolution. The present dynamic cell diagnostics provide practical guidelines toward improved CO2 electrolyzer designs. Optimizing CO2-to-CO electrolyzers is important for developing tandem electrolysis processes. Now an efficient precious metal-free CO2-to-CO electrolyzer cathode design allows operation under a low stoichiometric CO2 excess ratio that yields a molar CO concentration of 70% in the exit stream along with a diagnostic approach to its catalytic and mass transport characteristics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"229-239"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bringing biomolecular engineering on board 引入生物分子工程学
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00051-3
Biomolecular engineering enriches the toolkit of chemical engineers, enabling them to tackle diverse challenges in biotechnology and medicine; we welcome submissions in this space.
生物分子工程丰富了化学工程师的工具包,使他们能够应对生物技术和医学领域的各种挑战;我们欢迎这方面的投稿。
{"title":"Bringing biomolecular engineering on board","authors":"","doi":"10.1038/s44286-024-00051-3","DOIUrl":"10.1038/s44286-024-00051-3","url":null,"abstract":"Biomolecular engineering enriches the toolkit of chemical engineers, enabling them to tackle diverse challenges in biotechnology and medicine; we welcome submissions in this space.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"191-192"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00051-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical noncovalent electrochemistry for battery engineering 电池工程中的非共价分析电化学
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00038-0
Chang-Xin Zhao, Xi-Yao Li, Han Han, Yuanning Feng, Chun Tang, Xuesong Li, Long Zhang, Charlotte L. Stern, Qiang Zhang, J. Fraser Stoddart
Despite the fact that noncovalent bonding interactions are ubiquitous, it is primarily those interactions, which are amenable to spectroscopic analysis, that have been well investigated and applied in chemical engineering. New principles and techniques for characterizing noncovalent interactions are required to gain insight into their detailed nature and explore their potential applications. Here we introduce the practice of analytical noncovalent electrochemistry for probing such interactions. The strengths of noncovalent interactions can be determined more accurately by electrochemical means than by relying on spectroscopic measurements. Specifically, electrochemical analyses are capable of recording/identifying minor signals, leading to the discovery of an unexpected 2:1 host–guest complex. Moreover, the proposed technique is capable of probing multiple properties and facilitates the design and screening of active complexes as catalysts. We also demonstrate achieving a high energy density of 495 Wh kg−1 in rechargeable batteries. The analytical procedure provides a fresh perspective for supramolecular science and takes noncovalent chemistry closer to practical applications. Quantifying the strength of noncovalent interactions in supramolecular host–guest systems is key to guiding molecular design for a desired application. Now, a quantitative relationship between noncovalent interactions and electrochemistry is established that provides a new dimension for investigations into noncovalent interactions and enables the control of electrochemical properties in battery engineering.
尽管非共价键相互作用无处不在,但在化学工程中得到充分研究和应用的主要是那些适合光谱分析的相互作用。要深入了解非共价相互作用的详细性质并探索其潜在应用,就必须采用新的原理和技术来表征非共价相互作用。在此,我们将介绍用于探测此类相互作用的分析性非共价电化学实践。非共价相互作用的强度可以通过电化学方法比依靠光谱测量更准确地确定。具体来说,电化学分析能够记录/识别微小信号,从而发现意想不到的 2:1 主-客复合物。此外,所提出的技术还能探测多种特性,有助于设计和筛选作为催化剂的活性复合物。我们还展示了在可充电电池中实现 495 Wh kg-1 的高能量密度。该分析程序为超分子科学提供了一个全新的视角,使非共价化学更接近实际应用。量化超分子主客体系统中的非共价相互作用强度,是指导分子设计实现理想应用的关键。现在,非共价相互作用与电化学之间的定量关系已经建立,为非共价相互作用的研究提供了一个新的维度,并使电池工程中的电化学特性控制成为可能。
