首页 > 最新文献

Batteries最新文献

英文 中文
The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries 结构图案类型对锂离子电池用超厚 NMC 622电极电化学性能的影响
Pub Date : 2024-02-08 DOI: 10.3390/batteries10020058
P. Zhu, Benjamin Ebert, P. Smyrek, Wilhelm Pfleging
An increase in the energy density on the cell level while maintaining a high power density can be realized by combining thick-film electrodes and the 3D battery concept. The effect of laser structuring using different pattern types on the electrochemical performance was studied. For this purpose, LiNi0.6Mn0.2Co0.2O2 (NMC 622) thick-film cathodes were prepared with a PVDF binder and were afterward structured using ultrafast laser ablation. Eight different pattern types were realized, which are lines, grids, holes, hexagonal structures, and their respective combinations. In addition, the mass loss caused by laser ablation was kept the same regardless of the pattern type. The laser-structured electrodes were assembled in coin cells and subsequently electrochemically characterized. It was found that when discharging the cells for durations of less than 2 h, a significant, positive impact of laser patterning on the electrochemical cell performance was observed. For example, when discharging was performed for one hour, cells containing laser-patterned electrodes with different structure types exhibited a specific capacity increase of up to 70 mAh/g in contrast to the reference ones. Although cells with a hole-patterned electrode exhibited a minimum capacity increase in the rate capability analysis, the combination of holes with lines, grids, or hexagons led to further capacity increases. In addition, long-term cycle analyses demonstrated the benefits of laser patterning on the cell lifetime, while cyclic voltammetry highlighted an increase in the Li-ion diffusion kinetics in cells containing hexagonal-patterned electrodes.
通过结合厚膜电极和三维电池概念,可以在保持高功率密度的同时提高电池的能量密度。我们研究了不同图案类型的激光结构对电化学性能的影响。为此,使用 PVDF 粘合剂制备了 LiNi0.6Mn0.2Co0.2O2 (NMC 622) 厚膜阴极,然后使用超快激光烧蚀技术对其进行了结构化处理。共实现了八种不同的图案类型,即线条、网格、孔洞、六边形结构及其各自的组合。此外,无论图案类型如何,激光烧蚀造成的质量损失都保持不变。激光结构电极被组装到纽扣电池中,随后进行了电化学表征。研究发现,当电池放电持续时间少于 2 小时时,激光图案化对电化学电池的性能有显著的积极影响。例如,在放电 1 小时时,含有不同结构类型激光图案电极的电池与参考电池相比,比容量最多可增加 70 mAh/g。虽然在速率能力分析中,带有孔图案电极的电池容量增幅最小,但将孔与线条、网格或六边形组合在一起可进一步提高容量。此外,长期循环分析表明了激光图案化对电池寿命的益处,而循环伏安法则突显了含有六边形图案电极的电池中锂离子扩散动力学的增加。
{"title":"The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries","authors":"P. Zhu, Benjamin Ebert, P. Smyrek, Wilhelm Pfleging","doi":"10.3390/batteries10020058","DOIUrl":"https://doi.org/10.3390/batteries10020058","url":null,"abstract":"An increase in the energy density on the cell level while maintaining a high power density can be realized by combining thick-film electrodes and the 3D battery concept. The effect of laser structuring using different pattern types on the electrochemical performance was studied. For this purpose, LiNi0.6Mn0.2Co0.2O2 (NMC 622) thick-film cathodes were prepared with a PVDF binder and were afterward structured using ultrafast laser ablation. Eight different pattern types were realized, which are lines, grids, holes, hexagonal structures, and their respective combinations. In addition, the mass loss caused by laser ablation was kept the same regardless of the pattern type. The laser-structured electrodes were assembled in coin cells and subsequently electrochemically characterized. It was found that when discharging the cells for durations of less than 2 h, a significant, positive impact of laser patterning on the electrochemical cell performance was observed. For example, when discharging was performed for one hour, cells containing laser-patterned electrodes with different structure types exhibited a specific capacity increase of up to 70 mAh/g in contrast to the reference ones. Although cells with a hole-patterned electrode exhibited a minimum capacity increase in the rate capability analysis, the combination of holes with lines, grids, or hexagons led to further capacity increases. In addition, long-term cycle analyses demonstrated the benefits of laser patterning on the cell lifetime, while cyclic voltammetry highlighted an increase in the Li-ion diffusion kinetics in cells containing hexagonal-patterned electrodes.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"61 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139794098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries 结构图案类型对锂离子电池用超厚 NMC 622电极电化学性能的影响
Pub Date : 2024-02-08 DOI: 10.3390/batteries10020058
P. Zhu, Benjamin Ebert, P. Smyrek, Wilhelm Pfleging
An increase in the energy density on the cell level while maintaining a high power density can be realized by combining thick-film electrodes and the 3D battery concept. The effect of laser structuring using different pattern types on the electrochemical performance was studied. For this purpose, LiNi0.6Mn0.2Co0.2O2 (NMC 622) thick-film cathodes were prepared with a PVDF binder and were afterward structured using ultrafast laser ablation. Eight different pattern types were realized, which are lines, grids, holes, hexagonal structures, and their respective combinations. In addition, the mass loss caused by laser ablation was kept the same regardless of the pattern type. The laser-structured electrodes were assembled in coin cells and subsequently electrochemically characterized. It was found that when discharging the cells for durations of less than 2 h, a significant, positive impact of laser patterning on the electrochemical cell performance was observed. For example, when discharging was performed for one hour, cells containing laser-patterned electrodes with different structure types exhibited a specific capacity increase of up to 70 mAh/g in contrast to the reference ones. Although cells with a hole-patterned electrode exhibited a minimum capacity increase in the rate capability analysis, the combination of holes with lines, grids, or hexagons led to further capacity increases. In addition, long-term cycle analyses demonstrated the benefits of laser patterning on the cell lifetime, while cyclic voltammetry highlighted an increase in the Li-ion diffusion kinetics in cells containing hexagonal-patterned electrodes.
