Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs. Low-temperature CO2 methanation processes have potential for improved energy efficiency due to high equilibrium conversion but are generally limited by poor catalyst activity. Here the authors report an inverse CeZrOx/Ni catalyst that realizes high low-temperature (200 °C) methanation activity at ambient pressure.
低温甲烷化可以在常压下将二氧化碳近乎平衡地转化为甲烷,有望带来显著的能源效率和经济效益。然而,由于氢化中间产物的动力学限制,在低温下高效催化活化 CO2 仍具有挑战性。我们在此报告,与具有相同组成的传统镍/氧化物相比,由负载在金属镍载体上的氧化物纳米岛组成的镍基反相催化剂具有显著的活性优势。优化后的 CeZrOx/Ni 催化剂在 200 °C 和常压条件下可实现 ~90% 的 CO2 转化率和 >99% 的 CH4 选择性,同时还具有优异的长期稳定性和过热/启停循环操作稳定性。机理研究表明,反界面可有效调节 H2 和 CO2 的覆盖率,并改变吸附的含氧化合物的构型,从而有利于表面中间产物的氢化。能源和经济分析表明,采用反相催化剂的低温二氧化碳甲烷化工艺有可能降低资本投资和甲烷生产成本。
{"title":"Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields","authors":"Chuqiao Song, Jinjia Liu, Ruihang Wang, Xin Tang, Kun Wang, Zirui Gao, Mi Peng, Haibo Li, Siyu Yao, Feng Yang, Hanfeng Lu, Zuwei Liao, Xiao-Dong Wen, Ding Ma, Xiaonian Li, Lili Lin","doi":"10.1038/s44286-024-00122-5","DOIUrl":"10.1038/s44286-024-00122-5","url":null,"abstract":"Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs. Low-temperature CO2 methanation processes have potential for improved energy efficiency due to high equilibrium conversion but are generally limited by poor catalyst activity. Here the authors report an inverse CeZrOx/Ni catalyst that realizes high low-temperature (200 °C) methanation activity at ambient pressure.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"638-649"},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1038/s44286-024-00125-2
Bing Deng, Shichen Xu, Lucas Eddy, Jaeho Shin, Yi Cheng, Carter Kittrell, Khalil JeBailey, Justin Sharp, Long Qian, Shihui Chen, James M. Tour
Metal recycling plays a crucial role in mitigating the shortage of critical metals and reducing reliance on primary mining. Current liquid hydrometallurgy involves substantial water and chemical consumption with troublesome secondary waste streams, while pyrometallurgy lacks selectivity and requires substantial energy input. Here we develop an electrothermal chlorination and carbochlorination process, and a specialized compact reactor, for the selective separation of individual critical metals from electronic waste. Our approach uses programmable, pulsed current input to achieve precise control over a wide temperature range (from room temperature to 2,400 °C), short reaction durations of seconds and rapid heating/cooling rates (103 °C s−1) during the process. The method capitalizes on the differences in the free energy formation of the metal chlorides. Once conversion to a specific metal chloride is achieved, that compound distills from the mixture in seconds. This allows both thermodynamic and kinetic selectivity for desired metals with minimization of impurities. Metal recycling plays a crucial role in mitigating the shortage of critical metals. Here the authors develop an electrothermal chlorination process incorporating direct electric heating into chlorination metallurgy for rapid and selective recovery of metals that are critical in electronics.
{"title":"Flash separation of metals by electrothermal chlorination","authors":"Bing Deng, Shichen Xu, Lucas Eddy, Jaeho Shin, Yi Cheng, Carter Kittrell, Khalil JeBailey, Justin Sharp, Long Qian, Shihui Chen, James M. Tour","doi":"10.1038/s44286-024-00125-2","DOIUrl":"10.1038/s44286-024-00125-2","url":null,"abstract":"Metal recycling plays a crucial role in mitigating the shortage of critical metals and reducing reliance on primary mining. Current liquid hydrometallurgy involves substantial water and chemical consumption with troublesome secondary waste streams, while pyrometallurgy lacks selectivity and requires substantial energy input. Here we develop an electrothermal chlorination and carbochlorination process, and a specialized compact reactor, for the selective separation of individual critical metals from electronic waste. Our approach uses programmable, pulsed current input to achieve precise control over a wide temperature range (from room temperature to 2,400 °C), short reaction durations of seconds and rapid heating/cooling rates (103 °C s−1) during the process. The method capitalizes on the differences in the free energy formation of the metal chlorides. Once conversion to a specific metal chloride is achieved, that compound distills from the mixture in seconds. This allows both thermodynamic and kinetic selectivity for desired metals with minimization of impurities. Metal recycling plays a crucial role in mitigating the shortage of critical metals. Here the authors develop an electrothermal chlorination process incorporating direct electric heating into chlorination metallurgy for rapid and selective recovery of metals that are critical in electronics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"627-637"},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1038/s44286-024-00117-2
Paul J. Dauenhauer
Paul J. Dauenhauer describes the mathematical basis for designing dynamic catalysts that are programmed to change with time.
