首页 > 最新文献

Nature Chemical Engineering最新文献

英文 中文
Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts 使用单位掺杂铜催化剂引导二氧化碳电还原路径,以选择性形成 C2 产物
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00018-w
Zhengyuan Li, Peng Wang, Xiang Lyu, Vamsi Krishna Reddy Kondapalli, Shuting Xiang, Juan D. Jimenez, Lu Ma, Takeshi Ito, Tianyu Zhang, Jithu Raj, Yanbo Fang, Yaocai Bai, Jianlin Li, Alexey Serov, Vesselin Shanov, Anatoly I. Frenkel, Sanjaya D. Senanayake, Shize Yang, Thomas P. Senftle, Jingjie Wu
Manipulating the selectivity-determining step in post-C–C coupling is crucial for enhancing C2 product specificity during electrocatalytic CO2 reduction, complementing efforts to boost rate-determining step kinetics. Here we highlight the role of single-site noble metal dopants on Cu surfaces in influencing C–O bond dissociation in an oxygen-bound selectivity-determining intermediate, steering post-C–C coupling toward ethylene versus ethanol. Integrating theoretical and experimental analyses, we demonstrate that the oxygen binding strength of the Cu surface controls the favorability of C–O bond scission, thus tuning the selectivity ratio of ethylene-to-ethanol. The Rh-doped Cu catalyst with optimal oxygen binding energy achieves a Faradaic efficiency toward ethylene of 61.2% and an ethylene-to-ethanol Faradaic efficiency ratio of 4.51 at –0.66 V versus RHE (reversible hydrogen electrode). Integrating control of both rate-determining and selectivity-determining steps further raises ethylene Faradaic efficiency to 68.8% at 1.47 A cm−2 in a tandem electrode. Our insights guide the rational design of Cu-based catalysts for selective CO2 electroreduction to a single C2 product. Steering the selectivity-determining steps is as important as the C–C coupling steps in CO2 electroreduction. Here the authors highlight that single-site noble metal dopants on the Cu surface can influence C–O bond dissociation and direct the post-C–C coupling pathways to ethylene versus ethanol.
在电催化二氧化碳还原过程中,操纵后 C-C 偶联中的选择性决定步骤对于提高 C2 产物的特异性至关重要,这也是对提高速率决定步骤动力学的补充。在此,我们强调了铜表面单位贵金属掺杂物在影响氧结合选择性决定中间体的 C-O 键解离、引导后 C-C 偶联向乙烯而非乙醇方向发展中的作用。综合理论和实验分析,我们证明铜表面的氧结合强度控制着 C-O 键解离的有利程度,从而调整乙烯与乙醇的选择性比率。具有最佳氧结合能的掺铑铜催化剂对乙烯的法拉第效率为 61.2%,在 -0.66 V 相对于 RHE(可逆氢电极)时,乙烯对乙醇的法拉第效率比为 4.51。在串联电极中,对速率决定步骤和选择性决定步骤进行综合控制,可进一步将乙烯法拉第效率提高到 68.8%(1.47 A cm-2)。我们的见解为合理设计铜基催化剂,将二氧化碳选择性电还原为单一的 C2 产物提供了指导。在二氧化碳电还原过程中,引导选择性决定步骤与 C-C 偶联步骤同样重要。作者在此强调,铜表面的单位贵金属掺杂物可以影响 C-O 键的解离,并引导后 C-C 偶联途径生成乙烯或乙醇。
{"title":"Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts","authors":"Zhengyuan Li, Peng Wang, Xiang Lyu, Vamsi Krishna Reddy Kondapalli, Shuting Xiang, Juan D. Jimenez, Lu Ma, Takeshi Ito, Tianyu Zhang, Jithu Raj, Yanbo Fang, Yaocai Bai, Jianlin Li, Alexey Serov, Vesselin Shanov, Anatoly I. Frenkel, Sanjaya D. Senanayake, Shize Yang, Thomas P. Senftle, Jingjie Wu","doi":"10.1038/s44286-023-00018-w","DOIUrl":"10.1038/s44286-023-00018-w","url":null,"abstract":"Manipulating the selectivity-determining step in post-C–C coupling is crucial for enhancing C2 product specificity during electrocatalytic CO2 reduction, complementing efforts to boost rate-determining step kinetics. Here we highlight the role of single-site noble metal dopants on Cu surfaces in influencing C–O bond dissociation in an oxygen-bound selectivity-determining intermediate, steering post-C–C coupling toward ethylene versus