Pub Date : 2024-10-25DOI: 10.1038/s44286-024-00136-z
Yujia Zhang, Tianyi Sun, Xingyun Yang, Linna Zhou, Cheryl M. J. Tan, Ming Lei, Hagan Bayley
Advances in the development of tiny devices with sizes below a few cubic millimeters require a corresponding decrease in the volume of driving power sources. To be minimally invasive, prospective power sources in biomedical devices must be fabricated from soft materials. Previous endeavors with droplet-based devices have produced promising miniature power sources; however, a droplet-based rechargeable battery has remained out of reach. Here we report a microscale soft flexible lithium-ion droplet battery (LiDB) based on the lipid-supported assembly of droplets constructed from a biocompatible silk hydrogel. Capabilities such as triggerable activation, biocompatibility and biodegradability and high capacity are demonstrated. We have used the LiDB to power the electrophoretic translocation of charged molecules between synthetic cells and to mediate the defibrillation and pacing of ex vivo mouse hearts. By the inclusion of magnetic particles to enable propulsion, the LiDB can function as a mobile energy courier. Our tiny versatile battery will thereby enable a variety of biomedical applications. The development of tiny, soft and biocompatible batteries to power minimally invasive biomedical devices is of critical importance. Here the authors present a microscale soft rechargeable lithium-ion battery based on the lipid-supported assembly of silk hydrogel droplets that enables a variety of biomedical applications.
{"title":"A microscale soft lithium-ion battery for tissue stimulation","authors":"Yujia Zhang, Tianyi Sun, Xingyun Yang, Linna Zhou, Cheryl M. J. Tan, Ming Lei, Hagan Bayley","doi":"10.1038/s44286-024-00136-z","DOIUrl":"10.1038/s44286-024-00136-z","url":null,"abstract":"Advances in the development of tiny devices with sizes below a few cubic millimeters require a corresponding decrease in the volume of driving power sources. To be minimally invasive, prospective power sources in biomedical devices must be fabricated from soft materials. Previous endeavors with droplet-based devices have produced promising miniature power sources; however, a droplet-based rechargeable battery has remained out of reach. Here we report a microscale soft flexible lithium-ion droplet battery (LiDB) based on the lipid-supported assembly of droplets constructed from a biocompatible silk hydrogel. Capabilities such as triggerable activation, biocompatibility and biodegradability and high capacity are demonstrated. We have used the LiDB to power the electrophoretic translocation of charged molecules between synthetic cells and to mediate the defibrillation and pacing of ex vivo mouse hearts. By the inclusion of magnetic particles to enable propulsion, the LiDB can function as a mobile energy courier. Our tiny versatile battery will thereby enable a variety of biomedical applications. The development of tiny, soft and biocompatible batteries to power minimally invasive biomedical devices is of critical importance. Here the authors present a microscale soft rechargeable lithium-ion battery based on the lipid-supported assembly of silk hydrogel droplets that enables a variety of biomedical applications.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 11","pages":"691-701"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00136-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s44286-024-00141-2
Thomas Dursch
{"title":"Recycle, reduce, reform and close the loop","authors":"Thomas Dursch","doi":"10.1038/s44286-024-00141-2","DOIUrl":"10.1038/s44286-024-00141-2","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"610-610"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s44286-024-00138-x
Molecular thermodynamics emerged from the convergence of classical thermodynamics with molecular chemistry and physics. In this Editorial, we reflect on the impact of molecular thermodynamics in chemical engineering and share our excitement for future developments in this field.