Paul J. Dauenhauer 描述了设计动态催化剂的数学基础,这种催化剂可按程序随时间变化。
{"title":"Finding a natural rhythm","authors":"Paul J. Dauenhauer","doi":"10.1038/s44286-024-00117-2","DOIUrl":"10.1038/s44286-024-00117-2","url":null,"abstract":"Paul J. Dauenhauer describes the mathematical basis for designing dynamic catalysts that are programmed to change with time.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"608-608"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1038/s44286-024-00131-4
Mass, energy and momentum transfer impact nearly all aspects of chemical engineering. This Editorial reiterates our interest in transport processes, with some recent highlights from reaction engineering.
{"title":"Propagating progress in transport processes","authors":"","doi":"10.1038/s44286-024-00131-4","DOIUrl":"10.1038/s44286-024-00131-4","url":null,"abstract":"Mass, energy and momentum transfer impact nearly all aspects of chemical engineering. This Editorial reiterates our interest in transport processes, with some recent highlights from reaction engineering.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"553-553"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00131-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1038/s44286-024-00124-3
Alessio Lavino
{"title":"Dewetting-driven printing of thin metal oxide films","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00124-3","DOIUrl":"10.1038/s44286-024-00124-3","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"556-556"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1038/s44286-024-00126-1
Mo Qiao
{"title":"Humidity-driven CO2 pumping","authors":"Mo Qiao","doi":"10.1038/s44286-024-00126-1","DOIUrl":"10.1038/s44286-024-00126-1","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"555-555"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1038/s44286-024-00118-1
Ajay S. Thatte, Dongyoon Kim, Michael J. Mitchell
Successful gene delivery is predicated on the effective cellular uptake of encapsulated nucleic acid cargo. Now, a study identifies extracellular fluid viscosity as a key factor that governs gene delivery via non-viral and viral vectors across a range of cell types.
{"title":"Fine-tuning extracellular fluid viscosity enhances gene delivery","authors":"Ajay S. Thatte, Dongyoon Kim, Michael J. Mitchell","doi":"10.1038/s44286-024-00118-1","DOIUrl":"10.1038/s44286-024-00118-1","url":null,"abstract":"Successful gene delivery is predicated on the effective cellular uptake of encapsulated nucleic acid cargo. Now, a study identifies extracellular fluid viscosity as a key factor that governs gene delivery via non-viral and viral vectors across a range of cell types.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"559-560"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1038/s44286-024-00116-3
Jingyao Ma, Yining Zhu, Jiayuan Kong, Di Yu, Wu Han Toh, Milun Jain, Qin Ni, Zhuoxu Ge, Jinghan Lin, Joseph Choy, Leonardo Cheng, Konstantinos Konstantopoulos, Maximilian F. Konig, Sean X. Sun, Hai-Quan Mao
Gene therapies and cellular programming rely on effective cell transfection. Despite continuous advancements in carrier development and transfection techniques to enhance efficiency, the biophysical parameter of extracellular fluid viscosity has been largely overlooked. Here we report a substantial impact of culture media viscosity on transfection efficiency of several delivery vehicles, including lipid nanoparticles, polyplexes, adeno-associated vectors and lentiviral vectors across a range of cell types. We observed substantially increased transfection efficiencies for lipid nanoparticles and polyplexes when the media viscosity matched that of biological fluids (2.0–4.0 centipoise (cP)). This enhancement correlates with higher levels of cellular uptake and improved endosomal escape. Moreover, cells cultured in optimized viscosity conditions exhibit a different profile of uptake pathways compared with those cultured at the standard viscosity of 0.8 cP. This discovery highlights the critical role of media viscosity in the transfection process and provides an additional method to optimize gene delivery and cell programming processes, potentially reducing production costs and increasing the accessibility of gene and cell therapies. Gene therapies and cellular programming rely on effective cell transfection. Here it is shown that optimizing the viscosity of cell culture media to match that of biological fluids substantially enhances the transfection efficiency for various gene delivery vehicles across different cell types.