{"title":"Analytical noncovalent electrochemistry for battery engineering","authors":"Chang-Xin Zhao, Xi-Yao Li, Han Han, Yuanning Feng, Chun Tang, Xuesong Li, Long Zhang, Charlotte L. Stern, Qiang Zhang, J. Fraser Stoddart","doi":"10.1038/s44286-024-00038-0","DOIUrl":"10.1038/s44286-024-00038-0","url":null,"abstract":"Despite the fact that noncovalent bonding interactions are ubiquitous, it is primarily those interactions, which are amenable to spectroscopic analysis, that have been well investigated and applied in chemical engineering. New principles and techniques for characterizing noncovalent interactions are required to gain insight into their detailed nature and explore their potential applications. Here we introduce the practice of analytical noncovalent electrochemistry for probing such interactions. The strengths of noncovalent interactions can be determined more accurately by electrochemical means than by relying on spectroscopic measurements. Specifically, electrochemical analyses are capable of recording/identifying minor signals, leading to the discovery of an unexpected 2:1 host–guest complex. Moreover, the proposed technique is capable of probing multiple properties and facilitates the design and screening of active complexes as catalysts. We also demonstrate achieving a high energy density of 495 Wh kg−1 in rechargeable batteries. The analytical procedure provides a fresh perspective for supramolecular science and takes noncovalent chemistry closer to practical applications. Quantifying the strength of noncovalent interactions in supramolecular host–guest systems is key to guiding molecular design for a desired application. Now, a quantitative relationship between noncovalent interactions and electrochemistry is established that provides a new dimension for investigations into noncovalent interactions and enables the control of electrochemical properties in battery engineering.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"251-260"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative artificial intelligence in chemical engineering 化学工程中的生成人工智能
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00041-5
Artur M. Schweidtmann
Generative artificial intelligence will transform the way we design and operate chemical processes, argues Artur M. Schweidtmann.
阿图尔-M.-施魏德曼(Artur M. Schweidtmann)认为,生成式人工智能将改变我们设计和操作化学过程的方式。
{"title":"Generative artificial intelligence in chemical engineering","authors":"Artur M. Schweidtmann","doi":"10.1038/s44286-024-00041-5","DOIUrl":"10.1038/s44286-024-00041-5","url":null,"abstract":"Generative artificial intelligence will transform the way we design and operate chemical processes, argues Artur M. Schweidtmann.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"193-193"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piloting formic acid production from hydrogenated CO2 利用氢化二氧化碳生产甲酸的试点项目
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00044-2
Mo Qiao
{"title":"Piloting formic acid production from hydrogenated CO2","authors":"Mo Qiao","doi":"10.1038/s44286-024-00044-2","DOIUrl":"10.1038/s44286-024-00044-2","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"205-205"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability research at a national laboratory 国家实验室的可持续性研究
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00042-4
Thomas Dursch
Researchers Katrina Knauer, Taylor Uekert and Alberta Carpenter, each at different stages of their careers, share perspectives on the national laboratory research ecosystem and how it can inspire transformative work in plastics recycling, sustainable manufacturing and beyond.
研究人员卡特里娜-克瑙尔、泰勒-厄克特和艾伯塔-卡彭特各自处于职业生涯的不同阶段,他们分享了对国家实验室研究生态系统的看法,以及该生态系统如何激发塑料回收、可持续制造等领域的变革性工作。
{"title":"Sustainability research at a national laboratory","authors":"Thomas Dursch","doi":"10.1038/s44286-024-00042-4","DOIUrl":"10.1038/s44286-024-00042-4","url":null,"abstract":"Researchers Katrina Knauer, Taylor Uekert and Alberta Carpenter, each at different stages of their careers, share perspectives on the national laboratory research ecosystem and how it can inspire transformative work in plastics recycling, sustainable manufacturing and beyond.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"198-200"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercharged supramolecular binding constants 超电荷超分子结合常数
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00037-1
Pall Thordarson
Conventional linearly responsive methods for quantifying host–guest complexation in supramolecular chemistry have a fairly narrow dynamic range. Now, a logarithmically responsive electrochemical method promises to facilitate the measurement of complex equilibria over a larger dynamic range in host–guest systems.