{"title":"Encouraging activity in molecular thermodynamics","authors":"","doi":"10.1038/s44286-024-00138-x","DOIUrl":"10.1038/s44286-024-00138-x","url":null,"abstract":"Molecular thermodynamics emerged from the convergence of classical thermodynamics with molecular chemistry and physics. In this Editorial, we reflect on the impact of molecular thermodynamics in chemical engineering and share our excitement for future developments in this field.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"609-609"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00138-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s44286-024-00133-2
Mo Qiao
{"title":"Reducing desalination energy consumption","authors":"Mo Qiao","doi":"10.1038/s44286-024-00133-2","DOIUrl":"10.1038/s44286-024-00133-2","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"612-612"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s44286-024-00132-3
Alessio Lavino
{"title":"Biodegrading living plastics","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00132-3","DOIUrl":"10.1038/s44286-024-00132-3","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"611-611"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1038/s44286-024-00130-5
Scott S. H. Tsai
Scott Tsai discusses the relationship between interfacial tension and surfactants, and their role in various droplet microfluidics technologies.
Scott Tsai 讨论了界面张力与表面活性剂之间的关系,以及它们在各种液滴微流体技术中的作用。
{"title":"Queue in the surfactant molecules","authors":"Scott S. H. Tsai","doi":"10.1038/s44286-024-00130-5","DOIUrl":"10.1038/s44286-024-00130-5","url":null,"abstract":"Scott Tsai discusses the relationship between interfacial tension and surfactants, and their role in various droplet microfluidics technologies.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"670-670"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1038/s44286-024-00121-6
Kevin D. Nixon, Zoé O. G. Schyns, Yuqing Luo, Marianthi G. Ierapetritou, Dionisios G. Vlachos, LaShanda T. J. Korley, Thomas H. Epps, III
A circular plastics economy can leverage the lightweight, strong and durable characteristics of macromolecular materials, while simultaneously reducing the negative environmental impacts associated with polymer waste. Advanced recycling technologies provide an opportunity to valorize plastics waste and extend the lifespan of these materials by converting waste into new monomers, polymers or specialty chemicals. Although many advanced technologies appear promising, assessments of economic and environmental sustainability are often not conducted in a standardized fashion and neglect factors such as plastics waste transportation, sorting and pretreatment. These shortcomings can lead to inaccurate or misleading predictions, reduce opportunities for optimization and limit industrial relevance. In this Review, we highlight select industrial case studies to underscore the notable consequences of underestimating the complexity of real-life consumer plastics waste. In addition, the current challenges associated with the assessment of the industrial viability of laboratory-scale processes are explored. By discussing relevant analysis frameworks and system boundaries, along with potential analytical pitfalls, future research will be guided beyond chemical considerations and toward impactful circular solutions. Advanced recycling is an end-of-life option for plastics waste toward the generation of high-value products. This Review highlights the importance of developing holistic analyses of candidate recycling technologies, with a focus on industrial pitfalls, key assessment parameters, complexities of recycling infrastructure, scale-up considerations, and environmental and economic trade-offs.
{"title":"Analyses of circular solutions for advanced plastics waste recycling","authors":"Kevin D. Nixon, Zoé O. G. Schyns, Yuqing Luo, Marianthi G. Ierapetritou, Dionisios G. Vlachos, LaShanda T. J. Korley, Thomas H. Epps, III","doi":"10.1038/s44286-024-00121-6","DOIUrl":"10.1038/s44286-024-00121-6","url":null,"abstract":"A circular plastics economy can leverage the lightweight, strong and durable characteristics of macromolecular materials, while simultaneously reducing the negative environmental impacts associated with polymer waste. Advanced recycling technologies provide an opportunity to valorize plastics waste and extend the lifespan of these materials by converting waste into new monomers, polymers or specialty chemicals. Although many advanced technologies appear promising, assessments of economic and environmental sustainability are often not conducted in a standardized fashion and neglect factors such as plastics waste transportation, sorting and pretreatment. These shortcomings can lead to inaccurate or misleading predictions, reduce opportunities for optimization and limit industrial relevance. In this Review, we highlight select industrial case studies to underscore the notable consequences of underestimating the complexity of real-life consumer plastics waste. In addition, the current challenges associated with the assessment of the industrial viability of laboratory-scale processes are explored. By discussing relevant analysis frameworks and system boundaries, along with potential analytical pitfalls, future research will be guided beyond chemical considerations and toward impactful circular solutions. Advanced recycling is an end-of-life option for plastics waste toward the generation of high-value products. This Review highlights the importance of developing holistic analyses of candidate recycling technologies, with a focus on industrial pitfalls, key assessment parameters, complexities of recycling infrastructure, scale-up considerations, and environmental and economic trade-offs.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"615-626"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00121-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1038/s44286-024-00129-y
A protocol termed electrothermal chlorination is developed for the energy-efficient recovery of critical metals from electronic waste. The incorporation of direct electric heating into a chlorination process enables precise temperature control and rapid heating and cooling rates, facilitating metal separation based on subtle differences in thermodynamics as well as kinetic selectivity.
