首页 > 最新文献

Nature Chemical Engineering最新文献

英文 中文
In charge of selectivity 负责选择性
Pub Date : 2025-10-21 DOI: 10.1038/s44286-025-00297-5
Mo Qiao
{"title":"In charge of selectivity","authors":"Mo Qiao","doi":"10.1038/s44286-025-00297-5","DOIUrl":"10.1038/s44286-025-00297-5","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"620-620"},"PeriodicalIF":0.0,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helping ingredients punch above their weight fraction 帮助原料超过它们的重量分数
Pub Date : 2025-10-21 DOI: 10.1038/s44286-025-00282-y
Todd M. Squires
Todd Squires highlights the distinction between weight and volume fraction as a conceptual strategy to control the flow and feel of complex fluid products.
Todd Squires强调了重量和体积分数之间的区别,这是一种控制复杂流体产品流量和触感的概念策略。
{"title":"Helping ingredients punch above their weight fraction","authors":"Todd M. Squires","doi":"10.1038/s44286-025-00282-y","DOIUrl":"10.1038/s44286-025-00282-y","url":null,"abstract":"Todd Squires highlights the distinction between weight and volume fraction as a conceptual strategy to control the flow and feel of complex fluid products.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"663-663"},"PeriodicalIF":0.0,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robot walks in high dimensions 机器人在高维空间行走
Pub Date : 2025-10-21 DOI: 10.1038/s44286-025-00296-6
Alessio Lavino
{"title":"A robot walks in high dimensions","authors":"Alessio Lavino","doi":"10.1038/s44286-025-00296-6","DOIUrl":"10.1038/s44286-025-00296-6","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"619-619"},"PeriodicalIF":0.0,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lightbulb moment for ammonia decomposition 氨分解的瞬间
Pub Date : 2025-10-21 DOI: 10.1038/s44286-025-00284-w
Qijun Pei, Ping Chen
Ammonia is a promising hydrogen carrier, but hydrogen production via ammonia decomposition presents kinetic challenges. Now, a high-temperature tungsten wire lightbulb reactor is demonstrated as an energy-efficient solution for ammonia decomposition.
氨是一种很有前途的氢载体,但通过氨分解制氢存在动力学挑战。现在,一种高温钨丝灯泡反应器被证明是氨分解的节能解决方案。
{"title":"A lightbulb moment for ammonia decomposition","authors":"Qijun Pei, Ping Chen","doi":"10.1038/s44286-025-00284-w","DOIUrl":"10.1038/s44286-025-00284-w","url":null,"abstract":"Ammonia is a promising hydrogen carrier, but hydrogen production via ammonia decomposition presents kinetic challenges. Now, a high-temperature tungsten wire lightbulb reactor is demonstrated as an energy-efficient solution for ammonia decomposition.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"623-624"},"PeriodicalIF":0.0,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A roadmap toward closed-loop autonomous experimentation for engineered nanomaterials 迈向工程纳米材料闭环自主实验的路线图
Pub Date : 2025-10-17 DOI: 10.1038/s44286-025-00291-x
Nicholas A. Jose, Alexei A. Lapkin
Precision nanomaterials are key to many technologies; however, effective industrial-scale production typically requires decades of development. Here we share the commercialization pathway of our Accelerated Materials Platform for Engineered Nanomaterials (AMPLE), which integrates microreactors, machine learning and automation to accelerate materials synthesis from gram to tonne scales.
精密纳米材料是许多技术的关键;然而,有效的工业规模生产通常需要数十年的发展。在这里,我们分享了我们的工程纳米材料加速材料平台(AMPLE)的商业化途径,该平台集成了微反应器,机器学习和自动化,以加速从克到吨尺度的材料合成。
{"title":"A roadmap toward closed-loop autonomous experimentation for engineered nanomaterials","authors":"Nicholas A. Jose, Alexei A. Lapkin","doi":"10.1038/s44286-025-00291-x","DOIUrl":"10.1038/s44286-025-00291-x","url":null,"abstract":"Precision nanomaterials are key to many technologies; however, effective industrial-scale production typically requires decades of development. Here we share the commercialization pathway of our Accelerated Materials Platform for Engineered Nanomaterials (AMPLE), which integrates microreactors, machine learning and automation to accelerate materials synthesis from gram to tonne scales.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"615-617"},"PeriodicalIF":0.0,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building industry connections 建立行业联系
Pub Date : 2025-10-17 DOI: 10.1038/s44286-025-00292-w
Commercialization is a key milestone in chemical process design and product development. In this Editorial, we emphasize the importance of incorporating industrial expertise and introduce a new article format to support this aim: Down to Business.
