Pub Date : 2024-06-03DOI: 10.1038/s44286-024-00076-8
Bradie S. Crandall, Byung Hee Ko, Sean Overa, Luke Cherniack, Ahryeon Lee, Izak Minnie, Feng Jiao
The conversion of carbon dioxide (CO2) into valuable chemicals is a key strategy for carbon utilization. Although tandem CO2 electrolysis has shown promise, it has been largely confined to watt-scale studies and larger-scale studies are needed to accelerate commercialization. In this work, we demonstrate a tandem CO2 electrolyzer engineered for the production of multicarbon products, acetate and ethylene, at the kilowatt (kW) scale. Here, from insights gained at the watt scale, we have successfully designed and operated a 1,000 cm2 CO electrolyzer at 0.71 kW and a 500 cm2 CO2 electrolyzer at 0.40 kW. The kW-scale CO electrolyzer stack demonstrated a stable current of 300 A over 125 h, yielding 98 l of 1.2 M acetate at 96% purity. The system exhibited resilience against typical industrial impurities, maintaining high performance. These results mark a crucial advancement in scaling tandem CO2 electrolysis systems toward industrial feasibility. Finally, an experimentally informed techno-economic analysis is offered to provide a pathway for commercially viable tandem CO2 electrolysis at an industrial scale. Tandem CO2 electrolysis has demonstrated strong potential for transforming captured CO2 into multicarbon products, but more effort is needed in scaling these systems to commercial levels. The authors address this crucial need by elevating tandem CO2 electrolysis to the kilowatt scale, marking a significant step toward real-world implementation.
{"title":"Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production","authors":"Bradie S. Crandall, Byung Hee Ko, Sean Overa, Luke Cherniack, Ahryeon Lee, Izak Minnie, Feng Jiao","doi":"10.1038/s44286-024-00076-8","DOIUrl":"10.1038/s44286-024-00076-8","url":null,"abstract":"The conversion of carbon dioxide (CO2) into valuable chemicals is a key strategy for carbon utilization. Although tandem CO2 electrolysis has shown promise, it has been largely confined to watt-scale studies and larger-scale studies are needed to accelerate commercialization. In this work, we demonstrate a tandem CO2 electrolyzer engineered for the production of multicarbon products, acetate and ethylene, at the kilowatt (kW) scale. Here, from insights gained at the watt scale, we have successfully designed and operated a 1,000 cm2 CO electrolyzer at 0.71 kW and a 500 cm2 CO2 electrolyzer at 0.40 kW. The kW-scale CO electrolyzer stack demonstrated a stable current of 300 A over 125 h, yielding 98 l of 1.2 M acetate at 96% purity. The system exhibited resilience against typical industrial impurities, maintaining high performance. These results mark a crucial advancement in scaling tandem CO2 electrolysis systems toward industrial feasibility. Finally, an experimentally informed techno-economic analysis is offered to provide a pathway for commercially viable tandem CO2 electrolysis at an industrial scale. Tandem CO2 electrolysis has demonstrated strong potential for transforming captured CO2 into multicarbon products, but more effort is needed in scaling these systems to commercial levels. The authors address this crucial need by elevating tandem CO2 electrolysis to the kilowatt scale, marking a significant step toward real-world implementation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 6","pages":"421-429"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1038/s44286-024-00071-z
Thomas Dursch
Identifying and estimating operative timescales can help win over a skeptical referee, as Tom Dursch recounts.
汤姆-杜尔施(Tom Dursch)指出,确定和估算操作时间尺度有助于说服持怀疑态度的裁判员。
{"title":"That one time","authors":"Thomas Dursch","doi":"10.1038/s44286-024-00071-z","DOIUrl":"10.1038/s44286-024-00071-z","url":null,"abstract":"Identifying and estimating operative timescales can help win over a skeptical referee, as Tom Dursch recounts.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"385-385"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1038/s44286-024-00072-y
Mo Qiao
{"title":"Closing the thermoset recycling loop","authors":"Mo Qiao","doi":"10.1038/s44286-024-00072-y","DOIUrl":"10.1038/s44286-024-00072-y","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"333-333"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1038/s44286-024-00078-6
Modeling chemical processes and systems underpins progress in chemical engineering science; we encourage submissions in this domain.
化学过程和系统建模是化学工程科学进步的基础;我们鼓励在这一领域投稿。
{"title":"Striking a theoretical balance","authors":"","doi":"10.1038/s44286-024-00078-6","DOIUrl":"10.1038/s44286-024-00078-6","url":null,"abstract":"Modeling chemical processes and systems underpins progress in chemical engineering science; we encourage submissions in this domain.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"325-325"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00078-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1038/s44286-024-00070-0
Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.