ethanol. Integrating theoretical and experimental analyses, we demonstrate that the oxygen binding strength of the Cu surface controls the favorability of C–O bond scission, thus tuning the selectivity ratio of ethylene-to-ethanol. The Rh-doped Cu catalyst with optimal oxygen binding energy achieves a Faradaic efficiency toward ethylene of 61.2% and an ethylene-to-ethanol Faradaic efficiency ratio of 4.51 at –0.66 V versus RHE (reversible hydrogen electrode). Integrating control of both rate-determining and selectivity-determining steps further raises ethylene Faradaic efficiency to 68.8% at 1.47 A cm−2 in a tandem electrode. Our insights guide the rational design of Cu-based catalysts for selective CO2 electroreduction to a single C2 product. Steering the selectivity-determining steps is as important as the C–C coupling steps in CO2 electroreduction. Here the authors highlight that single-site noble metal dopants on the Cu surface can influence C–O bond dissociation and direct the post-C–C coupling pathways to ethylene versus ethanol.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-023-00018-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A soap boat trip on ‘Lake Marangoni’ 马兰戈尼湖 "肥皂船之旅
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00028-8
O. K. Matar
Omar Matar explains how changes in surface tension can cause fluid flow, while navigating a sea of related dimensionless numbers.
奥马尔-马塔尔解释了表面张力的变化如何导致流体流动,同时在相关无量纲数字的海洋中遨游。
{"title":"A soap boat trip on ‘Lake Marangoni’","authors":"O. K. Matar","doi":"10.1038/s44286-023-00028-8","DOIUrl":"10.1038/s44286-023-00028-8","url":null,"abstract":"Omar Matar explains how changes in surface tension can cause fluid flow, while navigating a sea of related dimensionless numbers.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfiguring liquid devices 重新配置液体装置
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00027-9
Ting Wang, Zuankai Wang
Designing liquid devices with liquid pathways that can be reconfigured on-demand is important to many chemical and biological applications. Now, a facile approach enables reconfigurable liquid devices through precisely arranged connected liquid droplets that can be rapidly assembled and disassembled.
设计具有可按需重新配置的液体通路的液体装置,对许多化学和生物应用都非常重要。现在,一种简便的方法可以通过精确排列的连接液滴实现可重新配置的液体装置,这些液滴可以快速组装和拆卸。
{"title":"Reconfiguring liquid devices","authors":"Ting Wang, Zuankai Wang","doi":"10.1038/s44286-023-00027-9","DOIUrl":"10.1038/s44286-023-00027-9","url":null,"abstract":"Designing liquid devices with liquid pathways that can be reconfigured on-demand is important to many chemical and biological applications. Now, a facile approach enables reconfigurable liquid devices through precisely arranged connected liquid droplets that can be rapidly assembled and disassembled.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cool down and power up 冷却和开机
Pub Date : 2024-02-08 DOI: 10.1038/s44286-024-00031-7
Alessio Lavino
{"title":"Cool down and power up","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00031-7","DOIUrl":"10.1038/s44286-024-00031-7","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drawing the line for process design 为工艺设计划线
Pub Date : 2024-02-08 DOI: 10.1038/s44286-024-00034-4
Systems-level thinking is an important practice, but accounting for system boundary expansion is a complex and timely challenge.