{"title":"Electrified chlorination for critical metals recovery from electronic waste","authors":"","doi":"10.1038/s44286-024-00129-y","DOIUrl":"10.1038/s44286-024-00129-y","url":null,"abstract":"A protocol termed electrothermal chlorination is developed for the energy-efficient recovery of critical metals from electronic waste. The incorporation of direct electric heating into a chlorination process enables precise temperature control and rapid heating and cooling rates, facilitating metal separation based on subtle differences in thermodynamics as well as kinetic selectivity.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"613-614"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1038/s44286-024-00127-0
Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao
Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.
{"title":"Environmental impacts of biodegradable microplastics","authors":"Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao","doi":"10.1038/s44286-024-00127-0","DOIUrl":"10.1038/s44286-024-00127-0","url":null,"abstract":"Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"661-669"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00127-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Particle capture is vital for air purification in environmental protection, regional climate regulation and public health. In particular, filters operating with gas–liquid interfaces can provide efficient particle absorption and removal while serving in a maintenance-free manner. Here a liquid-gating topological gradient microfluidics (LGTGM) device is developed for air purification inspired by the liquid-assisted filtration mechanism of the human respiratory system. The LGTGM device is based on the continuous generation of microbubbles from a supplied gas flow. Due to the large specific interfacial surface area, together with tailored wettability in the device, particulate pollutants in the microbubbles preferentially transfer across the gas–liquid interface and enter a collection liquid. Benefiting from the fine regulation of bubble generation dynamics, multiple LGTGM devices can be combined in series or parallel to achieve efficient air purification as well as high-throughput processing. Moreover, the application potential of LGTGM is demonstrated for smoke filtration, disease prevention and visual detection. This study develops a liquid-gating topological gradient microfluidics device that generates finely tuned microbubbles in a functional liquid in a high-throughput manner for air purification in different scenarios.
{"title":"Biomimetic air purification with liquid-gating topological gradient microfluidics","authors":"Hanxu Chen, Lingyu Sun, Yu Wang, Lijun Cai, Yuanjin Zhao, Luoran Shang","doi":"10.1038/s44286-024-00128-z","DOIUrl":"10.1038/s44286-024-00128-z","url":null,"abstract":"Particle capture is vital for air purification in environmental protection, regional climate regulation and public health. In particular, filters operating with gas–liquid interfaces can provide efficient particle absorption and removal while serving in a maintenance-free manner. Here a liquid-gating topological gradient microfluidics (LGTGM) device is developed for air purification inspired by the liquid-assisted filtration mechanism of the human respiratory system. The LGTGM device is based on the continuous generation of microbubbles from a supplied gas flow. Due to the large specific interfacial surface area, together with tailored wettability in the device, particulate pollutants in the microbubbles preferentially transfer across the gas–liquid interface and enter a collection liquid. Benefiting from the fine regulation of bubble generation dynamics, multiple LGTGM devices can be combined in series or parallel to achieve efficient air purification as well as high-throughput processing. Moreover, the application potential of LGTGM is demonstrated for smoke filtration, disease prevention and visual detection. This study develops a liquid-gating topological gradient microfluidics device that generates finely tuned microbubbles in a functional liquid in a high-throughput manner for air purification in different scenarios.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"650-660"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}