Pub Date : 2022-04-20DOI: 10.1142/s1793431122500099
S. Pailoplee, S. Chawchai, P. Nimnate
{"title":"Site-specific Investigations of the Earthquake Activities and Hazards for Some Caves in Thailand","authors":"S. Pailoplee, S. Chawchai, P. Nimnate","doi":"10.1142/s1793431122500099","DOIUrl":"https://doi.org/10.1142/s1793431122500099","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78007823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20DOI: 10.1142/s1793431122500166
Wei-Hsi Huang
{"title":"Seismic finite fault characterization for real time ground motion prediction","authors":"Wei-Hsi Huang","doi":"10.1142/s1793431122500166","DOIUrl":"https://doi.org/10.1142/s1793431122500166","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77651511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20DOI: 10.1142/s1793431122500117
D. Basu, Mohit Lakhani
{"title":"Bond-Slip in Reinforced Concrete Beam-Column Joints—A Semi-empirical Implicit Modelling and Possible Influence of Design Standard Compliance","authors":"D. Basu, Mohit Lakhani","doi":"10.1142/s1793431122500117","DOIUrl":"https://doi.org/10.1142/s1793431122500117","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85908945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20DOI: 10.1142/s1793431122500129
F. S. Meigooni, M. Tehranizadeh
{"title":"Effect of Mainshock-Aftershock Excitations on Seismic Energy Dissipation Mechanism of RC Frames","authors":"F. S. Meigooni, M. Tehranizadeh","doi":"10.1142/s1793431122500129","DOIUrl":"https://doi.org/10.1142/s1793431122500129","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78954486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-01DOI: 10.1142/s1793431122500051
M. Rajendran
Ductility and energy dissipation capacity of the beam column joints are the two prominent characteristics which govern the stability of the entire structure constructed in the seismic prone areas. In this paper, the effect of potassium-activated geopolymer concrete in the exterior beam column joint application is investigated under low frequency cyclic loading. Numerical analysis has been done by using the finite element software Abaqus and compared with the experimental work. From the load deformation relationship, parametric studies are carried out in the aspects of ductility, stiffness degradation, energy dissipation capacity, drift ratio and cracking pattern. The use of potassium-activated geopolymer technology in the exterior beam column joint application resulted in the improved ductility, energy dissipation capacity with superior ultimate load carrying capacity of 1.05% over conventional cement reinforced concrete beam column joints with special confining reinforcement confirmed by IS 13920 due to the enormous polymerization activated by high molecular potassium ions. There is an improved energy dissipation capacity of 2.78% of potassium-based geopolymer specimen resulting in lesser number of non-structural cracks and 11.26% more deformation under 11.96% enlarged drift ratio than the conventional reinforced concrete specimen. From the observed results, it is clearly noted that the implementation of potassium-activated green polymer technology in the beam column joints possessed enhanced ductility characteristics to protect the structure susceptible to seismic environment and resulted in innovative, economical and sustainable mode of seismic-resistant building construction.
{"title":"Novel Ductile Enhancement in the Structural Characteristics of External Beam Column Joint with Potassium-Activated Green Concrete Technology","authors":"M. Rajendran","doi":"10.1142/s1793431122500051","DOIUrl":"https://doi.org/10.1142/s1793431122500051","url":null,"abstract":"Ductility and energy dissipation capacity of the beam column joints are the two prominent characteristics which govern the stability of the entire structure constructed in the seismic prone areas. In this paper, the effect of potassium-activated geopolymer concrete in the exterior beam column joint application is investigated under low frequency cyclic loading. Numerical analysis has been done by using the finite element software Abaqus and compared with the experimental work. From the load deformation relationship, parametric studies are carried out in the aspects of ductility, stiffness degradation, energy dissipation capacity, drift ratio and cracking pattern. The use of potassium-activated geopolymer technology in the exterior beam column joint application resulted in the improved ductility, energy dissipation capacity with superior ultimate load carrying capacity of 1.05% over conventional cement reinforced concrete beam column joints with special confining reinforcement confirmed by IS 13920 due to the enormous polymerization activated by high molecular potassium ions. There is an improved energy dissipation capacity of 2.78% of potassium-based geopolymer specimen resulting in lesser number of non-structural cracks and 11.26% more deformation under 11.96% enlarged drift ratio than the conventional reinforced concrete specimen. From the observed results, it is clearly noted that the implementation of potassium-activated green polymer technology in the beam column joints possessed enhanced ductility characteristics to protect the structure susceptible to seismic environment and resulted in innovative, economical and sustainable mode of seismic-resistant building construction.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81380069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-01DOI: 10.1142/s179343112250004x
Fakhari Abbas, N. Tanaka
This study addresses the vivid internal flow structure variations through horizontal double-layered vegetation (HDLV) under subcritical flow conditions for an inland tsunami. The computational domain was built in ANSYS Workbench, while post-processing and simulation were performed using the computational fluid dynamics (CFD) tool FLUENT with the three-dimensional (3D) Reynolds stress model (RSM). Two alternative arrangements of HDLV were considered, namely Configuration 1 (short submergent layer [Formula: see text] emergent layer (Lt)) and Configuration 2 (tall emergent layer [Formula: see text] submergent layer (Ls)) along with varying flow depths. Strong inflections in velocity and Reynolds stress profiles were observed at the interface near the top of Ls, Whereas, these profiles were almost constant from bed to the top of vegetations inside Lt. A shear layer zone was formed above the top of Ls, which extended to the downstream region in Configuration 2 while it was restricted by Lt in Configuration 1. The normal Reynolds stresses at the bed were significantly greater within Ls in Configuration 2 than inside Lt in Configuration 1. Hence, Configuration 1 was performed relatively better than Configuration 2 in terms of reducing velocity within the vegetation, while Configuration 2 played a key role in attenuating the increased velocities and confining the shear layer above the short submergent layer.