用于量化超分子化学中主-客复合物的传统线性响应方法的动态范围相当狭窄。现在,一种对数响应电化学方法有望促进在更大的动态范围内测量主-客系统中的复合物平衡。
{"title":"Supercharged supramolecular binding constants","authors":"Pall Thordarson","doi":"10.1038/s44286-024-00037-1","DOIUrl":"10.1038/s44286-024-00037-1","url":null,"abstract":"Conventional linearly responsive methods for quantifying host–guest complexation in supramolecular chemistry have a fairly narrow dynamic range. Now, a logarithmically responsive electrochemical method promises to facilitate the measurement of complex equilibria over a larger dynamic range in host–guest systems.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"203-204"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Think feedstocks first 首先考虑原料
Pub Date : 2024-03-08 DOI: 10.1038/s44286-024-00040-6
Katarina Babić
Katarina Babić reflects on the need to account for variability in plastic waste feedstocks when designing plastic upcycling and recycling processes.
卡塔琳娜-巴比奇(Katarina Babić)认为,在设计塑料升级再循环和回收工艺时,需要考虑塑料废料原料的可变性。
{"title":"Think feedstocks first","authors":"Katarina Babić","doi":"10.1038/s44286-024-00040-6","DOIUrl":"10.1038/s44286-024-00040-6","url":null,"abstract":"Katarina Babić reflects on the need to account for variability in plastic waste feedstocks when designing plastic upcycling and recycling processes.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"261-261"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-driving lab for accelerated catalyst development 加速催化剂开发的自驾车实验室
Pub Date : 2024-03-06 DOI: 10.1038/s44286-024-00043-3
A self-driving lab, called Fast-Cat, is developed for the rapid, autonomous Pareto-front mapping of homogeneous catalysts in high-pressure, high-temperature gas–liquid reactions. The efficacy of Fast-Cat was demonstrated in performing Pareto-front mappings of phosphorus-based ligands for the hydroformylation of olefins.
我们开发了一个名为 Fast-Cat 的自动驾驶实验室,用于在高压、高温气液反应中快速、自主地绘制均相催化剂的帕累托前沿图。在对用于烯烃加氢甲酰化的磷基配体进行帕累托前沿映射时,Fast-Cat 的功效得到了验证。
{"title":"A self-driving lab for accelerated catalyst development","authors":"","doi":"10.1038/s44286-024-00043-3","DOIUrl":"10.1038/s44286-024-00043-3","url":null,"abstract":"A self-driving lab, called Fast-Cat, is developed for the rapid, autonomous Pareto-front mapping of homogeneous catalysts in high-pressure, high-temperature gas–liquid reactions. The efficacy of Fast-Cat was demonstrated in performing Pareto-front mappings of phosphorus-based ligands for the hydroformylation of olefins.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"206-207"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-sufficient metal–air batteries for autonomous systems 用于自主系统的自给自足型金属空气电池
Pub Date : 2024-03-06 DOI: 10.1038/s44286-024-00039-z
Shuo Jin, Shifeng Hong, Lynden A. Archer
We explore the challenges and opportunities for electrochemical energy storage technologies that harvest active materials from their surroundings. Progress hinges on advances in chemical engineering science related to membrane design; control of mass transport, reaction kinetics and precipitation at electrified interfaces; and regulation of electrocrystallization of metals through substrate design.
我们探讨了从周围环境中获取活性材料的电化学储能技术所面临的挑战和机遇。能否取得进展取决于化学工程科学在以下方面的进步:膜设计;质量传输、反应动力学和电化界面沉淀的控制;以及通过基底设计对金属电结晶的调节。
{"title":"Self-sufficient metal–air batteries for autonomous systems","authors":"Shuo Jin, Shifeng Hong, Lynden A. Archer","doi":"10.1038/s44286-024-00039-z","DOIUrl":"10.1038/s44286-024-00039-z","url":null,"abstract":"We explore the challenges and opportunities for electrochemical energy storage technologies that harvest active materials from their surroundings. Progress hinges on advances in chemical engineering science related to membrane design; control of mass transport, reaction kinetics and precipitation at electrified interfaces; and regulation of electrocrystallization of metals through substrate design.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 3","pages":"194-197"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00039-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1