通过结合厚膜电极和三维电池概念,可以在保持高功率密度的同时提高电池的能量密度。我们研究了不同图案类型的激光结构对电化学性能的影响。为此,使用 PVDF 粘合剂制备了 LiNi0.6Mn0.2Co0.2O2 (NMC 622) 厚膜阴极,然后使用超快激光烧蚀技术对其进行了结构化处理。共实现了八种不同的图案类型,即线条、网格、孔洞、六边形结构及其各自的组合。此外,无论图案类型如何,激光烧蚀造成的质量损失都保持不变。激光结构电极被组装到纽扣电池中,随后进行了电化学表征。研究发现,当电池放电持续时间少于 2 小时时,激光图案化对电化学电池的性能有显著的积极影响。例如,在放电 1 小时时,含有不同结构类型激光图案电极的电池与参考电池相比,比容量最多可增加 70 mAh/g。虽然在速率能力分析中,带有孔图案电极的电池容量增幅最小,但将孔与线条、网格或六边形组合在一起可进一步提高容量。此外,长期循环分析表明了激光图案化对电池寿命的益处,而循环伏安法则突显了含有六边形图案电极的电池中锂离子扩散动力学的增加。
{"title":"The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries","authors":"P. Zhu, Benjamin Ebert, P. Smyrek, Wilhelm Pfleging","doi":"10.3390/batteries10020058","DOIUrl":"https://doi.org/10.3390/batteries10020058","url":null,"abstract":"An increase in the energy density on the cell level while maintaining a high power density can be realized by combining thick-film electrodes and the 3D battery concept. The effect of laser structuring using different pattern types on the electrochemical performance was studied. For this purpose, LiNi0.6Mn0.2Co0.2O2 (NMC 622) thick-film cathodes were prepared with a PVDF binder and were afterward structured using ultrafast laser ablation. Eight different pattern types were realized, which are lines, grids, holes, hexagonal structures, and their respective combinations. In addition, the mass loss caused by laser ablation was kept the same regardless of the pattern type. The laser-structured electrodes were assembled in coin cells and subsequently electrochemically characterized. It was found that when discharging the cells for durations of less than 2 h, a significant, positive impact of laser patterning on the electrochemical cell performance was observed. For example, when discharging was performed for one hour, cells containing laser-patterned electrodes with different structure types exhibited a specific capacity increase of up to 70 mAh/g in contrast to the reference ones. Although cells with a hole-patterned electrode exhibited a minimum capacity increase in the rate capability analysis, the combination of holes with lines, grids, or hexagons led to further capacity increases. In addition, long-term cycle analyses demonstrated the benefits of laser patterning on the cell lifetime, while cyclic voltammetry highlighted an increase in the Li-ion diffusion kinetics in cells containing hexagonal-patterned electrodes.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"11 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139853720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus-Containing Polymer Electrolytes for Li Batteries 用于锂电池的含磷聚合物电解质
Pub Date : 2024-02-04 DOI: 10.3390/batteries10020056
N. Varan, P. Mergheş, N. Pleşu, L. Macarie, G. Ilia, V. Simulescu
Lithium-ion polymer batteries, also known as lithium-polymer, abbreviated Li-po, are one of the main research topics nowadays in the field of energy storage. This review focuses on the use of the phosphorus containing compounds in Li-po batteries, such as polyphosphonates and polyphosphazenes. Li-po batteries are mini-devices, capable of providing power for any portable gadget. From a constructive point of view, Li-po batteries contain an anode (carbon), a cathode (metal oxide), and a polymer electrolyte, which could be liquid electrolytes or solid electrolytes. In general, a divider is used to keep the anode and cathode from touching each other directly. Since liquid electrolytes have a generally high ionic conductivity, they are frequently employed in Li-ion batteries. In the last decade, the research in this field has also focused on solving safety issues, such as the leakage of electrolytes and risk of ignition due to volatile and flammable organic solvents. The research topics in the field of Li-po remain focused on solving safety problems and improving performance.