{"title":"Numerical Study of Flow Structures Through Horizontal Double-Layered Vegetation Consisting of Combined Submergent and Emergent Vegetations","authors":"Fakhari Abbas, N. Tanaka","doi":"10.1142/s179343112250004x","DOIUrl":"https://doi.org/10.1142/s179343112250004x","url":null,"abstract":"This study addresses the vivid internal flow structure variations through horizontal double-layered vegetation (HDLV) under subcritical flow conditions for an inland tsunami. The computational domain was built in ANSYS Workbench, while post-processing and simulation were performed using the computational fluid dynamics (CFD) tool FLUENT with the three-dimensional (3D) Reynolds stress model (RSM). Two alternative arrangements of HDLV were considered, namely Configuration 1 (short submergent layer [Formula: see text] emergent layer (Lt)) and Configuration 2 (tall emergent layer [Formula: see text] submergent layer (Ls)) along with varying flow depths. Strong inflections in velocity and Reynolds stress profiles were observed at the interface near the top of Ls, Whereas, these profiles were almost constant from bed to the top of vegetations inside Lt. A shear layer zone was formed above the top of Ls, which extended to the downstream region in Configuration 2 while it was restricted by Lt in Configuration 1. The normal Reynolds stresses at the bed were significantly greater within Ls in Configuration 2 than inside Lt in Configuration 1. Hence, Configuration 1 was performed relatively better than Configuration 2 in terms of reducing velocity within the vegetation, while Configuration 2 played a key role in attenuating the increased velocities and confining the shear layer above the short submergent layer.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78925765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1142/s1793431121400066
Qifei Liu, H. Zhuang, Qi Wu, Kai Zhao, Guoxing Chen
{"title":"Experimental study on dynamic modulus and damping ratio of rubber-sand mixtures over a wide strain range","authors":"Qifei Liu, H. Zhuang, Qi Wu, Kai Zhao, Guoxing Chen","doi":"10.1142/s1793431121400066","DOIUrl":"https://doi.org/10.1142/s1793431121400066","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82249024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1142/s1793431121400030
Su Chen, L. Fu, Z. Dai, Shiyang Chen, Xiaojun Li
{"title":"Spectral analysis of subduction zone earthquakes for coastal stations and applications to stochastic finite-fault simulation method","authors":"Su Chen, L. Fu, Z. Dai, Shiyang Chen, Xiaojun Li","doi":"10.1142/s1793431121400030","DOIUrl":"https://doi.org/10.1142/s1793431121400030","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81471017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1142/s1793431121400042
Chunyu Wu, D. Lu, Chao Ma, Xiu-li Du
{"title":"Seismic Performance Evaluation Method of Underground Frame Structures Considering the Vertical Seismic Capacity of Structural Components","authors":"Chunyu Wu, D. Lu, Chao Ma, Xiu-li Du","doi":"10.1142/s1793431121400042","DOIUrl":"https://doi.org/10.1142/s1793431121400042","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87607442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1142/s1793431121400078
Liu Zhong-xian, Huang Zhen'en, Huang Lei, Sun Jun, Du Jian-mei
{"title":"Two-dimensional fast multipole indirect boundary element method-based solution to P-wave scattering by a mountain with large-scale random cracks in an elastic half-space","authors":"Liu Zhong-xian, Huang Zhen'en, Huang Lei, Sun Jun, Du Jian-mei","doi":"10.1142/s1793431121400078","DOIUrl":"https://doi.org/10.1142/s1793431121400078","url":null,"abstract":"","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74468661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}