商业化是化工工艺设计和产品开发的重要里程碑。在这篇社论中,我们强调了整合行业专业知识的重要性,并引入了一种新的文章格式来支持这一目标:Down to Business。
{"title":"Building industry connections","authors":"","doi":"10.1038/s44286-025-00292-w","DOIUrl":"10.1038/s44286-025-00292-w","url":null,"abstract":"Commercialization is a key milestone in chemical process design and product development. In this Editorial, we emphasize the importance of incorporating industrial expertise and introduce a new article format to support this aim: Down to Business.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"609-609"},"PeriodicalIF":0.0,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00292-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causes of and mitigation approaches for salt deposition in CO2 electrolysis 二氧化碳电解中盐沉积的原因和缓解方法
Pub Date : 2025-10-15 DOI: 10.1038/s44286-025-00293-9
Brian Seger
As the CO2 electrolysis field transitions from fundamental studies to commercially relevant engineering challenges, the cations required to maximize catalysis also tend to overconcentrate, leading to salt deposition and concomitant performance degradation. This Comment analyzes both the underlying causes of salt deposition and potential strategies for resolving this issue.
随着二氧化碳电解领域从基础研究过渡到商业相关的工程挑战,最大化催化所需的阳离子也趋于过度集中,导致盐沉积和随之而来的性能下降。本评论分析了盐沉积的根本原因和解决这一问题的潜在战略。
{"title":"Causes of and mitigation approaches for salt deposition in CO2 electrolysis","authors":"Brian Seger","doi":"10.1038/s44286-025-00293-9","DOIUrl":"10.1038/s44286-025-00293-9","url":null,"abstract":"As the CO2 electrolysis field transitions from fundamental studies to commercially relevant engineering challenges, the cations required to maximize catalysis also tend to overconcentrate, leading to salt deposition and concomitant performance degradation. This Comment analyzes both the underlying causes of salt deposition and potential strategies for resolving this issue.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"611-614"},"PeriodicalIF":0.0,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep cracking of polyethylene to light olefins 聚乙烯深裂化成轻烯烃
Pub Date : 2025-10-14 DOI: 10.1038/s44286-025-00285-9
Guoliang Liu
The deconstruction of polyolefins into monomers is essential for chemical recycling. Now, a tandem strategy is presented that first converts polyethylene into short-chain hydrocarbons, followed by a second-stage reaction that further cracks these intermediates into ethylene and propylene.
将聚烯烃分解成单体对于化学回收是必不可少的。现在,提出了一种串联策略,首先将聚乙烯转化为短链碳氢化合物,然后进行第二阶段反应,进一步将这些中间体裂解为乙烯和丙烯。
{"title":"Deep cracking of polyethylene to light olefins","authors":"Guoliang Liu","doi":"10.1038/s44286-025-00285-9","DOIUrl":"10.1038/s44286-025-00285-9","url":null,"abstract":"The deconstruction of polyolefins into monomers is essential for chemical recycling. Now, a tandem strategy is presented that first converts polyethylene into short-chain hydrocarbons, followed by a second-stage reaction that further cracks these intermediates into ethylene and propylene.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"621-622"},"PeriodicalIF":0.0,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-loop recycling of polyethylene to ethylene and propylene via a kinetic decoupling–recoupling strategy 闭环回收聚乙烯乙烯和丙烯通过动力学解耦-重耦策略
Pub Date : 2025-10-14 DOI: 10.1038/s44286-025-00290-y
Tianrui Bi, Yinlin Chen, Longfei Lin, Xue Han, Yang Pan, Chengyuan Liu, Ziyu Cen, Cong Luo, Weilong Wen, Hunain Zulfiqar, Xinrui Zheng, Pascal Manuel, Qian Li, Ningning Wu, Junfeng Xiang, Sihai Yang, Buxing Han
Conversion of polyethylene (PE) into ethylene and propylene will enable closed-loop recycling of plastics. Conventional catalytic cracking of PE is restricted by kinetic entanglement between the formation of main products and by-products, limiting ethylene and propylene yields to less than 25%. Here we address this challenge with a kinetic decoupling–recoupling (KDRC) strategy, achieving yields of ethylene and propylene up to 79% from PE conversion using a tandem reactor with dual zeolite catalysts. Reaction kinetics analysis, synchrotron-based vacuum ultraviolet photoionization mass spectrometry and in situ neutron powder diffraction reveal that KDRC decouples kinetics of PE cracking to intermediates (butenes and pentenes) in the first stage and synchronizes this process with dimerization–β-scission reactions in the second stage. This synchronization minimizes by-products and enhances ethylene and propylene production substantially. Combined with high catalytic stability, this KDRC strategy represents a robust pathway to combating plastic pollution via a circular economy. This study introduces a kinetic decoupling–recoupling strategy to overcome kinetic limitations in plastic recycling. A tandem catalytic reactor, utilizing zeolite catalysts, converts polyethylene into ethylene and propylene with yields of up to 79%, offering a promising pathway toward efficient closed-loop recycling of polyolefins.