系统层面的思考是一项重要的实践,但对系统边界扩展进行核算是一项复杂而及时的挑战。
{"title":"Drawing the line for process design","authors":"","doi":"10.1038/s44286-024-00034-4","DOIUrl":"10.1038/s44286-024-00034-4","url":null,"abstract":"Systems-level thinking is an important practice, but accounting for system boundary expansion is a complex and timely challenge.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00034-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous execution of highly reactive chemical transformations in the Schlenkputer 在 Schlenkputer 中自主执行高活性化学变化
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00024-y
Nicola L. Bell, Florian Boser, Andrius Bubliauskas, Dominic R. Willcox, Victor Sandoval Luna, Leroy Cronin
We design a modular programmable inert-atmosphere Schlenkputer (Schlenk-line computer) for the synthesis and manipulation of highly reactive compounds, including those that are air and moisture sensitive or pyrophoric. Here, to do this, we constructed a programmable Schlenk line using the Chemputer architecture for the inertization of glassware that can achieve a vacuum line pressure of 1.5 × 10−3 mbar, and integrated a range of automated Schlenk glassware for the handling, storage and isolation of reactive compounds at sub-ppm levels of O2 and H2O. This has enabled automation of a range of common organometallic reaction types for the synthesis of four highly reactive compounds: [Cp2TiIII(MeCN)2]+, CeIII{N(SiMe3)2}3, B(C6F5)3 and {DippNacNacMgI}2, which are variously sensitive to temperature, pressure, water and oxygen. Automated crystallization, filtration and sublimation are demonstrated, along with analysis using inline nuclear magnetic resonance or reaction sampling for ultraviolet–visible spectroscopy. Finally, we demonstrate low-temperature reactivity down to −90 °C as well as safe handling and quenching of alkali metal reagents using dynamic feedback from an in situ temperature probe. The automated synthesis of highly reactive compounds is challenging. Now a digital automated platform is developed for safer, inert-atmosphere synthesis of air-, moisture-, pressure- and temperature-sensitive compounds from across the periodic table.
我们设计了一种模块化可编程惰性气氛舒伦克计算机(Schlenk-line computer),用于合成和操作高活性化合物,包括对空气和湿气敏感或易发火的化合物。为此,我们利用 Chemputer 架构建造了一条可编程的舒伦克生产线,用于玻璃器皿的惰化,可达到 1.5 × 10-3 毫巴的真空线压力,并集成了一系列自动化舒伦克玻璃器皿,用于在亚ppm 水平的氧气和水蒸气条件下处理、储存和分离活性化合物。这使得一系列常见的有机金属反应类型实现了自动化,从而合成了四种高活性化合物:[Cp2TiIII(MeCN)2]+、CeIII{N(SiMe3)2}3、B(C6F5)3 和 {DippNacNacMgI}2 对温度、压力、水和氧气的敏感性各不相同。我们演示了自动结晶、过滤和升华,以及使用在线核磁共振或紫外-可见光谱反应取样进行分析。最后,我们还演示了低至 -90 °C 的低温反应能力,以及利用原位温度探头的动态反馈对碱金属试剂进行安全处理和淬火。高活性化合物的自动化合成具有挑战性。现在,我们开发了一个数字自动化平台,用于更安全地在惰性气氛中合成元素周期表中对空气、湿度、压力和温度敏感的化合物。
{"title":"Autonomous execution of highly reactive chemical transformations in the Schlenkputer","authors":"Nicola L. Bell, Florian Boser, Andrius Bubliauskas, Dominic R. Willcox, Victor Sandoval Luna, Leroy Cronin","doi":"10.1038/s44286-023-00024-y","DOIUrl":"10.1038/s44286-023-00024-y","url":null,"abstract":"We design a modular programmable inert-atmosphere Schlenkputer (Schlenk-line computer) for the synthesis and manipulation of highly reactive compounds, including those that are air and moisture sensitive or pyrophoric. Here, to do this, we constructed a programmable Schlenk line using the Chemputer architecture for the inertization of glassware that can achieve a vacuum line pressure of 1.5 × 10−3 mbar, and integrated a range of automated Schlenk glassware for the handling, storage and isolation of reactive compounds at sub-ppm levels of O2 and H2O. This has enabled automation of a range of common organometallic reaction types for the synthesis of four highly reactive compounds: [Cp2TiIII(MeCN)2]+, CeIII{N(SiMe3)2}3, B(C6F5)3 and {DippNacNacMgI}2, which are variously sensitive to temperature, pressure, water and oxygen. Automated crystallization, filtration and sublimation are demonstrated, along with analysis using inline nuclear magnetic resonance or reaction sampling for ultraviolet–visible spectroscopy. Finally, we demonstrate low-temperature reactivity down to −90 °C as well as safe handling and quenching of alkali metal reagents using dynamic feedback from an in situ temperature probe. The automated synthesis of highly reactive compounds is challenging. Now a digital automated platform is developed for safer, inert-atmosphere synthesis of air-, moisture-, pressure- and temperature-sensitive compounds from across the periodic table.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-023-00024-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond C–C coupling in CO2 reduction 二氧化碳还原过程中的 C-C 耦合之外
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00019-9
Yuting Xu, Fanglin Che
Directing CO2 electroreduction toward a single C2 product poses challenges because the reaction mechanism is unclear. Now, oxygen affinity is identified as a potential key descriptor to manipulate the selectivity of ethylene versus ethanol.
