首页 > 最新文献

Nature Chemical Engineering最新文献

英文 中文
Reflecting on barriers to continuous pharmaceutical crystallization 反思药物连续结晶的障碍
Pub Date : 2025-09-10 DOI: 10.1038/s44286-025-00268-w
Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson
This Comment explores why continuous crystallization, despite its success in other industries, remains underutilized in pharmaceutical manufacturing. Among other challenges, we highlight two core issues: the lack of off-the-shelf small-scale equipment with integrated monitoring tools, and the absence of compatible continuous downstream units for filtration and drying, both of which limit practical implementation.
本评论探讨了为什么连续结晶尽管在其他行业取得了成功,但在制药制造中仍未得到充分利用。在其他挑战中,我们强调了两个核心问题:缺乏集成监测工具的现成小型设备,以及缺乏兼容的连续下游过滤和干燥装置,这两个问题都限制了实际实施。
{"title":"Reflecting on barriers to continuous pharmaceutical crystallization","authors":"Giovanni Aprile, Cedric Devos, Thomas Vetter, Gerard Capellades, Kevin P. Girard, Christopher L. Burcham, Venkateswarlu Bhamidi, Daniel Green, Torsten Stelzer, Richard D. Braatz, Allan S. Myerson","doi":"10.1038/s44286-025-00268-w","DOIUrl":"10.1038/s44286-025-00268-w","url":null,"abstract":"This Comment explores why continuous crystallization, despite its success in other industries, remains underutilized in pharmaceutical manufacturing. Among other challenges, we highlight two core issues: the lack of off-the-shelf small-scale equipment with integrated monitoring tools, and the absence of compatible continuous downstream units for filtration and drying, both of which limit practical implementation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"520-523"},"PeriodicalIF":0.0,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations 通过催化甲醇分解和单体分离的混合聚酯闭环回收
Pub Date : 2025-09-08 DOI: 10.1038/s44286-025-00275-x
Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer
A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.
可持续塑料的未来将需要高回收率和生物原料的使用,这两者共同促进了人们对用生物基、化学可回收的聚酯代替化石燃料衍生的非循环聚烯烃包装材料的兴趣。在这里,我们提出了一种催化甲醇分解工艺,能够在一个反应器中在温和的条件下以高单体产量解聚化石燃料和生物基聚酯,包括聚对苯二甲酸乙二醇酯(PET),聚乳酸,聚己二酸丁二酯和聚丁二酸丁二酯。我们将这一工艺扩大到1公斤,并采用活性炭、结晶、提取和蒸馏的综合分离工程,以去除污染物,并从解聚的混合聚酯中回收单体,产量高,纯度高。从消费后材料中分离的单体合成的PET具有与商业单体相当的机械和热性能。技术经济分析和生命周期评估表明,该工艺在经济上是可行的,并且比各自聚合物的初级生产对环境的影响更小。与高回收率相结合,净零生物塑料是可能的。本研究提出了一种混合聚酯回收工艺,结合化石和生物基塑料的单体分离和纯化。技术经济和生命周期分析证实了其环境和商业优势,推动了循环低排放聚酯塑料的发展。
{"title":"Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations","authors":"Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer","doi":"10.1038/s44286-025-00275-x","DOIUrl":"10.1038/s44286-025-00275-x","url":null,"abstract":"A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"568-580"},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations 通过催化甲醇分解和单体分离的混合聚酯闭环回收
Pub Date : 2025-09-08 DOI: 10.1038/s44286-025-00275-x
Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer
A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.