将聚乙烯(PE)转化为乙烯和丙烯将实现塑料的闭环回收。传统的PE催化裂化受到主产物和副产物形成之间的动力学缠结的限制,乙烯和丙烯的收率限制在25%以下。在这里,我们通过动力学解耦-重耦(KDRC)策略解决了这一挑战,通过使用双沸石催化剂的串联反应器,PE转化的乙烯和丙烯的收率高达79%。反应动力学分析、基于同步加速器的真空紫外光电离质谱分析和原位中子粉末衍射表明,KDRC在第一阶段将PE裂解动力学解耦到中间体(丁烯和戊烯),并在第二阶段将该过程与二聚化- β-裂解反应同步。这种同步最大限度地减少了副产品,并大大提高了乙烯和丙烯的产量。结合高催化稳定性,这种KDRC战略代表了通过循环经济打击塑料污染的有力途径。本文介绍了一种动力学解耦-再耦合策略来克服塑料回收的动力学限制。串联催化反应器利用沸石催化剂,将聚乙烯转化为乙烯和丙烯,收率高达79%,为聚烯烃的高效闭环回收提供了一条有希望的途径。
{"title":"Closed-loop recycling of polyethylene to ethylene and propylene via a kinetic decoupling–recoupling strategy","authors":"Tianrui Bi, Yinlin Chen, Longfei Lin, Xue Han, Yang Pan, Chengyuan Liu, Ziyu Cen, Cong Luo, Weilong Wen, Hunain Zulfiqar, Xinrui Zheng, Pascal Manuel, Qian Li, Ningning Wu, Junfeng Xiang, Sihai Yang, Buxing Han","doi":"10.1038/s44286-025-00290-y","DOIUrl":"10.1038/s44286-025-00290-y","url":null,"abstract":"Conversion of polyethylene (PE) into ethylene and propylene will enable closed-loop recycling of plastics. Conventional catalytic cracking of PE is restricted by kinetic entanglement between the formation of main products and by-products, limiting ethylene and propylene yields to less than 25%. Here we address this challenge with a kinetic decoupling–recoupling (KDRC) strategy, achieving yields of ethylene and propylene up to 79% from PE conversion using a tandem reactor with dual zeolite catalysts. Reaction kinetics analysis, synchrotron-based vacuum ultraviolet photoionization mass spectrometry and in situ neutron powder diffraction reveal that KDRC decouples kinetics of PE cracking to intermediates (butenes and pentenes) in the first stage and synchronizes this process with dimerization–β-scission reactions in the second stage. This synchronization minimizes by-products and enhances ethylene and propylene production substantially. Combined with high catalytic stability, this KDRC strategy represents a robust pathway to combating plastic pollution via a circular economy. This study introduces a kinetic decoupling–recoupling strategy to overcome kinetic limitations in plastic recycling. A tandem catalytic reactor, utilizing zeolite catalysts, converts polyethylene into ethylene and propylene with yields of up to 79%, offering a promising pathway toward efficient closed-loop recycling of polyolefins.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"650-661"},"PeriodicalIF":0.0,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00290-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growing functional artificial cytoskeletons in the viscoelastic confinement of DNA synthetic cells 在DNA合成细胞的粘弹性约束下生长功能人工细胞骨架
Pub Date : 2025-10-07 DOI: 10.1038/s44286-025-00289-5
Weixiang Chen, Siyu Song, Avik Samanta, Soumya Sethi, Christoph Drees, Michael Kappl, Hans-Jürgen Butt, Andreas Walther
Intracellular structures, such as cytoskeletons, form within a crowded cytoplasm with viscoelastic properties. While self-assembly in crowding is well studied, the effects of coupled viscoelastic environments remain elusive. Here we engineer all-DNA synthetic cells (SCs) with tunable viscoelastic interiors to investigate this phenomenon. We introduce facile DNA barcode engineering to selectively enrich DNA tiles with adjustable concentrations into SCs to form artificial cytoskeletons coupled to their interior. Distinct mechanistic differences in assembly occur compared with solution or simple crowding. Furthermore, we develop light, molecular and metabolic switches to direct structure formation and create self-sorted SC populations with distinct artificial cytoskeletons. These cytoskeletons strengthen SCs and support stable contacts with mammalian cells. By bridging molecular-scale DNA nanotube assembly with mesoscale condensate structures, our SCs provide a versatile platform to investigate self-assembly under viscoelastic confinement and to harness subcellular architectures for emerging applications. Engineering structurally and functionally complex synthetic cells remains a key challenge. Here DNA condensate synthetic cells combine phase separation and DNA nanostructures to reveal how switchable artificial cytoskeletons assemble in viscoelastic confinements. These cytoskeletons improve the mechanical properties of synthetic cells and enable stable mechano-interfaces with mammalian cells.