由于反应机理尚不清楚,因此将二氧化碳电还原引向单一的 C2 产物是一项挑战。现在,氧亲和力被确定为操纵乙烯对乙醇选择性的潜在关键描述因子。
{"title":"Beyond C–C coupling in CO2 reduction","authors":"Yuting Xu, Fanglin Che","doi":"10.1038/s44286-023-00019-9","DOIUrl":"10.1038/s44286-023-00019-9","url":null,"abstract":"Directing CO2 electroreduction toward a single C2 product poses challenges because the reaction mechanism is unclear. Now, oxygen affinity is identified as a potential key descriptor to manipulate the selectivity of ethylene versus ethanol.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From laboratory research to industrial engineering 从实验室研究到工业工程
Pub Date : 2024-02-08 DOI: 10.1038/s44286-024-00030-8
Mo Qiao
Kai Qiao, a senior engineer at SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, and a visiting professor in the Department of Chemical Engineering at Dalian University of Technology, talks to Nature Chemical Engineering about his career as a chemical engineer working on biomass-derived chemical production.
中国石化大连石油化工研究院有限公司高级工程师、大连理工大学化学工程系客座教授乔凯向《自然-化学工程》讲述了他作为化学工程师从事生物质衍生化学品生产的职业生涯。
{"title":"From laboratory research to industrial engineering","authors":"Mo Qiao","doi":"10.1038/s44286-024-00030-8","DOIUrl":"10.1038/s44286-024-00030-8","url":null,"abstract":"Kai Qiao, a senior engineer at SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, and a visiting professor in the Department of Chemical Engineering at Dalian University of Technology, talks to Nature Chemical Engineering about his career as a chemical engineer working on biomass-derived chemical production.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyimide-derived carbon molecule sieve membranes for gas separations 用于气体分离的聚酰亚胺衍生碳分子筛膜
Pub Date : 2024-02-08 DOI: 10.1038/s44286-023-00021-1
Zhongyun Liu, Yuhe Cao, William J. Koros
Polyimide-derived carbon molecular sieve (CMS) membranes mark an important step for various current, key energy-intensive separations. The excellent separation performance combined with economical scalability make CMS membranes ready to enable energy-transition-focused gas separations.
聚酰亚胺衍生碳分子筛(CMS)膜标志着当前各种关键能源密集型分离技术迈出了重要一步。出色的分离性能与经济的可扩展性相结合,使 CMS 膜能够实现以能源过渡为重点的气体分离。
{"title":"Polyimide-derived carbon molecule sieve membranes for gas separations","authors":"Zhongyun Liu, Yuhe Cao, William J. Koros","doi":"10.1038/s44286-023-00021-1","DOIUrl":"10.1038/s44286-023-00021-1","url":null,"abstract":"Polyimide-derived carbon molecular sieve (CMS) membranes mark an important step for various current, key energy-intensive separations. The excellent separation performance combined with economical scalability make CMS membranes ready to enable energy-transition-focused gas separations.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-023-00021-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking chemical engineering education 重新思考化学工程教育
Pub Date : 2024-02-08 DOI: 10.1038/s44286-024-00029-1
Jinlong Gong, David C. Shallcross, Yan Jiao, Venkat Venkatasubramanian, Richard Davis, Christopher G. Arges
We asked a group of chemical engineering educators with a broad set of research interests to reimagine the undergraduate curriculum, highlighting both current strengths and areas of needed development.
我们邀请了一批具有广泛研究兴趣的化学工程教育工作者对本科课程进行重新构想,突出当前的优势和需要发展的领域。
{"title":"Rethinking chemical engineering education","authors":"Jinlong Gong, David C. Shallcross, Yan Jiao, Venkat Venkatasubramanian, Richard Davis, Christopher G. Arges","doi":"10.1038/s44286-024-00029-1","DOIUrl":"10.1038/s44286-024-00029-1","url":null,"abstract":"We asked a group of chemical engineering educators with a broad set of research interests to reimagine the undergraduate curriculum, highlighting both current strengths and areas of needed development.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00029-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1