可持续塑料的未来将需要高回收率和生物原料的使用,这两者共同促进了人们对用生物基、化学可回收的聚酯代替化石燃料衍生的非循环聚烯烃包装材料的兴趣。在这里,我们提出了一种催化甲醇分解工艺,能够在一个反应器中在温和的条件下以高单体产量解聚化石燃料和生物基聚酯,包括聚对苯二甲酸乙二醇酯(PET),聚乳酸,聚己二酸丁二酯和聚丁二酸丁二酯。我们将这一工艺扩大到1公斤,并采用活性炭、结晶、提取和蒸馏的综合分离工程,以去除污染物,并从解聚的混合聚酯中回收单体,产量高,纯度高。从消费后材料中分离的单体合成的PET具有与商业单体相当的机械和热性能。技术经济分析和生命周期评估表明,该工艺在经济上是可行的,并且比各自聚合物的初级生产对环境的影响更小。与高回收率相结合,净零生物塑料是可能的。本研究提出了一种混合聚酯回收工艺,结合化石和生物基塑料的单体分离和纯化。技术经济和生命周期分析证实了其环境和商业优势,推动了循环低排放聚酯塑料的发展。
{"title":"Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations","authors":"Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer","doi":"10.1038/s44286-025-00275-x","DOIUrl":"10.1038/s44286-025-00275-x","url":null,"abstract":"A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"568-580"},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing the loop on mixed polyester recycling 关闭混合聚酯回收循环
Pub Date : 2025-09-08 DOI: 10.1038/s44286-025-00278-8
Kevin M. Van Geem
Chemical recycling of mixed polyester waste presents a monumental challenge for achieving a circular plastics economy due to material incompatibility and contamination. Now, a catalytic methanolysis process demonstrates a scalable, efficient and selective method for recycling mixed polyester waste.
由于材料不相容性和污染,混合聚酯废料的化学回收提出了实现循环塑料经济的巨大挑战。现在,催化甲醇分解过程展示了一种可扩展,高效和选择性的方法来回收混合聚酯废料。
{"title":"Closing the loop on mixed polyester recycling","authors":"Kevin M. Van Geem","doi":"10.1038/s44286-025-00278-8","DOIUrl":"10.1038/s44286-025-00278-8","url":null,"abstract":"Chemical recycling of mixed polyester waste presents a monumental challenge for achieving a circular plastics economy due to material incompatibility and contamination. Now, a catalytic methanolysis process demonstrates a scalable, efficient and selective method for recycling mixed polyester waste.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"531-532"},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing the loop on mixed polyester recycling 关闭混合聚酯回收循环
Pub Date : 2025-09-08 DOI: 10.1038/s44286-025-00278-8
Kevin M. Van Geem
Chemical recycling of mixed polyester waste presents a monumental challenge for achieving a circular plastics economy due to material incompatibility and contamination. Now, a catalytic methanolysis process demonstrates a scalable, efficient and selective method for recycling mixed polyester waste.
由于材料不相容性和污染,混合聚酯废料的化学回收提出了实现循环塑料经济的巨大挑战。现在,催化甲醇分解过程展示了一种可扩展,高效和选择性的方法来回收混合聚酯废料。
{"title":"Closing the loop on mixed polyester recycling","authors":"Kevin M. Van Geem","doi":"10.1038/s44286-025-00278-8","DOIUrl":"10.1038/s44286-025-00278-8","url":null,"abstract":"Chemical recycling of mixed polyester waste presents a monumental challenge for achieving a circular plastics economy due to material incompatibility and contamination. Now, a catalytic methanolysis process demonstrates a scalable, efficient and selective method for recycling mixed polyester waste.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"531-532"},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A search-and-branch mechanism for microtubule sensing 微管传感的搜索分支机制
Pub Date : 2025-09-05 DOI: 10.1038/s44286-025-00276-w
Ryota Sakamoto, Yusuke T. Maeda
An engineered confinement device reveals how the microtubule cytoskeleton senses and adapts to its environment by harnessing the interplay between catastrophe instability and branching nucleation.