胞内结构,如细胞骨架,在拥挤的细胞质中形成,具有粘弹性。虽然拥挤中的自组装研究得很好,但耦合粘弹性环境的影响仍然难以捉摸。在这里,我们设计了具有可调粘弹性内部的全dna合成细胞(SCs)来研究这种现象。我们引入简单的DNA条形码工程,选择性地将浓度可调的DNA瓦片富集到sc中,形成与其内部偶联的人工细胞骨架。与溶液或简单的拥挤相比,在组装过程中出现明显的机制差异。此外,我们开发了光、分子和代谢开关来直接结构形成,并创建了具有不同人工细胞骨架的自分类SC群体。这些细胞骨架增强了SCs并支持与哺乳动物细胞的稳定接触。通过将分子级DNA纳米管组装与中尺度凝析结构连接起来,我们的纳米管提供了一个多功能平台来研究粘弹性约束下的自组装,并利用亚细胞结构为新兴应用提供支持。工程结构和功能复杂的合成细胞仍然是一个关键的挑战。在这里,DNA凝聚合成细胞结合了相分离和DNA纳米结构,揭示了可切换的人工细胞骨架如何在粘弹性约束中组装。这些细胞骨架改善了合成细胞的力学性能,并使其与哺乳动物细胞形成稳定的力学界面。
{"title":"Growing functional artificial cytoskeletons in the viscoelastic confinement of DNA synthetic cells","authors":"Weixiang Chen, Siyu Song, Avik Samanta, Soumya Sethi, Christoph Drees, Michael Kappl, Hans-Jürgen Butt, Andreas Walther","doi":"10.1038/s44286-025-00289-5","DOIUrl":"10.1038/s44286-025-00289-5","url":null,"abstract":"Intracellular structures, such as cytoskeletons, form within a crowded cytoplasm with viscoelastic properties. While self-assembly in crowding is well studied, the effects of coupled viscoelastic environments remain elusive. Here we engineer all-DNA synthetic cells (SCs) with tunable viscoelastic interiors to investigate this phenomenon. We introduce facile DNA barcode engineering to selectively enrich DNA tiles with adjustable concentrations into SCs to form artificial cytoskeletons coupled to their interior. Distinct mechanistic differences in assembly occur compared with solution or simple crowding. Furthermore, we develop light, molecular and metabolic switches to direct structure formation and create self-sorted SC populations with distinct artificial cytoskeletons. These cytoskeletons strengthen SCs and support stable contacts with mammalian cells. By bridging molecular-scale DNA nanotube assembly with mesoscale condensate structures, our SCs provide a versatile platform to investigate self-assembly under viscoelastic confinement and to harness subcellular architectures for emerging applications. Engineering structurally and functionally complex synthetic cells remains a key challenge. Here DNA condensate synthetic cells combine phase separation and DNA nanostructures to reveal how switchable artificial cytoskeletons assemble in viscoelastic confinements. These cytoskeletons improve the mechanical properties of synthetic cells and enable stable mechano-interfaces with mammalian cells.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 10","pages":"627-639"},"PeriodicalIF":0.0,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00289-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1