锂离子聚合物电池,又称锂聚合物电池,简称锂聚合物电池,是当今储能领域的主要研究课题之一。本综述重点介绍含磷化合物在锂离子聚合物电池中的应用,如聚膦酸盐和聚磷氮。锂离子电池是一种微型设备,能够为任何便携式小工具提供电力。从结构上看,锂离子电池包含阳极(碳)、阴极(金属氧化物)和聚合物电解质,聚合物电解质可以是液态电解质,也可以是固态电解质。一般来说,隔板用于防止阳极和阴极直接接触。由于液态电解质通常具有较高的离子导电性,因此经常被用于锂离子电池中。近十年来,该领域的研究还侧重于解决安全问题,如电解质泄漏以及挥发性和易燃有机溶剂导致的点火风险。锂离子电池领域的研究课题仍然以解决安全问题和提高性能为重点。
{"title":"Phosphorus-Containing Polymer Electrolytes for Li Batteries","authors":"N. Varan, P. Mergheş, N. Pleşu, L. Macarie, G. Ilia, V. Simulescu","doi":"10.3390/batteries10020056","DOIUrl":"https://doi.org/10.3390/batteries10020056","url":null,"abstract":"Lithium-ion polymer batteries, also known as lithium-polymer, abbreviated Li-po, are one of the main research topics nowadays in the field of energy storage. This review focuses on the use of the phosphorus containing compounds in Li-po batteries, such as polyphosphonates and polyphosphazenes. Li-po batteries are mini-devices, capable of providing power for any portable gadget. From a constructive point of view, Li-po batteries contain an anode (carbon), a cathode (metal oxide), and a polymer electrolyte, which could be liquid electrolytes or solid electrolytes. In general, a divider is used to keep the anode and cathode from touching each other directly. Since liquid electrolytes have a generally high ionic conductivity, they are frequently employed in Li-ion batteries. In the last decade, the research in this field has also focused on solving safety issues, such as the leakage of electrolytes and risk of ignition due to volatile and flammable organic solvents. The research topics in the field of Li-po remain focused on solving safety problems and improving performance.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"2014 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the State of Usability for Lithium–Ion Batteries 锂离子电池的可用性现状
Pub Date : 2024-02-04 DOI: 10.3390/batteries10020057
Christopher Wett, Jörg Lampe, Jan Haß, Thomas Seeger, Bugra Turan
Lithium–ion batteries are well established as traction batteries for electric vehicles. This has led to a growing market for second-life batteries that can be used in applications like home energy storage systems. Moreover, the recyclability and safe handling of aged or damaged cells and packs has become more important. While there are several indicators, like state of health (SOH), state of power (SOP), or state of safety (SOS), which describe the state of a battery before its defined end of life (EOL), there is no consistent classification methodology by which to describe the usability of a cell or pack after its EOL is reached. The proposed state of usability (SOU) provides a new indicator that accounts for the usability for second life, recyclability, and possible required safety handling of a lithium–ion battery after its first intended life cycle. This work presents a decision tree method, which in turn leads to five discrete usability levels enabling a fast and rough determination of the SOU for practical use. Further, a calculation methodology for reasonable continuous regions of the SOU is proposed. Both methods are based on a literature-based rating of all of the relevant defect and aging mechanisms displayed in a risk matrix. Finally, some experimental methods that can be used for SOU determination are proposed. The developed methodology and the hands-on approach using a decision tree are well-suited for real world application in recycling companies and battery test laboratories.