一种工程约束装置揭示了微管细胞骨架如何通过利用突变不稳定性和分支成核之间的相互作用来感知和适应环境。
{"title":"A search-and-branch mechanism for microtubule sensing","authors":"Ryota Sakamoto, Yusuke T. Maeda","doi":"10.1038/s44286-025-00276-w","DOIUrl":"10.1038/s44286-025-00276-w","url":null,"abstract":"An engineered confinement device reveals how the microtubule cytoskeleton senses and adapts to its environment by harnessing the interplay between catastrophe instability and branching nucleation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"537-538"},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A search-and-branch mechanism for microtubule sensing 微管传感的搜索分支机制
Pub Date : 2025-09-05 DOI: 10.1038/s44286-025-00276-w
Ryota Sakamoto, Yusuke T. Maeda
An engineered confinement device reveals how the microtubule cytoskeleton senses and adapts to its environment by harnessing the interplay between catastrophe instability and branching nucleation.
一种工程约束装置揭示了微管细胞骨架如何通过利用突变不稳定性和分支成核之间的相互作用来感知和适应环境。
{"title":"A search-and-branch mechanism for microtubule sensing","authors":"Ryota Sakamoto, Yusuke T. Maeda","doi":"10.1038/s44286-025-00276-w","DOIUrl":"10.1038/s44286-025-00276-w","url":null,"abstract":"An engineered confinement device reveals how the microtubule cytoskeleton senses and adapts to its environment by harnessing the interplay between catastrophe instability and branching nucleation.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"537-538"},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best practices in the characterization of porous materials for CO2 capture 表征多孔材料CO2捕获的最佳实践
Pub Date : 2025-08-25 DOI: 10.1038/s44286-025-00266-y
Matthew N. Dods, Jeffrey R. Long
The rapid commercialization of carbon capture technologies has underscored the need for careful evaluation of sorbents capable of selective CO2 capture. This Comment identifies several key considerations in taking porous CO2 capture materials from the laboratory to commercial scale.
碳捕获技术的快速商业化强调了对能够选择性捕获二氧化碳的吸附剂进行仔细评估的必要性。本评论确定了将多孔CO2捕集材料从实验室推向商业规模的几个关键考虑因素。
{"title":"Best practices in the characterization of porous materials for CO2 capture","authors":"Matthew N. Dods, Jeffrey R. Long","doi":"10.1038/s44286-025-00266-y","DOIUrl":"10.1038/s44286-025-00266-y","url":null,"abstract":"The rapid commercialization of carbon capture technologies has underscored the need for careful evaluation of sorbents capable of selective CO2 capture. This Comment identifies several key considerations in taking porous CO2 capture materials from the laboratory to commercial scale.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"515-519"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best practices in the characterization of porous materials for CO2 capture 表征多孔材料CO2捕获的最佳实践
Pub Date : 2025-08-25 DOI: 10.1038/s44286-025-00266-y
Matthew N. Dods, Jeffrey R. Long
The rapid commercialization of carbon capture technologies has underscored the need for careful evaluation of sorbents capable of selective CO2 capture. This Comment identifies several key considerations in taking porous CO2 capture materials from the laboratory to commercial scale.
碳捕获技术的快速商业化强调了对能够选择性捕获二氧化碳的吸附剂进行仔细评估的必要性。本评论确定了将多孔CO2捕集材料从实验室推向商业规模的几个关键考虑因素。
{"title":"Best practices in the characterization of porous materials for CO2 capture","authors":"Matthew N. Dods, Jeffrey R. Long","doi":"10.1038/s44286-025-00266-y","DOIUrl":"10.1038/s44286-025-00266-y","url":null,"abstract":"The rapid commercialization of carbon capture technologies has underscored the need for careful evaluation of sorbents capable of selective CO2 capture. This Comment identifies several key considerations in taking porous CO2 capture materials from the laboratory to commercial scale.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"515-519"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuel cells as lifelong learners 燃料电池作为终身学习者
Pub Date : 2025-08-20 DOI: 10.1038/s44286-025-00272-0
Mo Qiao
{"title":"Fuel cells as lifelong learners","authors":"Mo Qiao","doi":"10.1038/s44286-025-00272-0","DOIUrl":"10.1038/s44286-025-00272-0","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 8","pages":"464-464"},"PeriodicalIF":0.0,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1