{"title":"Tuning extracellular fluid viscosity to enhance transfection efficiency","authors":"Jingyao Ma, Yining Zhu, Jiayuan Kong, Di Yu, Wu Han Toh, Milun Jain, Qin Ni, Zhuoxu Ge, Jinghan Lin, Joseph Choy, Leonardo Cheng, Konstantinos Konstantopoulos, Maximilian F. Konig, Sean X. Sun, Hai-Quan Mao","doi":"10.1038/s44286-024-00116-3","DOIUrl":"10.1038/s44286-024-00116-3","url":null,"abstract":"Gene therapies and cellular programming rely on effective cell transfection. Despite continuous advancements in carrier development and transfection techniques to enhance efficiency, the biophysical parameter of extracellular fluid viscosity has been largely overlooked. Here we report a substantial impact of culture media viscosity on transfection efficiency of several delivery vehicles, including lipid nanoparticles, polyplexes, adeno-associated vectors and lentiviral vectors across a range of cell types. We observed substantially increased transfection efficiencies for lipid nanoparticles and polyplexes when the media viscosity matched that of biological fluids (2.0–4.0 centipoise (cP)). This enhancement correlates with higher levels of cellular uptake and improved endosomal escape. Moreover, cells cultured in optimized viscosity conditions exhibit a different profile of uptake pathways compared with those cultured at the standard viscosity of 0.8 cP. This discovery highlights the critical role of media viscosity in the transfection process and provides an additional method to optimize gene delivery and cell programming processes, potentially reducing production costs and increasing the accessibility of gene and cell therapies. Gene therapies and cellular programming rely on effective cell transfection. Here it is shown that optimizing the viscosity of cell culture media to match that of biological fluids substantially enhances the transfection efficiency for various gene delivery vehicles across different cell types.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"576-587"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The unique conversion chemistry of sulfur endows lithium−sulfur batteries with a high theoretical energy density. However, the basic principles of the sulfur conversion chemistry remain unclear. In this work, phase equilibrium analysis is conducted to update the thermodynamic understanding on lithium−sulfur batteries. A ternary phase diagram is plotted following the equilibrium between sulfur, lithium sulfide and dissolved polysulfides. The diagram accurately describes the existing form of different polysulfides and the solid–liquid−solid phase transitions. Quantitative analysis further reveals the stoichiometric ratio of 1.0:4.5 between the two discharge plateaus and identifies the intrinsic insufficient liquid−solid deposition as the main limitation. The relationship between system point and equilibrium potential is established so that the ternary phase diagram can predict the lithium−sulfur thermodynamics at an arbitrary state. The fundamental thermodynamic principles of sulfur redox reactions in Li–S batteries are not fully understood. A ternary phase diagram is obtained after equilibrium between sulfur, lithium sulfide and dissolved polysulfides, which accurately describes the system evolution and predicts the behavior of Li–S batteries at an arbitrary given state.
{"title":"Phase equilibrium thermodynamics of lithium–sulfur batteries","authors":"Yun-Wei Song, Liang Shen, Xi-Yao Li, Chang-Xin Zhao, Jie Zhou, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang","doi":"10.1038/s44286-024-00115-4","DOIUrl":"10.1038/s44286-024-00115-4","url":null,"abstract":"The unique conversion chemistry of sulfur endows lithium−sulfur batteries with a high theoretical energy density. However, the basic principles of the sulfur conversion chemistry remain unclear. In this work, phase equilibrium analysis is conducted to update the thermodynamic understanding on lithium−sulfur batteries. A ternary phase diagram is plotted following the equilibrium between sulfur, lithium sulfide and dissolved polysulfides. The diagram accurately describes the existing form of different polysulfides and the solid–liquid−solid phase transitions. Quantitative analysis further reveals the stoichiometric ratio of 1.0:4.5 between the two discharge plateaus and identifies the intrinsic insufficient liquid−solid deposition as the main limitation. The relationship between system point and equilibrium potential is established so that the ternary phase diagram can predict the lithium−sulfur thermodynamics at an arbitrary state. The fundamental thermodynamic principles of sulfur redox reactions in Li–S batteries are not fully understood. A ternary phase diagram is obtained after equilibrium between sulfur, lithium sulfide and dissolved polysulfides, which accurately describes the system evolution and predicts the behavior of Li–S batteries at an arbitrary given state.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"588-596"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}