锂离子电池作为电动汽车的牵引电池已得到广泛认可。因此,可用于家庭储能系统等应用的二次寿命电池市场不断增长。此外,老化或损坏电池和电池组的可回收性和安全处理也变得越来越重要。虽然有一些指标,如健康状态(SOH)、电量状态(SOP)或安全状态(SOS),可以描述电池在规定的寿命终止(EOL)前的状态,但目前还没有一致的分类方法来描述电池或电池组在达到寿命终止后的可用性。建议的可用性状态(SOU)提供了一个新的指标,它考虑了锂离子电池在第一个预定寿命周期之后的第二次寿命可用性、可回收性以及可能需要的安全处理。这项工作提出了一种决策树方法,进而得出五个离散的可用性等级,从而能够快速、粗略地确定 SOU 的实际用途。此外,还提出了合理连续区域 SOU 的计算方法。这两种方法都是基于风险矩阵中显示的所有相关缺陷和老化机制的文献评级。最后,还提出了一些可用于确定 SOU 的实验方法。所开发的方法和使用决策树的实践方法非常适合回收公司和电池测试实验室的实际应用。
{"title":"On the State of Usability for Lithium–Ion Batteries","authors":"Christopher Wett, Jörg Lampe, Jan Haß, Thomas Seeger, Bugra Turan","doi":"10.3390/batteries10020057","DOIUrl":"https://doi.org/10.3390/batteries10020057","url":null,"abstract":"Lithium–ion batteries are well established as traction batteries for electric vehicles. This has led to a growing market for second-life batteries that can be used in applications like home energy storage systems. Moreover, the recyclability and safe handling of aged or damaged cells and packs has become more important. While there are several indicators, like state of health (SOH), state of power (SOP), or state of safety (SOS), which describe the state of a battery before its defined end of life (EOL), there is no consistent classification methodology by which to describe the usability of a cell or pack after its EOL is reached. The proposed state of usability (SOU) provides a new indicator that accounts for the usability for second life, recyclability, and possible required safety handling of a lithium–ion battery after its first intended life cycle. This work presents a decision tree method, which in turn leads to five discrete usability levels enabling a fast and rough determination of the SOU for practical use. Further, a calculation methodology for reasonable continuous regions of the SOU is proposed. Both methods are based on a literature-based rating of all of the relevant defect and aging mechanisms displayed in a risk matrix. Finally, some experimental methods that can be used for SOU determination are proposed. The developed methodology and the hands-on approach using a decision tree are well-suited for real world application in recycling companies and battery test laboratories.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139866574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the State of Usability for Lithium–Ion Batteries 锂离子电池的可用性现状
Pub Date : 2024-02-04 DOI: 10.3390/batteries10020057
Christopher Wett, Jörg Lampe, Jan Haß, Thomas Seeger, Bugra Turan
Lithium–ion batteries are well established as traction batteries for electric vehicles. This has led to a growing market for second-life batteries that can be used in applications like home energy storage systems. Moreover, the recyclability and safe handling of aged or damaged cells and packs has become more important. While there are several indicators, like state of health (SOH), state of power (SOP), or state of safety (SOS), which describe the state of a battery before its defined end of life (EOL), there is no consistent classification methodology by which to describe the usability of a cell or pack after its EOL is reached. The proposed state of usability (SOU) provides a new indicator that accounts for the usability for second life, recyclability, and possible required safety handling of a lithium–ion battery after its first intended life cycle. This work presents a decision tree method, which in turn leads to five discrete usability levels enabling a fast and rough determination of the SOU for practical use. Further, a calculation methodology for reasonable continuous regions of the SOU is proposed. Both methods are based on a literature-based rating of all of the relevant defect and aging mechanisms displayed in a risk matrix. Finally, some experimental methods that can be used for SOU determination are proposed. The developed methodology and the hands-on approach using a decision tree are well-suited for real world application in recycling companies and battery test laboratories.