{"title":"Enzymatic method for the conversion of carbon monoxide from industrial off-gases into formate","authors":"","doi":"10.1038/s44286-024-00070-0","DOIUrl":"10.1038/s44286-024-00070-0","url":null,"abstract":"Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"338-339"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1038/s44286-024-00063-z
Jinhee Lee, Suk Min Kim, Byoung Wook Jeon, Ho Won Hwang, Eleni G. Poloniataki, Jingu Kang, Sanghyung Lee, Ho Won Ra, Jonggeol Na, Jeong-Geol Na, Jinwon Lee, Yong Hwan Kim
Decarbonizing the steel industry, a major CO2 emitter, is crucial for achieving carbon neutrality. Escaping the grip of CO combustion methods, a key contributor to CO2 discharge, is a seemingly simple yet formidable challenge on the path to industry-wide net-zero carbon emissions. Here we suggest enzymatic CO hydration (enCOH) inspired by the biological Wood‒Ljungdahl pathway, enabling efficient CO2 fixation. By employing the highly efficient, inhibitor-robust CO dehydrogenase (ChCODH2) and formate dehydrogenase (MeFDH1), we achieved spontaneous enCOH to convert industrial off-gases into formate with 100% selectivity. This process operates seamlessly under mild conditions (room temperature, neutral pH), regardless of the CO/CO2 ratio. Notably, the direct utilization of flue gas without pretreatment yielded various formate salts, including ammonium formate, at concentrations nearing two molar. Operating a 10-liter-scale immobilized enzyme reactor feeding live off-gas at a steel mill resulted in the production of high-purity formate powder after facile purification, thus demonstrating the potential for decarbonizing the steel industry. With the global climate crisis, approaches to capture emissions are critical, with the heavy industry sector being particularly challenging to decarbonize. The authors describe a new enzyme cascade for converting industrial emissions into formate salts as a hydrogen carrier or building block for chemicals.
{"title":"Molar-scale formate production via enzymatic hydration of industrial off-gases","authors":"Jinhee Lee, Suk Min Kim, Byoung Wook Jeon, Ho Won Hwang, Eleni G. Poloniataki, Jingu Kang, Sanghyung Lee, Ho Won Ra, Jonggeol Na, Jeong-Geol Na, Jinwon Lee, Yong Hwan Kim","doi":"10.1038/s44286-024-00063-z","DOIUrl":"10.1038/s44286-024-00063-z","url":null,"abstract":"Decarbonizing the steel industry, a major CO2 emitter, is crucial for achieving carbon neutrality. Escaping the grip of CO combustion methods, a key contributor to CO2 discharge, is a seemingly simple yet formidable challenge on the path to industry-wide net-zero carbon emissions. Here we suggest enzymatic CO hydration (enCOH) inspired by the biological Wood‒Ljungdahl pathway, enabling efficient CO2 fixation. By employing the highly efficient, inhibitor-robust CO dehydrogenase (ChCODH2) and formate dehydrogenase (MeFDH1), we achieved spontaneous enCOH to convert industrial off-gases into formate with 100% selectivity. This process operates seamlessly under mild conditions (room temperature, neutral pH), regardless of the CO/CO2 ratio. Notably, the direct utilization of flue gas without pretreatment yielded various formate salts, including ammonium formate, at concentrations nearing two molar. Operating a 10-liter-scale immobilized enzyme reactor feeding live off-gas at a steel mill resulted in the production of high-purity formate powder after facile purification, thus demonstrating the potential for decarbonizing the steel industry. With the global climate crisis, approaches to capture emissions are critical, with the heavy industry sector being particularly challenging to decarbonize. The authors describe a new enzyme cascade for converting industrial emissions into formate salts as a hydrogen carrier or building block for chemicals.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"354-364"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00063-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1038/s44286-024-00069-7
Alessio Lavino
Jennifer Curtis from the University of California Davis talks to Nature Chemical Engineering about her path into particle technology, work in computational simulations of multiphase particle flows and the importance of industrial collaborations in advancing the field.
{"title":"The core of particle technology","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00069-7","DOIUrl":"10.1038/s44286-024-00069-7","url":null,"abstract":"Jennifer Curtis from the University of California Davis talks to Nature Chemical Engineering about her path into particle technology, work in computational simulations of multiphase particle flows and the importance of industrial collaborations in advancing the field.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"330-331"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1038/s44286-024-00065-x
Ahmad Elgazzar, Haotian Wang
Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.