锂离子电池作为电动汽车的牵引电池已得到广泛认可。因此,可用于家庭储能系统等应用的二次寿命电池市场不断增长。此外,老化或损坏电池和电池组的可回收性和安全处理也变得越来越重要。虽然有一些指标,如健康状态(SOH)、电量状态(SOP)或安全状态(SOS),可以描述电池在规定的寿命终止(EOL)前的状态,但目前还没有一致的分类方法来描述电池或电池组在达到寿命终止后的可用性。建议的可用性状态(SOU)提供了一个新的指标,它考虑了锂离子电池在第一个预定寿命周期之后的第二次寿命可用性、可回收性以及可能需要的安全处理。这项工作提出了一种决策树方法,进而得出五个离散的可用性等级,从而能够快速、粗略地确定 SOU 的实际用途。此外,还提出了合理连续区域 SOU 的计算方法。这两种方法都是基于风险矩阵中显示的所有相关缺陷和老化机制的文献评级。最后,还提出了一些可用于确定 SOU 的实验方法。所开发的方法和使用决策树的实践方法非常适合回收公司和电池测试实验室的实际应用。
{"title":"On the State of Usability for Lithium–Ion Batteries","authors":"Christopher Wett, Jörg Lampe, Jan Haß, Thomas Seeger, Bugra Turan","doi":"10.3390/batteries10020057","DOIUrl":"https://doi.org/10.3390/batteries10020057","url":null,"abstract":"Lithium–ion batteries are well established as traction batteries for electric vehicles. This has led to a growing market for second-life batteries that can be used in applications like home energy storage systems. Moreover, the recyclability and safe handling of aged or damaged cells and packs has become more important. While there are several indicators, like state of health (SOH), state of power (SOP), or state of safety (SOS), which describe the state of a battery before its defined end of life (EOL), there is no consistent classification methodology by which to describe the usability of a cell or pack after its EOL is reached. The proposed state of usability (SOU) provides a new indicator that accounts for the usability for second life, recyclability, and possible required safety handling of a lithium–ion battery after its first intended life cycle. This work presents a decision tree method, which in turn leads to five discrete usability levels enabling a fast and rough determination of the SOU for practical use. Further, a calculation methodology for reasonable continuous regions of the SOU is proposed. Both methods are based on a literature-based rating of all of the relevant defect and aging mechanisms displayed in a risk matrix. Finally, some experimental methods that can be used for SOU determination are proposed. The developed methodology and the hands-on approach using a decision tree are well-suited for real world application in recycling companies and battery test laboratories.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"156 20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus-Containing Polymer Electrolytes for Li Batteries 用于锂电池的含磷聚合物电解质
Pub Date : 2024-02-04 DOI: 10.3390/batteries10020056
N. Varan, P. Mergheş, N. Pleşu, L. Macarie, G. Ilia, V. Simulescu
Lithium-ion polymer batteries, also known as lithium-polymer, abbreviated Li-po, are one of the main research topics nowadays in the field of energy storage. This review focuses on the use of the phosphorus containing compounds in Li-po batteries, such as polyphosphonates and polyphosphazenes. Li-po batteries are mini-devices, capable of providing power for any portable gadget. From a constructive point of view, Li-po batteries contain an anode (carbon), a cathode (metal oxide), and a polymer electrolyte, which could be liquid electrolytes or solid electrolytes. In general, a divider is used to keep the anode and cathode from touching each other directly. Since liquid electrolytes have a generally high ionic conductivity, they are frequently employed in Li-ion batteries. In the last decade, the research in this field has also focused on solving safety issues, such as the leakage of electrolytes and risk of ignition due to volatile and flammable organic solvents. The research topics in the field of Li-po remain focused on solving safety problems and improving performance.
锂离子聚合物电池,又称锂聚合物电池,简称锂聚合物电池,是当今储能领域的主要研究课题之一。本综述重点介绍含磷化合物在锂离子聚合物电池中的应用,如聚膦酸盐和聚磷氮。锂离子电池是一种微型设备,能够为任何便携式小工具提供电力。从结构的角度来看,锂离子电池包含阳极(碳)、阴极(金属氧化物)和聚合物电解质,聚合物电解质可以是液态电解质,也可以是固态电解质。一般来说,隔板用于防止阳极和阴极直接接触。由于液态电解质通常具有较高的离子导电性,因此经常被用于锂离子电池中。近十年来,该领域的研究还侧重于解决安全问题,如电解质泄漏以及挥发性和易燃有机溶剂导致的点火风险。锂离子电池领域的研究课题仍然以解决安全问题和提高性能为重点。
{"title":"Phosphorus-Containing Polymer Electrolytes for Li Batteries","authors":"N. Varan, P. Mergheş, N. Pleşu, L. Macarie, G. Ilia, V. Simulescu","doi":"10.3390/batteries10020056","DOIUrl":"https://doi.org/10.3390/batteries10020056","url":null,"abstract":"Lithium-ion polymer batteries, also known as lithium-polymer, abbreviated Li-po, are one of the main research topics nowadays in the field of energy storage. This review focuses on the use of the phosphorus containing compounds in Li-po batteries, such as polyphosphonates and polyphosphazenes. Li-po batteries are mini-devices, capable of providing power for any portable gadget. From a constructive point of view, Li-po batteries contain an anode (carbon), a cathode (metal oxide), and a polymer electrolyte, which could be liquid electrolytes or solid electrolytes. In general, a divider is used to keep the anode and cathode from touching each other directly. Since liquid electrolytes have a generally high ionic conductivity, they are frequently employed in Li-ion batteries. In the last decade, the research in this field has also focused on solving safety issues, such as the leakage of electrolytes and risk of ignition due to volatile and flammable organic solvents. The research topics in the field of Li-po remain focused on solving safety problems and improving performance.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"16 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway 牵引电池的电池/模块排列对热失控情况下火势蔓延的影响
Pub Date : 2024-02-03 DOI: 10.3390/batteries10020055
Ana Olona, Luis Castejón
When designing the battery of an electric vehicle, different parameters must be considered to obtain the safest arrangement of the battery/modules/cells from the mechanical and thermal points of view. In this study, the thermal runaway propagation mechanism of lithium-ion cells is analyzed as a function of their arrangement within a battery pack in case of a fire propagation of a battery pack in which a thermal runaway has occurred. The objective is to identify which cell/module arrangement is most critical within the battery pack, using microscopic analysis of the structure and chemical composition of the most damaged cells, both horizontally and vertically, of a battery belonging to a burnt vehicle. And their final condition was compared with the condition of new cells of the same type. In this way, the structure and chemical composition of the cathode, anode, and separator after thermal runaway were compared. This research was carried out to obtain information to understand the mechanical properties of lithium-ion cells and their behavior after thermal runaway heating leading to the propagation of a fire. Through the analysis carried out, it is concluded that cells placed in a vertical arrangement have worse behavior than cells in a horizontal arrangement. Regarding the safety of the battery, the results of this study will allow us to determine which arrangement and structure of the cells in the battery pack is safer against thermal runaway due to thermal failure.
在设计电动汽车电池时,必须考虑不同的参数,以便从机械和热学角度获得最安全的电池/模块/电芯布置。在本研究中,分析了锂离子电池的热失控传播机制,即在发生热失控的电池组起火传播时,电池在电池组内的排列方式对其产生的影响。目的是通过对燃烧车辆电池中横向和纵向受损最严重的电芯的结构和化学成分进行显微分析,确定电池组中哪种电芯/模块排列方式最为关键。并将它们的最终状况与同类型新电池的状况进行比较。通过这种方式,比较了热失控后正极、负极和隔膜的结构和化学成分。开展这项研究的目的是获取信息,以了解锂离子电池的机械性能及其在热失控加热导致起火后的行为。通过分析得出的结论是,垂直放置的电池比水平放置的电池性能更差。关于电池的安全性,这项研究的结果将使我们能够确定电池组中哪种排列方式和结构的电池在热失效导致热失控时更安全。
{"title":"Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway","authors":"Ana Olona, Luis Castejón","doi":"10.3390/batteries10020055","DOIUrl":"https://doi.org/10.3390/batteries10020055","url":null,"abstract":"When designing the battery of an electric vehicle, different parameters must be considered to obtain the safest arrangement of the battery/modules/cells from the mechanical and thermal points of view. In this study, the thermal runaway propagation mechanism of lithium-ion cells is analyzed as a function of their arrangement within a battery pack in case of a fire propagation of a battery pack in which a thermal runaway has occurred. The objective is to identify which cell/module arrangement is most critical within the battery pack, using microscopic analysis of the structure and chemical composition of the most damaged cells, both horizontally and vertically, of a battery belonging to a burnt vehicle. And their final condition was compared with the condition of new cells of the same type. In this way, the structure and chemical composition of the cathode, anode, and separator after thermal runaway were compared. This research was carried out to obtain information to understand the mechanical properties of lithium-ion cells and their behavior after thermal runaway heating leading to the propagation of a fire. Through the analysis carried out, it is concluded that cells placed in a vertical arrangement have worse behavior than cells in a horizontal arrangement. Regarding the safety of the battery, the results of this study will allow us to determine which arrangement and structure of the cells in the battery pack is safer against thermal runaway due to thermal failure.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"58 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway 牵引电池的电池/模块排列对热失控情况下火势蔓延的影响
Pub Date : 2024-02-03 DOI: 10.3390/batteries10020055
Ana Olona, Luis Castejón
When designing the battery of an electric vehicle, different parameters must be considered to obtain the safest arrangement of the battery/modules/cells from the mechanical and thermal points of view. In this study, the thermal runaway propagation mechanism of lithium-ion cells is analyzed as a function of their arrangement within a battery pack in case of a fire propagation of a battery pack in which a thermal runaway has occurred. The objective is to identify which cell/module arrangement is most critical within the battery pack, using microscopic analysis of the structure and chemical composition of the most damaged cells, both horizontally and vertically, of a battery belonging to a burnt vehicle. And their final condition was compared with the condition of new cells of the same type. In this way, the structure and chemical composition of the cathode, anode, and separator after thermal runaway were compared. This research was carried out to obtain information to understand the mechanical properties of lithium-ion cells and their behavior after thermal runaway heating leading to the propagation of a fire. Through the analysis carried out, it is concluded that cells placed in a vertical arrangement have worse behavior than cells in a horizontal arrangement. Regarding the safety of the battery, the results of this study will allow us to determine which arrangement and structure of the cells in the battery pack is safer against thermal runaway due to thermal failure.