{"title":"Solvent reorganization model takes the lead","authors":"Ahmad Elgazzar, Haotian Wang","doi":"10.1038/s44286-024-00065-x","DOIUrl":"10.1038/s44286-024-00065-x","url":null,"abstract":"Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"334-335"},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1038/s44286-024-00062-0
Eric W. Lees, Justin C. Bui, Oyinkansola Romiluyi, Alexis T. Bell, Adam Z. Weber
Electrochemical CO2 reduction (CO2R) using renewable electricity is a key pathway toward synthesizing fuels and chemicals. In this study, multi-physics modeling is used to interpret experimental data obtained for CO2R to CO using Ag catalysts in a membrane electrode assembly. The one-dimensional model is validated using measured CO2 crossover and product formation rates. The kinetics of CO formation are described by Marcus–Hush–Chidsey kinetics, which enables accurate prediction of the experimental data by accounting for the reorganization of the solvent during CO2R. The results show how the performance is dictated by competing phenomena including ion formation and transport, CO2 solubility, and water management. The model shows that increasing the ion-exchange capacity of the membrane and surface area of the catalyst increases CO formation rates by >100 mA cm–2 without negatively impacting CO2 utilization. Here we provide insights into how to manage the trade-off between productivity and CO2 utilization in CO2 electrolyzers. The design of CO2 electrolyzers is complicated by coupled transport and reaction phenomena. Here the authors develop a continuum model incorporating physical phenomena across multiple scales to predict the activity and selectivity of CO2 electrolysis, along with the loss of CO2 due to crossover in membrane electrode assemblies.
利用可再生能源进行电化学二氧化碳还原(CO2R)是合成燃料和化学品的关键途径。本研究利用多物理场建模来解释在膜电极组件中使用银催化剂将 CO2 还原为 CO 的实验数据。一维模型通过测量的 CO2 交叉率和产物形成率进行了验证。一氧化碳的形成动力学由 Marcus-Hush-Chidsey 动力学描述,该动力学通过考虑 CO2R 过程中溶剂的重组,实现了对实验数据的准确预测。结果表明,性能如何受离子形成和传输、二氧化碳溶解度和水管理等竞争现象的支配。模型显示,增加膜的离子交换能力和催化剂的表面积可将二氧化碳形成率提高 100 mA cm-2,而不会对二氧化碳的利用率产生负面影响。在此,我们就如何管理二氧化碳电解槽中生产率和二氧化碳利用率之间的权衡提出了自己的见解。二氧化碳电解槽的设计因耦合传输和反应现象而变得复杂。在此,作者开发了一个连续模型,该模型结合了多种尺度的物理现象,可预测二氧化碳电解的活性和选择性,以及膜电极组件中因交叉而造成的二氧化碳损失。
{"title":"Exploring CO2 reduction and crossover in membrane electrode assemblies","authors":"Eric W. Lees, Justin C. Bui, Oyinkansola Romiluyi, Alexis T. Bell, Adam Z. Weber","doi":"10.1038/s44286-024-00062-0","DOIUrl":"10.1038/s44286-024-00062-0","url":null,"abstract":"Electrochemical CO2 reduction (CO2R) using renewable electricity is a key pathway toward synthesizing fuels and chemicals. In this study, multi-physics modeling is used to interpret experimental data obtained for CO2R to CO using Ag catalysts in a membrane electrode assembly. The one-dimensional model is validated using measured CO2 crossover and product formation rates. The kinetics of CO formation are described by Marcus–Hush–Chidsey kinetics, which enables accurate prediction of the experimental data by accounting for the reorganization of the solvent during CO2R. The results show how the performance is dictated by competing phenomena including ion formation and transport, CO2 solubility, and water management. The model shows that increasing the ion-exchange capacity of the membrane and surface area of the catalyst increases CO formation rates by >100 mA cm–2 without negatively impacting CO2 utilization. Here we provide insights into how to manage the trade-off between productivity and CO2 utilization in CO2 electrolyzers. The design of CO2 electrolyzers is complicated by coupled transport and reaction phenomena. Here the authors develop a continuum model incorporating physical phenomena across multiple scales to predict the activity and selectivity of CO2 electrolysis, along with the loss of CO2 due to crossover in membrane electrode assemblies.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"340-353"},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00062-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}