在设计电动汽车电池时,必须考虑不同的参数,以便从机械和热学角度获得最安全的电池/模块/电芯布置。在本研究中,分析了锂离子电池的热失控传播机制,即在发生热失控的电池组起火传播时,电池在电池组内的排列方式对其产生的影响。目的是通过对燃烧车辆电池中横向和纵向受损最严重的电芯的结构和化学成分进行显微分析,确定电池组中哪种电芯/模块排列方式最为关键。并将它们的最终状况与同类型新电池的状况进行比较。通过这种方式,比较了热失控后正极、负极和隔膜的结构和化学成分。开展这项研究的目的是获取信息,以了解锂离子电池的机械性能及其在热失控加热导致起火后的行为。通过分析得出的结论是,垂直放置的电池比水平放置的电池性能更差。关于电池的安全性,这项研究的结果将使我们能够确定电池组中哪种排列方式和结构的电池在热失效导致热失控时更安全。
{"title":"Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway","authors":"Ana Olona, Luis Castejón","doi":"10.3390/batteries10020055","DOIUrl":"https://doi.org/10.3390/batteries10020055","url":null,"abstract":"When designing the battery of an electric vehicle, different parameters must be considered to obtain the safest arrangement of the battery/modules/cells from the mechanical and thermal points of view. In this study, the thermal runaway propagation mechanism of lithium-ion cells is analyzed as a function of their arrangement within a battery pack in case of a fire propagation of a battery pack in which a thermal runaway has occurred. The objective is to identify which cell/module arrangement is most critical within the battery pack, using microscopic analysis of the structure and chemical composition of the most damaged cells, both horizontally and vertically, of a battery belonging to a burnt vehicle. And their final condition was compared with the condition of new cells of the same type. In this way, the structure and chemical composition of the cathode, anode, and separator after thermal runaway were compared. This research was carried out to obtain information to understand the mechanical properties of lithium-ion cells and their behavior after thermal runaway heating leading to the propagation of a fire. Through the analysis carried out, it is concluded that cells placed in a vertical arrangement have worse behavior than cells in a horizontal arrangement. Regarding the safety of the battery, the results of this study will allow us to determine which arrangement and structure of the cells in the battery pack is safer against thermal runaway due to thermal failure.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"39 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139808656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning of Ionic Liquid–Solvent Electrolytes for High-Voltage Electrochemical Double Layer Capacitors: A Review 为高压电化学双电层电容器调谐离子液体-溶剂电解质:综述
Pub Date : 2024-02-02 DOI: 10.3390/batteries10020054
Yan Wang, Kaiyuan Xue, Changzeng Yan, Yuehui Li, Xingyun Zhang, Kailimai Su, Pengjun Ma, Shanhong Wan, Junwei Lang
Electrochemical double-layer capacitors (EDLCs) possess extremely high-power density and a long cycle lifespan, but they have been long constrained by a low energy density. Since the electrochemical stability of electrolytes is essential to the operating voltage of EDLCs, and thus to their energy density, the tuning of electrolyte components towards a high-voltage window has been a research focus for a long time. Organic electrolytes based on ionic liquids (ILs) are recognized as the most commercially promising owing to their moderate operating voltage and excellent conductivity. Despite impressive progress, the working voltage of IL–solvent electrolytes needs to be improved to meet the growing demand. In this review, the recent progress in the tuning of IL- based organic electrolyte components for higher-voltage EDLCs is comprehensively summarized and the advantages and limitations of these innovative components are outlined. Furthermore, future trends of IL–solvent electrolytes in this field are highlighted.
电化学双层电容器(EDLC)具有极高的功率密度和较长的循环寿命,但长期以来一直受制于较低的能量密度。由于电解质的电化学稳定性对双电层电容器的工作电压及其能量密度至关重要,因此长期以来,如何调整电解质成分以实现高电压窗口一直是研究的重点。基于离子液体(IL)的有机电解质因其适中的工作电压和出色的导电性而被认为是最具商业前景的电解质。尽管取得了令人瞩目的进展,但离子液体溶剂电解质的工作电压仍有待提高,以满足日益增长的需求。在这篇综述中,我们全面总结了最近在为更高电压 EDLC 调整基于 IL 的有机电解质成分方面取得的进展,并概述了这些创新成分的优势和局限性。此外,还重点介绍了该领域中 IL 溶剂电解质的未来发展趋势。
{"title":"Tuning of Ionic Liquid–Solvent Electrolytes for High-Voltage Electrochemical Double Layer Capacitors: A Review","authors":"Yan Wang, Kaiyuan Xue, Changzeng Yan, Yuehui Li, Xingyun Zhang, Kailimai Su, Pengjun Ma, Shanhong Wan, Junwei Lang","doi":"10.3390/batteries10020054","DOIUrl":"https://doi.org/10.3390/batteries10020054","url":null,"abstract":"Electrochemical double-layer capacitors (EDLCs) possess extremely high-power density and a long cycle lifespan, but they have been long constrained by a low energy density. Since the electrochemical stability of electrolytes is essential to the operating voltage of EDLCs, and thus to their energy density, the tuning of electrolyte components towards a high-voltage window has been a research focus for a long time. Organic electrolytes based on ionic liquids (ILs) are recognized as the most commercially promising owing to their moderate operating voltage and excellent conductivity. Despite impressive progress, the working voltage of IL–solvent electrolytes needs to be improved to meet the growing demand. In this review, the recent progress in the tuning of IL- based organic electrolyte components for higher-voltage EDLCs is comprehensively summarized and the advantages and limitations of these innovative components are outlined. Furthermore, future trends of IL–solvent electrolytes in this field are highlighted.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"113 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139809541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning of Ionic Liquid–Solvent Electrolytes for High-Voltage Electrochemical Double Layer Capacitors: A Review 为高压电化学双电层电容器调谐离子液体-溶剂电解质:综述
Pub Date : 2024-02-02 DOI: 10.3390/batteries10020054
Yan Wang, Kaiyuan Xue, Changzeng Yan, Yuehui Li, Xingyun Zhang, Kailimai Su, Pengjun Ma, Shanhong Wan, Junwei Lang
Electrochemical double-layer capacitors (EDLCs) possess extremely high-power density and a long cycle lifespan, but they have been long constrained by a low energy density. Since the electrochemical stability of electrolytes is essential to the operating voltage of EDLCs, and thus to their energy density, the tuning of electrolyte components towards a high-voltage window has been a research focus for a long time. Organic electrolytes based on ionic liquids (ILs) are recognized as the most commercially promising owing to their moderate operating voltage and excellent conductivity. Despite impressive progress, the working voltage of IL–solvent electrolytes needs to be improved to meet the growing demand. In this review, the recent progress in the tuning of IL- based organic electrolyte components for higher-voltage EDLCs is comprehensively summarized and the advantages and limitations of these innovative components are outlined. Furthermore, future trends of IL–solvent electrolytes in this field are highlighted.
电化学双层电容器(EDLC)具有极高的功率密度和较长的循环寿命,但长期以来一直受制于较低的能量密度。由于电解质的电化学稳定性对双电层电容器的工作电压及其能量密度至关重要,因此长期以来,如何调整电解质成分以实现高电压窗口一直是研究的重点。基于离子液体(IL)的有机电解质因其适中的工作电压和出色的导电性而被认为是最具商业前景的电解质。尽管取得了令人瞩目的进展,但离子液体溶剂电解质的工作电压仍有待提高,以满足日益增长的需求。在这篇综述中,我们全面总结了最近在为更高电压 EDLC 调整基于 IL 的有机电解质成分方面取得的进展,并概述了这些创新成分的优势和局限性。此外,还重点介绍了该领域中 IL 溶剂电解质的未来发展趋势。
{"title":"Tuning of Ionic Liquid–Solvent Electrolytes for High-Voltage Electrochemical Double Layer Capacitors: A Review","authors":"Yan Wang, Kaiyuan Xue, Changzeng Yan, Yuehui Li, Xingyun Zhang, Kailimai Su, Pengjun Ma, Shanhong Wan, Junwei Lang","doi":"10.3390/batteries10020054","DOIUrl":"https://doi.org/10.3390/batteries10020054","url":null,"abstract":"Electrochemical double-layer capacitors (EDLCs) possess extremely high-power density and a long cycle lifespan, but they have been long constrained by a low energy density. Since the electrochemical stability of electrolytes is essential to the operating voltage of EDLCs, and thus to their energy density, the tuning of electrolyte components towards a high-voltage window has been a research focus for a long time. Organic electrolytes based on ionic liquids (ILs) are recognized as the most commercially promising owing to their moderate operating voltage and excellent conductivity. Despite impressive progress, the working voltage of IL–solvent electrolytes needs to be improved to meet the growing demand. In this review, the recent progress in the tuning of IL- based organic electrolyte components for higher-voltage EDLCs is comprehensively summarized and the advantages and limitations of these innovative components are outlined. Furthermore, future trends of IL–solvent electrolytes in this field are highlighted.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139869383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Batteries
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1